丰富的图形世界复习
- 格式:ppt
- 大小:122.00 KB
- 文档页数:13
2023-2024学年九年级中考数学复习《丰富的图形世界》考题汇集专项练【满分100分】一、选择题(每小题3分,共36分)1.下列图形中,正方体的展开图有( A )①②③④A.1个B.2个C.3个D.4个2.一个几何体的展开图如图所示,则该几何体的顶点有( D )A.12个B.10个C.8个D.6个3.下列说法错误的是( C )A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由两个平面和一个曲面围成4.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的有( C )A.2个B.3个C.4个D.5个5.把如图所示的长方形绕着给定的直线旋转一周后形成的立体图形可能是( D )6.图中点A,B是正方体的两个顶点,将正方体按如下方式展开,则在展开图中点A,B的位置标注正确的是( A )A B C D7.如图所示几何体从左边看到的形状是( D )A B C D8.用平面去截下列几何体,若能截得长方形、三角形、等腰梯形三种形状的截面,则这个几何体是( D )9.如图所示的是由几个小立方块所搭成的几何体从上面所看到的,小正方形中的数字表示在该位置方块的个数,则从左边看到的这个几何体的形状图为( B )A B C D10.用若干个棱长为1的小立方体摆成如图所示的几何体,现拿掉其中的一个小立方体后,从正面看这个几何体得到的平面图形的面积与拿掉前相同,则这个拿掉的小立方体可以是( D )A.①B.②C.③D.④11.一个几何体是由几个大小相同的小立方块搭成的,从正面、左面、上面看到的这个几何体的形状图如图所示,则搭成这个几何体所需的小立方块的个数为( B )A.8B.7C.6D.512.(2021菏泽改编)如图所示的是一个几何体从三个方向看到的形状图,根据图中所标数据计算这个几何体的体积为( B )A.12πB.18πC.24πD.30π二、填空题(每小题3分,共18分)13.直升机的螺旋桨转起来形成一个圆形的面,这说明了线动成面.14.若一个直棱柱共有16个顶点,所有侧棱长的和等于72 cm,则每条侧棱的长为9 cm.15.一个正方体的平面展开图如图所示,若折成正方体后,每对相对面上标注的值的和均相等,则x+y= 10 .第15题图16.在墙角用若干个棱长为1 cm的小正方体摆成如图所示的几何体,则此几何体的体积为10 cm3.第16题图17.如图所示,长方形ABCD的长AB=4,宽BC=3,以AB所在直线为轴,将长方形旋转一周后所得几何体从正面看到的图形的面积是24 .第17题图18.如图所示,一个长方体长9 cm,宽5 cm,高4 cm.从这个长方体的一个角上挖掉一个棱长为3 cm的正方体,剩下的几何体的体积是153 cm3,表面积是202 cm2.第18题图三、解答题(共46分)19.(8分)如图所示的是由6个大小相同的小立方块搭建的几何体,其中每个小正方体的棱长为1 cm.(1)直接写出这个几何体的表面积(包括底部): ;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.解:(1)26 cm2(2)根据三视图的画法,画出相应的图形如下:20.(8分)把棱长为1 cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面).(1)该几何体中有个小正方体;(2)其中有两面被涂色的有个小正方体,没被涂色的有个小正方体;(3)求出涂上颜色部分的总面积.解:(1)由题图,得该几何体中有14个小正方体.(2)由题图,得有两面被涂色的有4个小正方体;没被涂色的有1个小正方体.(3)涂上颜色部分的总面积为1×1×(12+9+8+4)=33(cm2).21.(8分)如图所示的是从三个方向看到的一个几何体的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看到的高为8 cm,从上面看到的三角形的三边长都为 5 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)它的一种表面展开图如图所示.(3)3×8×5=120(cm2),所以这个几何体的侧面积是120 cm2.22.(10分)(1)如图①所示,四个几何体分别是三棱柱、四棱柱、五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,并解答:四棱柱有个面, 条棱, 个顶点;六棱柱有个面, 条棱, 个顶点;由此猜想n棱柱有个面, 条棱, 个顶点.(2)如图②所示,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.若图中的正方形边长为2.1 cm,长方形的长为3 cm,宽为2.1 cm,请求出修正后所折叠而成的长方体的体积.①②解:(1)6 12 8 8 18 12 (n+2) 3n 2n(2)拼图存在问题,如图:多了一个正方形.折叠而成的长方体的体积为3×2.1×2.1=13.23(cm3).23.(12分)某玩具旗舰店根据积木数量的不同,订制了不同型号的外包装盒,所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图①所示),长方体纸箱的长为 a cm,宽为b cm,高为c cm.①②③(1)请用含有a,b,c的代数式表示制作长方体纸箱需要cm2纸板.(2)如图②所示为若干包装好的同一型号玩具堆成几何体从三个方向看到的平面图形,则组成这个几何体的玩具个数最少为多少个?(3)旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内,已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图③所示,现有甲、乙两种摆放方式,请分别计算甲、乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板更少.解:(1)(2ac+2bc+3ab)(2)根据题意知,组成这个几何体的玩具个数最少的分布情况如下图所示:所以组成这个几何体的玩具个数最少为9个.(3)由题意得a=c,a>b,甲:2(ac+2bc+2ab)+2ab,乙:2(2ab+2ac+bc)+2ab.因为a>b,所以ac>bc,所以ac-bc>0.因为甲所需纸板面积-乙所需纸板面积=2(ac+2bc-2ac-bc)=2(bc-ac)<0,所以甲种摆放方式所需外包装盒的纸板更少.。
丰富的图形世界复习教案一、教学目标1. 知识与技能:(1)能够识别和理解常见的平面图形(三角形、矩形、圆形等)及其特征;(2)能够运用图形语言表达简单的几何关系;(3)能够运用基本的几何变换方法(平移、旋转等)进行图形的变换。
2. 过程与方法:(1)通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力;(2)培养学生运用几何知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生对几何学科的兴趣,培养学生的审美情趣;二、教学内容1. 平面图形的识别与特征:三角形、矩形、圆形等;2. 几何语言的表达:点、线、面的表示方法;3. 几何变换:平移、旋转等。
三、教学重点与难点1. 重点:平面图形的识别与特征,几何语言的表达,几何变换的方法。
2. 难点:几何变换在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究;2. 利用多媒体辅助教学,直观展示图形变换过程;3. 组织学生进行小组讨论,培养合作交流能力;4. 结合生活实例,让学生感受几何知识在实际生活中的应用。
五、教学过程1. 导入新课:通过展示丰富的图形世界图片,引导学生回顾已学的平面图形及其特征。
3. 课堂练习:设计一些有关平面图形识别、几何语言表达和几何变换的练习题,让学生在实践中巩固知识。
4. 课堂讨论:组织学生进行小组讨论,分享各自在练习中的心得体会,互相交流学习。
5. 几何变换演示:利用多媒体展示几何变换(平移、旋转等)的过程,引导学生理解变换方法。
6. 生活实例:结合生活实际,让学生运用所学几何知识解决问题,如设计图案、计算面积等。
8. 课后作业:布置一些有关平面图形识别、几何语言表达和几何变换的练习题,巩固所学知识。
9. 课堂反馈:及时了解学生对课堂内容的掌握情况,为下一步教学提供参考。
六、教学评价1. 形成性评价:通过课堂练习、讨论等活动,及时了解学生对知识的掌握情况,给予及时的反馈和指导。
2. 终结性评价:通过课后作业、单元测试等方式,评估学生对平面图形识别、几何语言表达和几何变换的掌握程度。
丰富的图形世界复习教案第一章:复习平面图形的性质1.1 复习三角形的性质三角形的定义和特点三角形的分类三角形的内角和定理三角形的边长关系1.2 复习矩形的性质矩形的定义和特点矩形的性质定理矩形的对角线性质矩形的面积计算公式第二章:复习空间几何图形2.1 复习立方体的性质立方体的定义和特点立方体的面、棱和顶点的关系立方体的对角线长度立方体的表面积和体积计算2.2 复习圆柱的性质圆柱的定义和特点圆柱的底面和顶面的关系圆柱的侧面积和体积计算公式圆柱的展开图第三章:复习图形的变换3.1 复习平移的性质平移的定义和特点平移的规律和性质平移在坐标系中的应用平移对图形形状和大小的影响3.2 复习旋转的性质旋转的定义和特点旋转的规律和性质旋转在坐标系中的应用旋转对图形形状和大小的影响第四章:复习图形的坐标计算4.1 复习直线的斜率和截距直线的斜率和截距的定义直线的斜率和截距的计算方法直线的斜率和截距的应用斜率和截距与直线方程的关系4.2 复习圆的方程圆的标准方程和一般方程圆的半径和圆心的计算方法圆与直线的位置关系第五章:复习图形的对称性5.1 复习轴对称的性质轴对称的定义和特点轴对称的规律和性质轴对称在实际问题中的应用轴对称与图形变换的关系5.2 复习中心对称的性质中心对称的定义和特点中心对称的规律和性质中心对称在实际问题中的应用中心对称与图形变换的关系第六章:复习图形的相似性6.1 复习相似图形的定义和性质相似图形的定义和判定条件相似图形的对应边和对应角的关系相似图形面积和体积的比值关系相似图形在实际问题中的应用6.2 复习相似多边形的性质相似多边形的定义和判定条件相似多边形的对应边和对应角的关系相似多边形的面积和周长的比值关系第七章:复习图形的镶嵌和展开7.1 复习平面图形的镶嵌平面图形的镶嵌定义和条件常见几何图形的镶嵌方法镶嵌在实际问题中的应用镶嵌与平面图形的性质关系7.2 复习立体图形的展开立体图形的展开定义和意义常见几何图形的展开方法展开图在实际问题中的应用展开与立体图形的性质关系第八章:复习图形的综合应用8.1 复习平面几何问题的解决方法利用图形性质解决平面几何问题利用几何变换解决平面几何问题利用坐标方法解决平面几何问题平面几何问题在实际中的应用8.2 复习立体几何问题的解决方法利用图形性质解决立体几何问题利用几何变换解决立体几何问题利用坐标方法解决立体几何问题第九章:复习图形的测量和计算9.1 复习角度的测量和计算角度的度量单位和测量工具角度的计算方法和注意事项角的和不定方程的求解方法角度测量在实际问题中的应用9.2 复习距离和线段的长度计算距离和线段的定义及计算方法勾股定理和相似三角形在距离计算中的应用坐标系中两点距离的计算方法距离和线段长度在实际问题中的应用第十章:复习图形的对称和变换10.1 复习图形的轴对称变换轴对称变换的定义和特点轴对称变换的性质和规律轴对称变换在实际问题中的应用轴对称变换与图形美观性的关系10.2 复习图形的平移和旋转变换平移和旋转变换的定义和特点平移和旋转变换的性质和规律平移和旋转变换在实际问题中的应用平移和旋转变换与图形设计的关系重点和难点解析重点关注章节:第一章至第五章1. 第一章复习平面图形的性质,重点关注三角形的性质和矩形的性质。
第一章丰富的图形世界1、认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类;2、经历展开与折叠、切截以及从不同方向看等数学活动,积累数学活动经验;3、在平面图形与几何体相互转换等的活动过程中,发展空间观念;4、通过丰富的实例,进一步认识点、线、面,了解有关点、线及某些平面图形的一些简单性质;5、初步体会从不同方向看同一物体时可能看到不同的图形,能识别简单物体的三视图(主视图、俯视图、和左视图),会画立方体极其简单组合体的三种视图;6、了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型;知识点1:立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.拓展:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)拓展:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.知识点2:展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.知识点3:截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.知识点4:从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)题型一立体图形的辨析【典例1】(2022秋•沈丘县月考)下列几何体是柱体的有( )A.2个B.3个C.4个D.5个【答案】C【解答】解:如图,各个几何体的名称如下:因此这些几何体中,是柱体的有四棱柱、三棱柱、圆柱,三棱柱,共有4个,故选:C.【变式1-1】(2023•平谷区二模)下列几何体中,是圆锥的为( )A.B.C.D.【答案】D【解答】解:A.属于长方体(四棱柱),不合题意;B.属于三棱锥,不合题意;C.属于圆柱,不合题意;D.属于圆锥,符合题意;故选:D.【变式1-2】(2022秋•揭西县期末)一个棱柱有8个面,这是一个( )A.四棱柱B.六棱柱C.七棱柱D.八棱柱【答案】B【解答】解:由n棱柱有n个侧面,2个底面,共有(n+2)个面可得,n+2=8,解得n=6,即这个几何体是六棱柱,故选:B.【变式1-3】(2022秋•新化县期末)下列几何体中,属于柱体的有( )A.1个B.2个C.3个D.4个【答案】B【解答】解:第一个图是圆锥;第二个图是三棱锥;第三个图是正方体,也是四棱柱;第四个图是球;第五个图是圆柱;其中柱体有2个,即第三个和第五个,故选:B.题型二点线面体【典例2-1】(2022秋•榕城区期末)下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A.B.C.D.【答案】A【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到.故选:A.【典例2-2】(2022秋•市南区期末)下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【答案】D【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【变式2-1】(2022秋•福鼎市期中)下列图形绕虚线旋转一周,能形成圆柱体的是( )A.B.C.D.【答案】B【解答】解:矩形绕着一条边所在的直线旋转一周,所得到的几何体是圆柱体,故选:B.【变式2-2】(2022秋•南海区期中)把一个半圆立起来旋转成一个球体,这种现象说明( )A.线动成面B.点动成线C.面动成体D.以上都不对【答案】C【解答】解:从运动的观点可知,这种现象说明面动成体.故选:C.题型三立体图形的展开【典例3】(2023•威远县校级一模)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.圆柱D.圆锥【答案】B【解答】解:从展开图可知,该几何体有五个面,两个三角形的底面,三个长方形的侧面,因此该几何体是三棱柱,故选:B.【变式3-1】(2023•长安区二模)如图,是一个几何体的表面展开图,则该几何体是( )A.正方体B.长方体C.四棱柱D.四棱锥【答案】D【解答】解:由图知,该几何体为四棱锥,故选:D.【变式3-2】(2023•新华区模拟)将如图所示的长方体包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形不可能是( )A.B.C.D.【答案】D【解答】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;C、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:D.【变式3-3】(2022秋•西城区期末)如图是某个几何体的展开图,则该几何体是( )A.五棱柱B.长方体C.五棱锥D.六棱柱【答案】A【解答】解:从展开图可知,该几何体有七个面,两个五边形的底面,五个长方形的侧面,因此该几何体是五棱柱,故选:A.题型四正方体的展开图【典例5】(2022秋•沈丘县期末)如图,是一个正方体的表面展开图,则“2”所对的面是( )A.0B.9C.快D.乐【答案】B【解答】解:“222”这种展开图的对应面的特征是:14,25,36,也就是2与9,0与快,1与乐相对.故选:B.【变式4-1】(2022秋•衡南县期末)将如图所示的正方体沿某些棱展开后,能得到的图形是( )A.B.C.D.【答案】C【解答】解:将如图所示的正方体沿某些棱展开后,能得到的图形是C.故选:C.【变式4-2】(2023•萍乡模拟)如图是一个正方体纸盒的外表面展开图,则这个正方体是( )A.B.C.D.【答案】D【解答】解:∵由图可知,有1个实心圆点与1个空心圆点相对,∴只有D符合题意.故选:D.【变式4-3】(2022秋•洛江区期末)如图,是一个正方体的六个面的展开图形,则“力”所对的面是 我 .【答案】我.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“力”相对的字是“我”;故答案为:我.题型五几何体的截面【典例5】(2023春•丹徒区期末)如图,将一块长方体的铁块沿虚线切割,则截面图是( )A.B.C.D.【答案】C【解答】解:其截面的形状是长方形,即故选:C.【变式5-1】(2022秋•蜀山区期末)用一个平面分别去截三棱柱、长方体、圆柱、圆锥,截面形状可能是三角形的几何体有( )A.1个B.2个C.3个D.4个【答案】C【解答】解:①三棱柱能截出三角形;②长方体沿体面对角线截几何体可以截出三角形;③圆柱不能截出三角形;④圆锥能截出三角形;故截面可能是三角形的有3个.故选:C.【变式5-2】(2022秋•南关区校级期末)用一平面去截下列几何体,其截面可能是长方形的有( )A.1个B.2个C.3个D.4个【答案】C【解答】解:圆锥用平面去截不可能得到长方形,圆柱、长方体、四棱柱用平面去截可能得到长方形,∴用一平面去截以上几何体,其截面可能是长方形的有3个,故选:C.【变式5-3】(2023•咸丰县一模)如图,在一个正方体纸盒上切一刀,切面与棱的交点分别为A,B,C,切掉角后,将纸盒剪开展成平面,则展开图不可能是( )A.B.C.D.【答案】B【解答】解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形不交于一个顶点,与正方体三个剪去三角形交于一个顶点不符.故选:B.题型六判断正方体的个数【典例6】(2023•崂山区三模)一个由若干个大小相同的小立方块搭成的几何体,从正面和从上面看到的形状图如图所示,则搭成这样的几何体最多、最少需要的小立方块的个数分别为( )A.10,7B.9,7C.11,7D.11,8【答案】B【解答】解:在俯视图的对应位置上标注,需要几何体最少和最多时该位置所摆放的正方体的个数,如图所示:因此最多需要:3+3+1+3=9(个),最少需要:3+2+1+1=7(个),故选:B.【变式6-1】(2023•黑龙江模拟)一个几何体由若干个大小相同的小立方块搭成,如图分别是它的主视图和俯视图,若该几何体所用小立方块的个数为n个,则n的最小值为( )A.9B.11C.12D.13【答案】A【解答】解:根据主视图、俯视图,可以得出最少时,在俯视图的相应位置上所摆放的个数,其中的一种情况如下:最少时需要9个,因此n的最小值为9.故选:A.【变式6-2】(2023•内蒙古)几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是( )A.B.C.D.【答案】D【解答】解:观察图形可知,该几何体的主视图有3列,从左到右正方形的个数分别为1、2、2,即.故选:D.【变式6-3】(2023•佳木斯三模)由几个大小相同的小正方体搭建而成的几何体的主视图和俯视图如图所示,则搭建这个几何体所需要的小正方体的个数可能为( )A.5个B.6个C.5个或6个D.6个或7个【答案】C【解答】解:由俯视图易得最底层有3个正方体,由主视图第二层最少有2个正方体,最多有3个,那么最少有3+2=5个立方体,最多有3+3=6个.故选:C.【变式6-4】(2023•郸城县一模)如图所示的是由几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A.B.C.D.【答案】B【解答】解:根据题意得:主视图有3列,每列小正方数形数目分别为3,2,2,主视图为,故选:B.题型七由三视图判断几何体【典例7】(2023•合肥三模)如图是某一几何体的俯视图与左视图,则这个几何体可能为( )A.B.C.D.【答案】C【解答】解:如图是某一几何体的俯视图与左视图,则这个几何体可能为:.故选:C.【变式7-1】(2023•天桥区三模)用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.【变式7-2】(2023•礼泉县一模)如图是某几何体的三视图,该几何体是( )A.圆柱B.五棱柱C.长方体D.五棱锥【答案】B【解答】解:由几何体的主视图和左视图都是长方形,故该几何体是柱体,又因为俯视图是五边形,故该几何体是五棱柱.故选:B.【变式7-3】(2023•海门市二模)如图,根据三视图,这个立体图形的名称是( )A.三棱锥B.三棱柱C.圆柱D.圆锥【答案】B【解答】解:根据三视图可以得出立体图形是三棱柱,故选:B.题型八由几何体判断三视图【典例8】(2022秋•西宁期末)如图所示的几何体,从正面看所得的平面图形是( )A.B.C.D.【答案】A【解答】解:这个组合体的主视图为:故选:A.【变式8-1】(2023•鼓楼区校级模拟)下列几何体的俯视图是矩形的是( )A.B.C.D.【答案】C【解答】解:A、其俯视图为圆形,不符合题意;B、其俯视图为三角形,不符合题意;C、其俯视图为矩形,符合题意;D、其俯视图为梯形,不符合题意;故选:C.【变式8-2】(2023•集美区模拟)图1所示的正五棱柱,其俯视图是( )A.B.C.D.【答案】A【解答】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A.【变式8-3】(2023•船营区一模)《九章算术》中将底面是直角三角形的直三棱柱称之为“堑堵”,如图所示.按图放置的“堑堵”,它的俯视图为( )A.B.C.D.【答案】B【解答】解:从上面看是一个矩形.故选:B.【变式8-4】(2023•潍坊)在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中卯的俯视图是( )A.B.C.D.【答案】C【解答】解:从上面看,可得俯视图:.故选:C.题型九画几何体的三个方向图【典例9】(2022秋•历下区期中)如图,若干个大小相同的小立方块搭成的几何体.(1)这个几何体由 8 个小立方块搭成;(2)从正面、左面、上面观察该几何体,分别画出你所看到的几何体的形状图.【答案】(1)8;(2)详见解答.【解答】解:由该组合体的“俯视图”相应位置上所摆放的小正方体的个数可得,1+3+1+1+2=8(个),故答案为:8;(2)这个组合体的三视图如下:【变式9-1】(2022秋•东明县校级期末)如图,分别画出从正面、左面和上面观察几何体看到的形状图.【答案】见解答.【解答】解:如图所示:【变式9-2】(2022秋•济南期末)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.【答案】见解答.【解答】解:如图所示:【变式9-3】(2022秋•济南期末)如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有 9 个小正方体.【答案】见试题解答内容【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.。
《丰富的图形世界》知识梳理与复习(第一章丰富的图形世界)知识要点一:生活中的立体图形1、下列实物中外形类似于棱柱的有()①水桶②一堆谷物③螺母④鹅卵石⑤砖头⑥电视机包装箱⑦水管A、2个 B 、3个C、4个D、5个2、下列图形中有14条棱的是()3、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体;可以看成有两个底面的几何体是()A、①②④⑥B、②③④C、②④⑤⑥D、①②③⑥4、写出下列各立体图形的名称5、观察下图中的棱柱和圆柱;回答下列问题(1)该棱柱和圆柱各是由几个面围成的?它们都是平的吗?(2)该棱柱有几个顶点?经过每个顶点有几条棱?6、将长和宽分别为3cm 和2cm 的长方形分别绕长、宽所在的直线旋转一周得到两个几何体,哪个几何体的体积大?(2V r h π=)知识要点二:展开与折叠7、下列说法中错误的是( )A 、棱柱的侧面数与侧棱数相同B 、棱柱的顶点数一定是偶数C 、棱柱的面数一定是奇数D 、棱柱的棱数一定是3的倍数8、下图中不可能围成正方体的有( )A 、1个B 、2个C 、3个D 、4个9、小红制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图应该为( )10、一个正方体的展开图如图所示,如果这个正方体相对的面上标注的数值相等,那么x = ,y = 。
11、如图所示,是两个立体图形的展开图,请写出这两个立体图形的名称(1):(2):12、如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果面D在后面,从右面看是面C,那么哪一面会在上面?知识要点三:截一个几何体13、用平面去截一个圆柱,截面的形状不可能是()A、三角形B、正方形C、长方形D、圆14、有下列几何体:①正方体;②长方体;③圆柱;④圆锥;⑤棱柱;⑥球这些几何体中截面可能是圆的有()A、2种B、3种C、4种D、5种15、正方体被一个平面所截,所得边数最多的多边形是A、四边形B、五边形C、六边形D、七边形16、写出下图中截面的形状17、如图所示,有一个正方体,棱长为5cm,如果在它的左上方截去一个长、宽、高分别为5cm,3cm,2cm的长方体,求它的表面积减少了百分之几?知识要点四:从三个方向看物体的形状18、下面四个几何体中,从左面看是四边形的几何体共有()A、1个B、2个C、3个D、4个19、如图所示是从三个方向看到的物体的形状图,对应的直观图是下列选项中的()20、如图所示,是一个几何体从三个方向看到的形状图,根据图中标注的数据可求得这个几何体的体积为()A、24πB、32πC、36πD、48π21、如图所示,把立方体的六个面分别涂上六种不同的颜色(红、黄、紫、蓝,白、绿),现将上述大小相同颜色分布完全一样的四个立方体拼成一个水平放置的长方体,那么立方体绿色面的对面颜色是()A、红色B、紫色C、白色D、蓝色21、如图是由几个立方块所搭成的几何体从上面看到的形状,则该几何体从正面看有列,从左面看有行。
丰富的图形世界专题复习【课标要点】1.通过观察现实生活中的物体,认识基本几何体及点、线、面.2.通过展开与折叠活动,认识棱柱的基本性质,能根据展开图想象和制作立体模型.3.通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验.4.能识别简单物体的三视图,会画立方体及其简单组合的三视图.5.通过平面图形与空间几何体相互转换的活动过程中,建立空间观念.6.认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类. 【知识网络】图1-1-2图1-1-3第1讲 几何体的三视图及常见几何体的侧面展开图【知识要点】1、了解直棱柱.圆柱.圆锥的侧面展开图,能根据展开图判断和制作立体模型.2、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型.3、重点:体会从不同方向看同一物体可能看到不同的结果,根据主视图、左视图、俯视图相象出实物图形.4、难点: 能画立方体及其简单组合的三视图.根据主视图、左视图、俯视图相象出实物图形.【典型例题】例1 棱长是1cm 的小立方体组成如图1-1-1所示的几何体,那么这个几何体的表面积是( )A. 36cm 2B . 33cm 2C. 30cm 2D. 27cm 2分析:考查学生观察想象能力,从6个方向观察都是6个边长为1cm 的正方形,所以表面积共计6×6 cm 2=36 cm2解: A例2 如图1-1-2是由相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )A .4个B .5个C .6个D .7个分析:在画三视图时,主俯列相等,从左向右看,画图取大数;左俯行相等,从上向下看,画图取大数.解:B图1-1-1图1-1-4图1-1-5图1-1-6例3 如图1-1-3平面图形中,是正方体的平面展开图形的是( ) 分析:主要考查学生的想象能力和动手操作能力. 解:C例4 如图1-1-4所示,直三棱柱的底面是等边三角形,在它的上底面上有一个半球形凹坑请你画出这个几何体的主视图.左视图和俯视图.分析:本题主要考查学生画简单组合体的三视图的能力,解答的思路是审题并观察几何体,明确这种较复杂的几何体是由哪些几何体组合而成的.它们是怎样组合的,联系三种视图的绘制要求画图.可以先画出主视图,再画其他两种视图.解:如图1-1-5:【知识运用】一、选择题1.下列图形中,不是正方体的展开图的是( ).2.如图1-1-6是正方体的一个表面展开图,展开前,2号面对面上的数字为( ) A.3 B.4 C.5 D.63.小明从正面观察图1-1-7所示的两个物体,看到的是( )主视左视俯视4.图1-1-8中几何体的主视图是图1-1-9中的()二、填空题5.根据下图1-1-10物体的三视图,填出几何体的名称并画出示意图是:.6.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如1-1-11图所示,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面,则“祝”. “你”. “前”分别表示正方体的______________________.三、解答题7.如图1-1-12中图(1)和图(2)分别是两个正方体的展开图,这两个正方体中,对面数字之和为2的数各有几对?有哪几对?8.如图1-1-13,一钢球置于圆柱的上底面,它们之间的接触点恰好是圆柱上底面的中心,请你画出图中所示几何体的主视图.左视图和俯视图.图1-2-1 图1-2-29.若要使得图1-1-14中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z 的值第2讲 用平面截某几何体及生活中的平面图形【知识要点】1.截面:用一个平面去截一个几何体,截出的面叫做截面.2.多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形叫做多边形.3.从n(n>3整数)边形一个顶点出发,能够引(n -3)条对角线,这些对角线把n 边形分成了(n -2)个三角形,n 边形对角线总条数为(3)2n n 条. 重点:用一个平面去切、截一个正方体,所得截面的形状的特征以及圆柱.圆锥的截面形状特征,认识生活中各类物体所含有的平面图形并将基本图形抽象出来. 难点:用平面切、截几何体,很多情况是靠想象的,归纳.猜想一些规律性的结论.【典型例题】例1 (2004.武汉)如图1―2―1,五棱柱的正确截面是图如图1―2―2中的( ) 解:B例2 用一个平面去截一个正方体,截面形状不能为图如图1―2―3中的( ) 分析:截面可以是三角形.四边形.五边形.解:D例3 如图1-2-4 在正方体1111ABCD A B C D -中,连结AB l .AC.B 1C ,则△AB 1C 的形状是 三角形.分析:本题考查学生判断对立体图形的截面图形形状的能力;应先想到三角形的分类,确定从哪个方面解答,再去分析它的边长或角的大小,确定答案.解:三角形按边分,有等边三角形.等腰三角形和不等边三角形等三类.这里,AB 1.AC.B 1C 分别是全等的正方形的对角线,所以本题应填“等边”.例4 用一个平面去截几何体,若截面是三角形,这个几何体可能是________. 点拨:若截面是三角形,则需要几何体至少有三个平面且有共同的顶点,或几何体有一个平面,其他的若是曲面,必须能截出直线.符合上述条件的是棱柱、圆锥、棱锥、棱台.解:正方体、长方体、棱柱、棱锥、棱台、圆锥.【知识运用】 一、选择题1.用一个平面去截一个正方体,截面图形不可能是( )A.长方形B.梯形C.三角形D.圆2.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是( )A.圆柱B.圆锥C.正方体D.球3.正方体的截面不可能是( )A. 四边形B. 五边形C. 六边形D. 七边形 4.n 边形所有对角线的条数是( )(1)n(n-2)n(n-3)n(n-4)ABCD.2222n n -、、、二、填空题5.从多边形的一个顶点共引了6条对角线,那么这个 多边形的边数是_______________6.图1-2-5几何体的截面(图中阴影部分)依次是 . . . .三、解答7.观察下列1-2-6由棱长为1的小立方体摆成的图形,寻找规律:图 1-2-6如图①中:共有1个小立体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个。
第一章丰富的图形世界重点知识复习1.1 生活中的立体图形一、常见的几何体分类:1、2、二、图形是由点、线、面构成。
点动成线,线动成面,面动成体。
面与面相交得到线,线与线相交得到点。
面动成体可以通过平移和旋转实现。
例如:五棱柱、圆柱分别可以看作是由五边形或圆沿着竖直方向平移形成。
圆柱又可以看作是矩形绕着一边旋转一周形成。
易错点:1、观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( D )2、如图,第二行的图形绕虚线旋转一周便能形成第一行的某个几何体,用线连一连.易错点:将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米、宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?参考答案:48cm3(2)以宽所在的直线为轴旋转一周(1)以长所在的直线为轴旋转一周36cm3三、棱柱的特征:1、棱柱的上、下两底面平行且形状相同,大小一样;2、棱柱的侧面形状都是长方形;3、侧面的个数和底面图形的边数相等.4、棱柱的侧棱的长度都相等。
5、n 棱柱有2n 个顶点,3n 条棱,(n+2)个面。
6、n 棱锥(n+1)个顶点,2n 条棱,(n+1)个面。
四、侧面积与表面积计算:柱体的S 侧=ch (c 为底面周长,h 为高,当柱体为棱柱时,h 为侧棱的长)锥体为棱锥时S 侧=所有侧面三角形的面积之和;锥体为圆锥时S 侧=S 扇=360Rn 2(n 为圆心角的度数,R 为圆的半径)柱体的S 表=S 侧+S 底(此时S 底为2个)锥体的S 表=S 侧+S 底(此时S 底为1个)1.2 展开与折叠一、正方体的展开图(长方体也是类似的展开图):正方体有12条棱,需要剪7刀才能展开成平面图形。
二、圆柱、圆锥、正三棱锥、正四棱锥、正五棱锥、正三棱柱的展开图:圆柱的底面圆的周长和高分别是侧面展开图中长方体的长与宽,圆锥的侧面展开图是一个扇形,这个扇形的半径就是圆锥的母线(即圆锥的顶点与圆锥底面上任意一点的连线长,而扇形的弧长就是圆锥底面圆的周长。