车辆系统动力学 第三章
- 格式:pdf
- 大小:4.32 MB
- 文档页数:94
可编辑修改精选全文完整版车辆系统动力学车辆系统动力学是一门涉及汽车系统的动力性研究的学科,旨在分析和模拟汽车的动力性能。
它是由应用力学和流体力学原理来研究动态特性,从而为汽车开发工程人员提供关键性信息和支持,以实现车辆系统的有效运行。
车辆系统动力学的研究分为两个主要方面:静动力学和结构动力学。
静动力学是研究汽车静力学和动力学系统,以及它们之间的相互作用。
静动力学的研究内容包括汽车的刚性构件的静力学计算,汽车转矩和加速度的动态测定,车辆悬架系统的构造、测量和控制,动力性能的行驶特性测定,以及汽车的操纵和漂移特性的研究。
结构动力学包括研究汽车结构,如悬架、底盘和发动机,以及这些系统的动态特性测定。
车辆系统动力学的研究可以分为三个主要领域:实验动力学、分析动力学和仿真动力学。
实验动力学主要负责试验机械结构以及机械系统的动力特性测定。
它可以分析出机械系统的动力特性,以及机械系统和动力学分析模型之间的关系。
分析动力学是通过数学分析的方法,计算和分析汽车的动力特性。
仿真动力学则使用计算机模拟技术,模拟汽车在不同行驶条件下的性能,并进行动力学和控制分析。
车辆系统动力学是一个复杂的研究领域,需要广泛的原理、理论和技术来支持。
它为车辆开发工程人员提供关键的研究信息,以便更好地了解汽车的动力性能,从而更好地解决汽车发动机、悬架和底盘等系统的限制问题,实现更低排放、更安全的汽车运行。
车辆系统动力学的研究目标是提高汽车的动力性能:提高燃油经济性、排放控制效果,降低汽车维护成本,延长汽车使用寿命,减少汽车故障发生率,并提高汽车在不同地形环境下的行驶质量。
未来,随着新技术的发展,车辆系统动力学的研究将不断进步,为汽车的改进和开发提供可靠的技术支持。
从而,车辆系统动力学是一门跨学科领域的非常重要的研究领域,它不仅涉及传统的汽车工程学科,还涉及力学、控制、物理、流体、电子、计算机等学科,是一门复杂而又有应用前景的学科。
因此,车辆系统动力学是汽车研发、维护和诊断的重要基础,也是汽车系统安全、经济、高效运行的关键。
汽车系统动力学第二版《汽车系统动力学第二版》是一本关于汽车系统动力学的专业书籍,旨在为读者提供关于汽车动力学的全面理解。
本书通过详细介绍汽车动力学的基本概念、原理和数学模型,帮助读者深入了解汽车系统的运行原理,并掌握相关的分析和设计方法。
第一章介绍了汽车系统动力学的基本概念和研究对象。
汽车系统动力学是研究汽车运动和力学特性的学科,涉及到车辆的加速、制动、转向和悬挂等方面。
本书强调了汽车系统动力学的重要性,指出了它对汽车性能和安全性的影响。
第二章详细介绍了汽车的运动学特性。
运动学是研究物体运动规律的学科,而汽车的运动学特性则包括车辆的速度、加速度和位移等参数。
本章通过引入几何学和向量分析的知识,解释了汽车运动学的基本原理,并给出了相关的计算方法。
第三章讨论了汽车的轮胎力学特性。
轮胎是汽车与地面之间的唯一接触点,它对车辆的牵引、制动和操纵性能起着至关重要的作用。
本章介绍了轮胎的结构和工作原理,并详细阐述了轮胎与地面之间的力学相互作用。
第四章介绍了汽车的悬挂系统。
悬挂系统是连接车身和车轮的重要组成部分,它对车辆的舒适性、稳定性和操控性起着重要作用。
本章从悬挂系统的基本原理入手,介绍了常见的悬挂结构和悬挂元件的设计原则,并讨论了悬挂系统对车辆动力学性能的影响。
第五章讨论了汽车的转向系统。
转向系统是控制车辆转向运动的关键部件,它对车辆的操纵性和稳定性有着重要影响。
本章介绍了转向系统的工作原理和组成部分,并讨论了转向系统的设计和调整方法。
第六章介绍了汽车的制动系统。
制动系统是保证车辆安全的重要组成部分,它对车辆的制动性能和稳定性起着至关重要的作用。
本章详细介绍了制动系统的原理、结构和工作过程,并讨论了制动系统的设计和优化方法。
最后一章总结了全书的内容,并展望了汽车系统动力学领域的未来发展方向。
本书通过详细的理论分析和实例应用,帮助读者深入了解汽车系统动力学的原理和方法,并为汽车工程师和研究人员提供了有价值的参考资料。
第三章充气轮胎动力学§3-1 概述轮胎是车辆重要的组成部分,直接与地面接触。
其作用是支承整车的重量,与悬架共同缓冲来自路面的不平度激励,以保证车辆具有良好的乘坐舒适性和行驶平顺性;保证车轮和路面具有良好的附着性,以提高车辆驱动性、制动性和通过性,并为车辆提供充分的转向力。
一、轮胎运动坐标系二、车轮运动参数1.滑动率2.轮胎侧偏角a3.轮胎径向变形§3-2 轮胎的功能、结构及发展轮胎的基本功能包括:1)支撑整车重量;2)与悬架元件共同作用,衰减由路面不平引起的振动与冲击;3)传递纵向力,以实现驱动和制动;4)传递侧向力,以使车辆转向并保证行驶稳定性。
为实现以上功能,任何一个充气轮胎都必须具备以下基本结构:(1)胎体(2)胎圈(3)胎面常用的车用充气轮胎有两种,即斜交轮胎和子午线轮胎。
二者在结构上有明显不同,主要区别在于胎体帘线角度的不同。
所谓“帘线角”即为胎体帘布层单线与车轮中心线形成的夹角。
根据车辆动力学研究内容的不同,轮胎模型可分为:(1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力。
(2)轮胎侧偏模型和侧倾模型主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频转角输入响应。
(3)轮胎垂向振动模型主要用于高频垂向振动的评价,并考虑轮胎的包容特性(包含刚性滤波和弹性滤波特性)。
这里仅对几种常用的轮胎模型给予介绍。
(1)幂指数统一轮胎模型幂指数统一轮胎模型的特点是:。
1)采用了无量纲表达式,其优点在于由纯工况下的一次台架试验得到的试验数据可应用于各种不同的路面。
当路面条件改变时,只要改变路面的附着特性参数,代人无量纲表达式即可得该路面下的轮胎特性。
2)无论是纯工况还是联合工况,其表达式是统一的。
3)可表达各种垂向载荷下的轮胎特性。
4)保证了可用较少的模型参数实现全域范围内的计算精度,参数拟合方便,计算量小。
在联合工况下,其优势更加明显。
5)能拟合原点刚度。
(2)“魔术公式”轮胎模型“魔术公式”轮胎模型的特点是:1)用一套公式可以表达出轮胎的各向力学特性,统一性强,编程方便,需拟合参数较少,且各个参数都有明确的物理意义,容易确定其初值。
《汽车系统动力学》教学大纲一、课程性质与任务1.课程性质:本课程是车辆工程专业的专业选修课。
2.课程任务:本课程要求学生学习和掌握车辆系统的主要行驶性能,如牵引性能、车辆的动态载荷、转向动力学等。
研究路面不平度激励的振动。
了解该领域世界发展及最新成果。
通过学习本课程,掌握汽车动力学分析的一般的理论和方法,为今后汽车系统动力学分析、从事该领域研究、开发奠定基础。
二、课程教学基本要求本课程是研究所有与汽车系统运动有关的学科,其内容可按车辆运动方向分为纵向、垂向和侧向动力学三大部分。
要求学生了解车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点理解受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学(垂向)和操纵动力学(侧向)内容。
运用系统方法及现代控制理论,结合实例分析,介绍了车辆动力学模型的建立、计算机仿真、动态性能分析和控制器设计的方法,同时使学生对常用的车辆动力学分析软件有所了解。
成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容绪篇概论和基础理论第一章车辆动力学概述1.教学基本要求让学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、术语、标准和法规、发展趋势。
2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、发展趋势。
3.教学重点和难点教学重点是车辆动力学的研究内容和范围、车辆特性和设计方法。
教学难点是车辆特性和设计方法。
4.教学内容第一节历史回顾1.车辆动力学的历史发展第二节研究内容和范围1.纵向动力学2.行驶动力学3.操作动力学第三节车辆特性和设计方法1.期望的车辆特性2.设计方法3.汽油机与柴油机速度特性的比较第四节术语、标准和法规1.汽车术语、标准和法规第五节发展趋势1.车辆的主动控制2.多体系统动力学3.闭环系统和主观与客观评价第二章车辆动力学建模方法及基础理论1.教学基本要求让学生了解动力学方程的建立方法、非完整系统动力学、多体系统动力学方法。