燃气-蒸汽联合循环发电
- 格式:doc
- 大小:296.50 KB
- 文档页数:8
燃气—蒸汽联合循环发电机组电气系统的探讨【摘要】:通过对燃气-蒸汽联合循环发电机组电气系统的介绍,结合燃气-蒸汽联合循环电厂设计实例,从工程实际应用角度对燃气-蒸汽联合循环发电机组电气系统设计提出优化建议。
关键词:燃气-蒸汽联合循环;发电机组;电气系统0引言近年来,随着国家能源政策的调整和环境保护意识的增强,国家于2000年开始大幅度开发和利用天然气资源并用于电力领域。
由于燃机-蒸汽联合循环机组相对于传统的火电机组,从布置形式到机组参数、配套设备选型等均有较大的差异,电气系统的设计也有很多值得研究和注意的问题。
1燃气-蒸汽联合循环机组简介1.1燃气-蒸汽联合循环机组的原理燃气-蒸汽联合循环机组的工作原理为:天然气从燃料喷嘴喷入燃烧室,与燃烧室中的压缩空气混合燃烧,产生高温高压燃气,再进入透平膨胀做功,利用燃气轮机排气余热在余热锅炉中将水加热成高温高压的过热蒸汽,利用蒸汽在汽轮机中做功。
1.2燃气-蒸汽联合循环机组的分类燃气轮机、蒸汽轮机、发电机、余热锅炉四种主要设备组成了燃气—蒸汽联合循环发电系统,实际上这四种设备的组合布置有多种方式,但主要的分类方式是按轴系布置来分,一种是多轴布置方案,一种是单轴布置方案。
所谓多轴即燃气轮机带动一台发电机,蒸汽轮机带动一台发电机,各自一个轴系,在电厂建设时,只要燃气轮机机组安装完毕即可发电(不必等到锅炉与蒸汽轮机安装完毕),蒸汽轮机检修时燃气轮机仍可发电,系统启动快,燃气轮机可先启动发电(不必等到锅炉里的水加热成蒸汽),在我国20万千瓦以下的燃气—蒸汽联合循环发电机组多数采用多轴布置。
单轴布置系统为燃气轮机、蒸汽轮机、发电机串联在一根轴上,共用一台发电机发电。
由于一套单轴系统只有一台发电机与相关电气设备,可节省设备费用,减少厂房面积,系统调控相对简单,目前30万千瓦以上的燃气—蒸汽联合循环发电机组多数采用单轴布置。
2.燃气-蒸汽联合循环发电机组电气系统2.1燃气轮机组启动方式燃气轮机组启动是指燃气轮机组从静止(盘车)状态至机组到达一定转速的过程,即将燃气轮机和发电机的转子加速到自持的速度,自持的速度也就是燃气轮机能够产生足够的动能带动它继续加速运行,到达机组要求的额定转速。
燃气蒸汽联合循环发电技术应用及运行控制概述说明1. 引言1.1 概述随着全球能源需求的增加和环境问题的日益突出,燃气蒸汽联合循环发电技术作为一种高效、清洁的能源转换方式逐渐受到广泛关注。
该技术将燃气轮机与蒸汽循环系统有效地结合起来,通过充分利用废热产生额外的电能,并将二氧化碳等排放物减少到最低限度。
1.2 文章结构本文主要对燃气蒸汽联合循环发电技术进行综述和分析,并重点从概述、应用案例和运行控制三个方面进行详细阐述。
首先,我们将介绍该技术的基本原理、组成部分和工作过程,以便读者对其有一个全面的了解。
然后,我们将通过具体案例进行分析,以展示燃气蒸汽联合循环发电技术在实际应用中的效果和优势。
最后,我们将重点讨论该技术在运行控制方面的要点,包括控制参数与性能优化、安全运行控制策略以及故障诊断与维护管理等方面。
1.3 目的本文的目的是全面介绍燃气蒸汽联合循环发电技术,并深入探讨其在实际应用中的效果和运行控制要点。
通过对该技术的详细介绍和案例分析,我们旨在提供给读者一个清晰而全面的了解,并为相关领域的工程师、研究人员和决策者提供参考,促进该技术在能源转换领域的广泛应用与推广。
此外,我们还将展望未来燃气蒸汽联合循环发电技术的发展方向,以期为后续研究和创新提供启示。
2. 燃气蒸汽联合循环发电技术概述2.1 基本原理燃气蒸汽联合循环发电技术是一种高效能的发电方式,它结合了燃气轮机和蒸汽轮机的优点。
基本原理是通过燃料在燃气轮机中进行燃烧,产生高温高压的燃气。
然后,这些高温高压的燃气会被传递到蒸汽锅炉中,在锅炉内部与水接触产生蒸汽。
最后,该蒸汽经过管道输送至蒸汽轮机中驱动发电机转动,将化学能转化为电能。
2.2 组成部分燃气蒸汽联合循环发电系统主要由以下几个组成部分构成:- 燃气轮机:负责将燃料的化学能转换为动力能。
- 蒸汽锅炉:通过与高温高压的燃气进行换热,将水加热为蒸汽。
- 蒸汽轮机:将输入的蒸汽能量转化为旋转力,驱动发电机产生电能。
燃气—蒸汽联合循环在世界范围内,使用化学燃料通过热力动力机械发电的火力发电量仍然占据最高的比例。
从节约资源和保护环境等各方面来说,作为一种重要的发电装置,火力发电机组首先要求有高的热效率。
在大型热力发电设备中,目前技术水平比较成熟的,能够经济地大规模应用的只有燃气轮机和蒸汽轮机。
但是它们的热效率都不高,一般都在38—42%左右,即使最先进的燃气轮机热效率也只能达到42—44%,最先进的超临界参数蒸汽轮机热效率也只能达到43—45%。
对这两种热力机械所使用的热力循环进行分析。
燃气轮机燃气初温很高,目前的技术水平一般能达到1350—1430℃,因此燃气轮机中的热力循环平均吸热温度高,但是它的排气温度也就是循环低温也高,一般要达到450—630℃,所以燃气轮机热力循环的卡诺效率不高。
蒸汽轮机虽然循环低温较低,也就是蒸汽的冷凝温度可以降低到30—33℃,但是由于受到材料上的限制,它的蒸汽初温不高,在目前的技术水平下一般难以达到600℃,即使采用再热之后,平均吸热温度也不会太高,所以蒸汽轮机热力循环的卡诺效率也不高。
进一步分析可以发现,蒸汽轮机蒸汽初温一般在535—565℃以下,所以实际上只要有570—610℃的热源就可以让蒸汽轮机工作,而燃气轮机的排气温度就很高,在排气中蕴含着大量的热能,能够给蒸汽轮机提供所需要的热能。
因此如果使用燃气轮机排气作为蒸汽轮机的热源,蒸汽轮机就可以不额外消耗燃料了。
也就是说,蒸汽轮机可以回收燃气轮机的排气热量,额外发出一些有用功,这样就相当于增加了燃气轮机的热效率。
如前所述,目前先进的燃气轮机和蒸汽轮机的热效率基本相当,都在38—42%左右,那么,此时这个相当于增加了燃气轮机热效率的系统,热效率必然比单纯的燃气轮机和蒸汽轮机都高。
实际上,如果把上述由燃气轮机和蒸汽轮机组成的系统看成一个整体,那么在它的热力循环中,循环高温就是燃气轮机的循环高温,而循环低温则是蒸汽轮机的冷凝温度。
简析燃气—蒸汽联合循环发电装置自20世纪60年代以来,国内的电力领域已开始进行全面的发展,电力装置已趋于世界前沿。
按照国内电力规划的相关标准,到2005年在发电装置上,每年将以1600千瓦的速度增长,而且在新增的机组中,除侧重于发展高数值大容量机组外,还全面发展高效率、低消耗的同时具有调峰性能的机组。
其侧重于发展300MW、600MW的大型火电机组,发展局部性集中供热的热电机组,而且要全面发展燃气-蒸汽联合循环发电机组,进而达到高效节能、深化电网能力的目的,这已变成未来中国电力发展的核心目标。
文章将以燃气-蒸汽联合循环发电装置的特点及应用作为切入点,予以深入的探究,相关内容如下所述。
1 燃气-蒸汽联合循环的概念一般来说燃气-蒸汽联合循环发电机组的核心设备包括:(1)燃气轮机;(2)余热锅炉;(3)汽轮机;(4)发电机;(5)凝汽器。
在燃气轮机运转时,压气机在外部吸进空气,并将空气进行压缩,空气温度也随之增加,再把空气输入到燃烧室和喷入的燃料混合燃烧产生高温高压的燃气,输入燃气轮机内进行作功,进而带动发电机予以发电。
燃气轮机的排气导入余热锅炉,进而产生高温高压,再利用蒸汽带动汽轮机进行发电。
汽轮机排汽再输入至凝汽器内进行放热,凝结水又输送到余热锅炉,进而推动蒸汽动力循环。
这样不仅提高了总输出功率,同时还利用了燃气轮机以及汽轮机的特性,促使循环的热效率增加。
2 燃气-蒸汽联合循环发电装置的基本特性我们都知道常规的火电机组因为其自身设备与系统的功能问题,它的热效率已无法有突破性的提升。
相关数据显示,1996年国内火力发电机组的平均供电煤耗为每小时每千瓦0.409千克,若根据此数据进行换算,平均供电效率约30%。
1989年4月日本大板发电厂正式投入商业运行的700MW超临界数值的汽轮发电机组,此发电机组以液化石油气为主要燃料,其发电效率为42%,此电站是目前世界最先进火电站的代表。
而燃气-蒸汽联合循环发电装置的热效率则远超过上述数据。
燃气—蒸汽联合循环发电装置在的应用及燃气-蒸汽联合循环发电装置是一种组合式的发电装置,利用燃气及蒸汽二次发电,实现高效能、节能环保的目的。
本文旨在探讨燃气-蒸汽联合循环发电装置的应用及其优势。
一、燃气-蒸汽联合循环发电装置的应用燃气-蒸汽联合循环发电装置主要用于能源供应领域,可广泛应用于以下场景:1.城市供电:燃气-蒸汽联合循环发电装置大量用于城市电力供应,能够为城市提供可靠、高效的电力,同时降低能源的消耗和排放,具有节能减排的优势。
2. 工业制造:燃气-蒸汽联合循环发电装置可广泛应用于工业制造领域,如钢铁、化工、纺织、水泥等行业。
通过装置的运行,能为工业制造提供强有力的动力支持,降低生产成本,提高生产效率。
3. 农业生产:燃气-蒸汽联合循环发电装置还可用于农业生产,如温室大棚、农业机械、种植、灌溉等领域。
通过装置的运行,能为农业生产提供高效、低成本的能源供应,实现生产的可持续发展。
二、燃气-蒸汽联合循环发电装置的优势1. 高效能:燃气-蒸汽联合循环发电装置具备高效能的特点。
在装置的运行中,可以充分利用燃气及蒸汽的能量,实现能量的双重利用,降低能源的消耗。
2. 节能环保:燃气-蒸汽联合循环发电装置在运行中,能够有效地减少能源的消耗,降低环境的污染。
与传统的燃煤发电相比,能够降低排放的二氧化碳、氮氧化物等有害气体的量,具有节能减排的绿色优势。
3. 经济实惠:燃气-蒸汽联合循环发电装置的建设成本低,运营成本也相对较低。
在发电成本较高的市场环境下,装置的建设和运营成本优势十分明显。
结语燃气-蒸汽联合循环发电装置是一种高效能、节能环保的发电装置,能够广泛应用于城市供电、工业制造、农业生产等领域。
通过装置的运行,能够为社会提供高效、低成本的能源支持,实现节能减排、环保发展的目标。
燃机蒸汽联合循环发电原理燃机蒸汽联合循环发电原理,听起来是不是有点复杂?别担心,我这就带你简单聊聊这个话题,让你轻松掌握这个看似高大上的技术。
1. 联合循环的基本概念1.1 什么是联合循环?联合循环发电,顾名思义,就是把燃气轮机和蒸汽轮机结合在一起,形成一种超高效的发电方式。
简单来说,它就像一个“组合拳”,先用燃气轮机发电,再把废气的热量利用起来,驱动蒸汽轮机继续发电。
这可是省钱又环保的好办法哦。
1.2 工作原理那么,具体怎么运作的呢?首先,燃气轮机把天然气燃烧后产生的高温高压气体送进涡轮,推动涡轮转动,从而发电。
接着,这些气体并不是就此“打发掉”,而是继续利用这些热量,先把热能转化成蒸汽,再推动蒸汽轮机,继续发电。
这样一来,能效可就提升不少,简直是“锦上添花”!2. 联合循环的优势2.1 效率高,环保又经济说到好处,那就多了去了。
联合循环发电的效率通常能达到60%以上,甚至更高。
这比传统的单一燃气或蒸汽发电要高出很多,真是让人眼前一亮。
而且,由于它的排放相对较低,真是环保小能手,给大自然减负。
2.2 灵活性强这套系统也很灵活,能够根据需求调整发电量。
你想想,有时候用电高峰来临,联合循环可以迅速响应,提供足够的电力支持。
而在用电低谷时,发电量也能相应降低,简直是个“聪明”的发电方案。
3. 应用领域3.1 在哪儿能见到它?现在,联合循环发电已经在全球范围内得到广泛应用,特别是在一些大型发电厂和工业园区,都是它的“主场”。
无论是城市供电,还是工业生产,联合循环都在发挥着不可或缺的作用,俨然成为现代能源利用的“超级明星”。
3.2 未来的发展趋势未来,随着科技的发展,联合循环技术也会不断进步,比如结合可再生能源、提高热效率等。
总之,这个技术的未来充满希望,真是让人期待。
总的来说,燃机蒸汽联合循环发电原理听上去复杂,其实它就是利用现代科技,把传统发电方式的优点结合起来,让我们用得更省心、更环保。
希望通过我的介绍,你对这个话题有了更清晰的认识,不再是“高冷”的技术,而是贴近生活的能源解决方案!。
燃气—蒸汽联合循环发电(CCPP)技术介绍摘要:随着武钢“十一五”计划的全面完成,青山本部的1800万吨产能的形成,整个煤气的发生量也创下历史新高。
然而,随着近年来能源的日趋紧张,节能环保要求的不断提高,国内外的发电技术突飞猛进,常规的燃煤气锅炉和蒸汽发电技术由于其效率较低、污染物排放等原因,已经逐渐被高效率、低污染、启停快等诸多优点集于一身的燃气蒸汽联合循环发电技术(即CCPP)所替代,并随着不同煤气热值的燃机技术的开发,逐渐在钢铁行业占据了主导地位。
关键字:燃气轮; 发电机; CCPP工艺PP原理介绍燃气-蒸汽联合循环发电技术(CCPP)就是利用燃气轮机做功后的高温排气在余热锅炉中产生蒸汽,再送到汽轮机中做功,把燃气循环和蒸汽循环联合在一起的循环,是由燃气轮机发电和蒸汽轮机发电叠加组合起来的联合循环发电装置。
在常规蒸汽发电中,锅炉产生蒸汽用来发电是利用蒸汽朗肯热力循环来作功,作功发电是利用蒸汽的状态变化来完成的。
燃料燃烧产生的高温烟气(1200~1600℃)只用于加热蒸汽(蒸汽一般加热到450~560℃),然后由蒸汽驱动汽轮机来发电。
此时,高温烟气的作功能力(温度差和压力能)(即燃气布雷登热力循环的作功能力)被浪费掉了。
在CCPP装置中,有燃气-蒸汽两个热力循环,即:燃气布雷登热力循环和蒸汽朗肯热力循环。
1~2为空气在压气机中的压缩过程;2~3为空气和燃料在燃烧室内的燃烧过程(工质吸热);3~4s为燃气在燃气透平中的膨胀做功过程;4s~1为燃气轮机排气放热过程。
a~b为给水在给水泵中压缩过程b~d为给水在锅炉中蒸发、过热过程(工质吸热);d~e为蒸汽在汽轮机中膨胀做功过程;e~a为蒸汽在凝气凝结放热过程。
2.CCPP主要工艺介绍2.1燃气轮发电机燃气-蒸汽联合循环发电技术(CCPP)其核心设备是燃气轮发电机,自从1939年瑞士BBC公司研制成功世界第一台4MW的工业性燃气轮机以来,世界各国都大力研究和发展燃气轮机发电技术。
燃气-蒸汽联合循环简介摘要:本文主要介绍燃气-蒸汽联合循环机组的工艺流程,特点,主要燃机厂家的燃机和联合循环机组型号,燃机电厂的分类和布置方式,联合循环机组的主要设备,主要建构筑物,造价及成本情况等。
关键词:燃气-蒸汽联合循环机组工艺流程本文从联合循环机组的工艺流程、特点、分类和布置方式、主要设备、主要建构筑物、造价及成本情况等方面介绍燃气-蒸汽联合循环的发展现状。
一工艺流程天然气在燃气轮机中直接燃烧做功,使燃气轮机带动发电机发电,尾气做功后经排汽管道直接排至大气,此时称为简单循环发电;若利用燃气轮机产生的高温尾气,通过余热锅炉,产生高温高压蒸汽后推动蒸汽轮机,带动发电机发电,此时称为联合循环发电。
目前,燃气轮机的制造技术得到迅速发展,燃气轮机的可用率及可靠性越来越高,应用燃气-蒸汽联合循环发电技术已经完全成熟。
二联合循环机组的特点1.有利于环境保护燃气轮机利用天然气发电,相对其他燃料发电,其燃烧后不会产生二氧化硫,不会增加空气中二氧化硫的浓度;氮氧化物的排放仅为燃煤的19.2%,二氧化碳的排放量为燃煤的42.1%,可以起到改善生态环境,保护环境的目的。
2.发电热效率高随着燃气轮机发电技术的成熟,目前联合循环发电热效率已达到55%,能大大节约燃料资源。
3.电厂占地面积小燃气轮机体积较小,辅助系统少,因而其占地面积小,可节约宝贵的土地资源。
4.系统简单,运行维护方便燃气-蒸汽联合循环电厂自动化程度高,操作及控制简单,能节约大量人力资源,提高工作效率,降低劳动力成本。
另外,设备简单,故障率较低,运行维护方便,维护费用较低。
5.节约用水由于燃气轮机不需要冷却水,只是余热锅炉需要淡水,蒸汽轮机需要冷却水,其需水量大大降低,比较适合缺水地区发电。
6.工期短由于燃气轮机设备简单,且多为组装式,因而建设工期短,比传统燃煤(油)电厂可节省工期一年。
三燃机和联合循环机组型号目前国际范围内主要的燃机厂家有:美国GE,日本三菱,德国SIEMENS,法国ALSTOM等,目前大多的国外燃机厂家已经将制造技术分别转让给国内三大动力集团,关键部件在国内的合资厂生产:美国GE与哈尔滨电力集团,日本三菱与东方电力集团,德国SIEMENS与上海电气集团均以转让制造技术的方式进行合作。
燃气-蒸汽联合循环机组概况
1.燃气轮机工作原理
燃气轮机的工作过程是,压气机连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即进入燃机透平中膨胀做功,推动透平叶轮带着燃机发电机做功发电。
燃气轮机静止起动时,需要将发电机转换为电动机用带动燃机旋转,待加速到一定转速后,启动装置脱扣,就可以以发电机形式来做功发电。
燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。
提高燃气初温,并相应提高压缩比,可使燃气轮机效率显著提高。
工业和船用燃气轮机的燃气透平初温最高达1200℃左右,航空燃气轮机的超过1350℃。
目前美国通用电气最先进的9H型燃气轮机压缩比23.2,燃气透平初温1430℃。
2.燃气-蒸汽联合循环发电
燃气-蒸汽联合循环发电机组就是将燃气轮机的排气引入余热锅炉,产生的高温、高压蒸汽驱动汽轮机,带动汽轮发电机发电。
其常见形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各分别与发电机组合的多轴联合循环。
目前,联合循环的热效率接近60%,“二拖一”的机组配置方式,提高了机组供热能力,整套机组的热效率比常规“一拖一”配置机组热效率高出0.6%,在冬季供暖期热效率高达79%。
燃气-蒸汽联合循环机组主要用于发电和热电联产,其具有以下独特的优点:
①发电效率高:由于燃气轮机利用了布朗和朗肯二个循环,原理和结构先进,热耗小,因此联合循环发电效率较高。
②环境保护好:燃煤电厂锅炉排放灰尘很多,二氧化硫多,氮氧化物为200PPM。
燃机电厂余热锅炉排放无灰尘,二氧化硫极少,氮氧化物为(10~25)PPM。
③运行方式灵活:燃机电厂其调峰特性好,启停速度快,不仅能作为基本负荷运行,还可以作为调峰电厂运行。
④消耗水量少:燃气一蒸汽联合循环电厂的蒸汽轮机仅占总容量的1/3,所以用水量一般为燃煤火电的1/3,由于凝汽负压部分的发电量在全系统中十分有限,国际上已广泛采用空气冷却方式,用水量近乎为零。
⑤占地面积少:由于没有了煤和灰的堆放,又可使用空冷系统,电厂占地大大节
省,占地仅为燃煤火电厂的10%~30%,节约了大量的土地资源,这对地少人多的城市非常重要。
⑥建设周期短:燃气轮机系统发电的建设周期为8~10个月,联合循环系统发电的建设周期为16~20个月,而燃煤火电厂需要24~36个月,燃机电厂建设周期短、回收快。
3. GE燃气轮机的结构特点
①轴流式压气机
GE轴流式压气机的气缸、外壳和框架都有水平中分面。
压气机的每一级叶片都有其独立的轮盘。
各轮盘装配时用一组轴向螺栓紧固,通过选择螺栓的节圆直径形成动态刚性转子很好地传递扭矩。
从压气机未级叶轮抽气以供应冷却空气给透平和转子叶片。
抽气系统气流相对于透平作径向流动,它从压气机的轮盘外径进口处吸入低压损的压缩空气,冷却空气也完全从径向进入转子中心以避免产生旋涡。
压气机叶轮材料基本上使用三种合金钢,即CrMoV、NiCrMo和
NiCrMoV。
②燃烧系统
除MS1002之外的所有GE重型燃气轮机都使用分管逆流式燃烧室,该系统尺寸较短、结构紧凑、重量轻,用法兰安装于同一透平缸上。
分管逆流式燃烧室具有广泛的适应性:小直径燃烧器可以控制空气流型以实现控制烟气和低
N0x,可以简单地增加燃烧室的直径以适应低热值气体燃料。
GE公司PG9351FA 燃机采用干式低氮燃烧器,可大幅降低燃烧过程中NOx的生成浓度。
③透平
燃气透平的发展,一直围绕着提高透平进气初温进行。
主要措施是改进喷嘴和动叶的材料,完善叶片的冷却技术。
透平采用大焓降和低反动度的级,每个单级都有很高的功率输出。
透平动叶的空冷循环是在转子内部进行的。
所有透平为避免共振都采取了二个重要措施:长柄叶根和根体围带。
4. 余热锅炉概况
锅炉主要由进口烟道、锅炉本体、出口烟道及烟囱、高中低压锅筒、除氧器、给水泵、再循环泵、排污扩容器等辅助设备组成。
5. 蒸汽轮机概况
机组新蒸汽从下部进入置于该机两侧的两个高压主汽调节联合阀,由每侧各一调节阀流出,经过2根高压导气管进入高压缸。
进入高压缸的蒸汽通过10个压力级后,由外缸下半部两侧排出进入再热器。
再热后的蒸汽从机组两侧的两个再热主汽调节联合阀,由每侧各1个中压调节阀流出,经过2根中压导气管由中部下半进入中压缸。
进入中压缸的蒸汽经过9个压力级后,从中压缸上部2个排
汽口排出,经中低压连通管,分别进入低压缸。
低压缸为双分流结构,蒸汽从流通部分的中部流入,经过正反向6个压力级后,流向每端的排气口,然后蒸汽向下流入安装在低压缸下部的凝汽器。
此外,从汽轮机中压缸抽取两股蒸汽经热网加热器换热后对外供热。