强心苷重要部分知识点
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
临床助理医师《药理学》精讲之强心苷类2016临床助理医师《药理学》精讲之强心苷类考试要想考到满意的分数是需要平时的努力积累,现在店铺为大家分享2016临床助理医师《药理学》精讲之强心苷类的复习要点,希望对你有所帮助!【药理作用】一、对心脏的作用1、增强心肌收缩力——正性肌力强心苷对心肌有直接加强收缩力,这是强心苷治疗心衰的药理基础,其增加心肌收缩力有三个显著特点:(1)缩短收缩期。
(2)降低衰竭心肌的耗氧量。
(3)增加衰竭心脏的输出量。
强心苷对正常心脏的心输出量没有影响。
强心苷使CHF心输出量增加。
正性肌力作用机制:目前认为,强心苷与心肌细胞膜上的强心苷受体(Na+-K+-ATP酶)结合并抑制其活性,结果使胞内钙离子增多,肌力增加。
2、减慢心率——负性频率作用治疗量强心苷通过增强心肌收缩力,增加了对主动脉弓和颈动脉窦的刺激,提高了迷走神经兴奋性,使交感活性降低,呈现心率减慢和舒张完全,所以,回心血量增加,降低心肌耗氧量,改善冠脉循环及心悸症状。
3、对心脏电生理的影响不同剂量对不同心肌组织作用不一。
大剂量时有直接抑制作用(负性传导);治疗量兴奋迷走神经,减慢房室结的传导速度,增加有效不应期。
4、对ECG的影响治疗量强心苷最早引起T波变化,波形压低,甚至倒置。
S-T段压低呈鱼钩状,随后P-R间期延长,房室传导减慢。
Q-T间期缩短,反映普肯耶纤维和心室肌APD和ERP缩短。
P-P间期延长则是窦性频率减慢的反映。
中毒量则出现各种心律失常。
二、神经和内分泌系统:中毒可兴奋CTZ,引起呕吐;降低CHF患者血浆肾素活性。
三、利尿作用对CHF 患者产生明显利尿作用,主要心功能改善后增加了肾血流量和肾小球滤过功能,也可抑制肾小管Na+-K+-ATP酶,减少Na+的重吸收的结果。
四、对血管的作用强心苷能直接收缩血管平滑肌,使外周阻力增加。
而CHF患者则表现为外周阻力降低,心输出量增加,动脉压不变或略升。
【临床应用】主要用于治疗CHF和某些心律失常1、CHF:各种原因如心肌缺血、瓣膜病、高血压、先心病、心肌炎、甲亢及严重贫血引起的`CHF都可用强心苷。
强心苷类药物使用及注意要点强心苷是一类具有强心作用的苷类化合物。
主要包括有地高辛、洋地黄毒苷、毛花苷丙(西地兰)和毒毛花苷K。
临床上常用的有地高辛和西地兰。
目录强心苷类药物使用及注意要点 (1)药理作用 (2)(一)对心脏的作用 (2)(二)对神经系统的作用 (2)(三)利尿作用 (2)(四)对血管的作用 (3)体内过程 (3)临床应用 (3)常用给药剂量 (4)不良反应 (4)常见不良反应预防 (4)(1)预防洋地黄中毒 (4)(2)不良反应及其表现 (5)3.中枢系统反应 (5)药理作用(一)对心脏的作用1.正性肌力作用强心苷对心脏具有高度的选择性,能显著加强衰竭心脏的收缩力,增加心出入量,从而解除心衰的症状。
2.减慢心率的作用治疗量的强心苷对正常心率影响较小,但对心率加快及伴有房颤的心功能不全则可显著减慢心率。
3.对传导组织和心肌电生理特性的影响治疗剂量下,缩短心室和心房的动作电位和有效不应期,降低窦房结自律性,减慢房室传导。
高浓度下,强心苷可过度抑制Na+-K+-ATP酶,使细胞失钾,最大舒张电位减小,使自律性提高。
中毒剂量下,强心苷也可增强中枢交感作用。
故强心苷中毒可引起各种心律失常,以室性期前收缩、室性心动过速多见。
(二)对神经系统的作用中毒剂量的强心苷可兴奋延髓极后区催吐化学感受区而引起呕吐,还可兴奋交感神经中枢,明显地增加交感神经冲动发放,而引起快速型心律失常。
强心苷的减慢心率和抑制房室传导作用也与其兴奋脑干副交感神经中枢有关。
(三)利尿作用强心苷对心功能不全患者有明显的利尿作用。
主要是心功能改善后增加了肾血流量和肾小球的滤过功能。
此外,强心苷可直接抑制肾小管Na+-K+-ATP酶,减少肾小管对钠离子的重吸收,促进钠和水排出,发挥利尿作用。
(四)对血管的作用强心苷能直接收缩血管平滑肌,使外周阻力上升,这一作用与交感神经系统及心排血量的变化无关。
体内过程●洋地黄毒苷脂溶性高,口服吸收好,大多经肝代谢后代谢产物经肾排出,也有一部分经胆道排出而形成肝肠循环,t1/2长达5~7天,故作用维持时间也较长,属长效强心苷类;●中效类的地高辛口服生物利用度个体差异大,不同厂家、不同批号的相同制剂也可有较大差异,临床应用时应注意调整剂量。
第九章强心苷考点精要:1.强心苷苷元部分的结构特点和分类;2.强心苷糖部分的结构特点及其与苷元的连接方式;3.强心苷的理化性质(显色反应、水解);4.强心苷的提取与分离;5.强心苷的UV光谱特征;6.去乙酰毛花苷、地高辛的化学结构特点和提取分离方法。
一、大纲:二、分值本章占历年考试4分左右。
第一节概述强心苷是存在于生物界中的一类对心脏有显著生理活性的甾体苷类。
一、强心苷元部分的结构与分类(一)结构特征天然存在的强心苷元是C-17侧链为不饱和内酯环的甾体化合物。
其结构特点如下:(1)甾体母核A、B、C、D四个环的稠合方式为A/B环有顺、反两种形式,但多为顺式;B/C环均为反式;C/D环多为顺式。
(2)甾体母核C-10、C-13、C-17的取代基均为β型。
C-10多有甲基或醛基、羟甲基、羧基等含氧基团取代,C-13为甲基取代,C-17为不饱和内酯环取代。
C-3、C-14位有羟基取代,C-3羟基多数是β构型,少数是α构型,强心苷中的糖常与C-3羟基缩合形成苷。
C-14羟基均为β构型。
有的母核含有双键,双键常在C-4、C-5位或C-5、C-6位。
(二)分类根据C-17不饱和内酯环的不同,将强心苷元分为两类。
1.甲型强心苷元(强心甾烯类)甾体母核的C-17侧链为五元不饱和内酯环(△αβ-γ-内酯),基本母核称为强心甾,由23个碳原子构成。
在已知的强心苷元中,大多数属于此类。
2.乙型强心苷元(海葱甾二烯或蟾蜍甾二烯类)甾体母核的C-17侧链为六元不饱和内酯环(△αβ,γδ-δ-内酯),基本母核为海葱甾或蟾蜍甾。
自然界中仅少数苷元属此类,如中药蟾蜍中的强心成分蟾毒配基类。
二、糖部分的结构特征及其与苷元的连接方式(一)结构特征根据它们C-2位上有无羟基可以分成α-羟基糖(2-羟基糖)和α-去氧糖(2-去氧糖)两类。
α-去氧糖常见于强心苷类,是区别于其他苷类成分的一个重要特征。
1.α-羟基糖组成强心苷的α-羟基糖,除常见的D-葡萄糖、L-鼠李糖外,还有L-呋糖、D-鸡纳糖、D-弩箭子糖、D-6-去氧阿洛糖等6-去氧糖和L-黄花夹竹桃糖、D-洋地黄糖等6-去氧糖甲醚。
中药鉴定学讲义:强心苷考点精要:1.强心苷苷元部分的结构特点和分类;2.强心苷糖部分的结构特点及其与苷元的连接方式;3.强心苷的理化性质(显色反应、水解);4.强心苷的提取与分离;5.强心苷的UV光谱特征;6.去乙酰毛花苷、地高辛的化学结构特点和提取分离方法。
第一节概述强心苷是存在于生物界中的一类对心脏有显著生理活性的甾体苷类。
一、强心苷元部分的结构与分类(一)结构特征天然存在的强心苷元是C-17侧链为不饱和内酯环的甾体化合物。
其结构特点如下:(1)甾体母核A、B、C、D四个环的稠合方式为A/B环有顺、反两种形式,但多为顺式;B/C环均为反式;C/D环多为顺式。
(2)甾体母核C-10、C-13、C-17的取代基均为β型。
C-10多有甲基或醛基、羟甲基、羧基等含氧基团取代,C-13为甲基取代,C-17为不饱和内酯环取代。
C-3、C-14位有羟基取代,C-3羟基多数是β构型,少数是α构型,强心苷中的糖常与C-3羟基缩合形成苷。
C-14羟基均为β构型。
有的母核含有双键,双键常在C-4、C-5位或C-5、C-6位。
(二)分类根据C-17不饱和内酯环的不同,将强心苷元分为两类。
1.甲型强心苷元(强心甾烯类)甾体母核的C-17侧链为五元不饱和内酯环(△αβ-γ-内酯),基本母核称为强心甾,由23个碳原子构成。
在已知的强心苷元中,大多数属于此类。
2.乙型强心苷元(海葱甾二烯或蟾蜍甾二烯类)甾体母核的C-17侧链为六元不饱和内酯环αβ,γδ-δ-内酯),基本母核为海葱甾或蟾蜍甾。
自然界中仅少数苷元属此类,如中药蟾蜍中的强心成分蟾毒配基类。
练习题最佳选择题强心苷的甾体母核特点是()A.A/B环多为反式稠合B/C环为顺式稠合C/D环多为顺式稠合B.A/B环多为反式稠合B/C环为反式稠合C/D环多为反式稠合C.A/B环多为顺式稠合B/C环为顺式稠合C/D环多为反式稠合D.A/B环多为反式稠合B/C环为反式稠合C/D环多为反式稠合E.A/B环多为顺式稠合B/C环为反式稠合C/D环多为顺式稠合[答疑编号505629090101]【正确答案】E二、糖部分的结构特征及其与苷元的连接方式(一)结构特征根据它们C-2位上有无羟基可以分成α-羟基糖(2-羟基糖)和α-去氧糖(2-去氧糖)两类。
强心苷知识点总结一、药理学1. 作用机制强心苷的主要作用机制是通过影响心肌细胞的离子通道和钠钾泵,从而增强心肌收缩力和延长心肌动作电位。
具体来说,强心苷能够抑制胞外钠离子和胞内钾离子的交换,使细胞内钙离子浓度增加,从而增强了心肌的收缩力。
此外,强心苷还可以减慢心房和心室的传导速度,降低心率,从而有利于控制心率失常。
2. 药效强心苷主要具有正性肌力作用和负性频率作用。
其正性肌力作用表现为增强心脏的收缩力,改善心脏功能,从而减轻心脏负荷,促进心脏排血,有利于治疗心力衰竭。
负性频率作用则表现为减慢心率,有助于控制心率失常。
3. 药效动力学强心苷的作用时间长,一般需要数天才能达到稳态浓度。
其半衰期较长,因此剂量需要逐渐增加,以达到治疗效果。
此外,强心苷主要通过肝脏代谢和肾脏排泄,肾功能不全的患者需要调整剂量。
二、药代动力学1. 给药途径强心苷主要通过口服给药,也可以通过静脉注射给药。
2. 吸收和分布口服给药后,强心苷能够迅速吸收,但吸收率不稳定,尤其受食物影响明显。
强心苷能够穿过血脑屏障,分布于组织间隙和细胞内液。
但其分布不均匀,易在心肌和肾脏等组织积聚,增加毒性风险。
3. 代谢和排泄强心苷主要通过肝脏代谢,其中主要代谢产物是羟基化代谢产物。
其排泄主要通过肾脏排泄,尿液中约60-70%的代谢产物可在24小时内排出。
三、适应症1. 心力衰竭强心苷是治疗充血性心力衰竭的一线药物,可以通过增强心脏的收缩力,改善心脏功能,缓解心力衰竭的症状,减轻心脏负荷,延长生存期。
2. 心律失常强心苷常被用于治疗心房颤动和心房扑动等心律失常,通过减慢心率、控制心律失常,帮助维持心脏正常节律。
四、禁忌症1. 房室传导阻滞强心苷会延长房室传导时间,因此在患有房室传导阻滞的患者中使用时需谨慎,避免加重传导阻滞。
2. 心室颤动强心苷使用不宜在心室颤动患者中,因其可能增加心室颤动的风险。
3. 心肌梗死在急性心肌梗死的患者中,尤其是在起始48小时内,强心苷使用会增加死亡风险,应禁忌使用。
第8章甾体—强心苷部分重要知识点
一. 生物活性及所属天然产物结构类型
1. 强心苷
2. 地高辛
二. 填空或选择题
1. 强心苷的骨架稠合方式
2. 强心苷元中易脱除的2种羟基
2. 强心苷中葡萄糖和脱氧糖共存时的苷元-两种糖间的连接方式
3. 溶解性苷元溶于苯、乙醚、氯仿等非极性溶剂。
强心苷溶于水、丙酮、醇等极性溶剂,一般与糖的种类、数目、在苷元上的连接位置有关。
通常糖链越多、每条链中的糖单位越多、游离羟基越多,强心苷水溶性也越大。
4. 糖苷中的脱氧糖是强心苷区别于其他苷类的重要特征.
5. 强心苷元中引入5β、11α、12β-羟基能增强活性,而引入1β、6β、16β-羟基则降低活性;
6. 决定强心苷开环产物能否环合的开环条件(强碱水溶液?)
7. 强心苷中3-羟基为什么能与10-甲酰基生成半缩醛?
8. 强心苷元中C4-5、C16-17生成碳碳双键对活性的影响
9. 苷元或糖基结构中-OH 乙酰化后强心作用增强
10. 乙型强心苷中活性、毒性顺序为苷元> 单糖苷> 双糖苷(连接糖链数目增多后活性降低);
11. 甲型强心苷活性顺序为
数目:三糖苷<双糖苷< 单糖苷> 苷元;
种类:葡萄糖苷>甲氧糖苷> 6-脱氧糖苷>2,6-二脱氧糖苷
三. 名词解释
1. 强心苷
四. 鉴别题
1. 脱氧糖:
Keller-Kiliani 反应鉴别游离α-脱氧糖或α-脱氧糖直接与苷元连接的糖苷键呫吨氢醇反应含α-脱氧糖的糖苷
2. Legal反应、Kedd反应
原理:碱性醇溶液中双键转位,能生成可与某些试剂反应显色的活性次甲基。
3. 鉴别甾体母核
SbCl3、Cl3CCO2H、H2SO4-Ac2O、H2SO4-CHCl3
五. 分离提取题
1. 强心苷铅盐沉淀精制法的优点能选择性除去酸、酚酸、皂苷等杂质
2. 强心苷分离中使用活性炭、氧化铝柱能分别除去哪些杂质?
3. 硅胶、中性氧化铝等吸附剂、用什么洗脱剂分离那种强心苷、苷元和次生苷?
六. 简答题
1. 强心苷酸水解
A. 20-50 mmol/L 盐酸或硫酸温和水解适合α-脱氧糖与苷元间、或两分子α-脱氧糖间苷键的断裂。
不引起苷元的脱水,不断裂α-脱氧糖-葡萄糖间、或葡萄糖间苷键。
故常得双糖或叁糖。
B. 1 mol/L盐酸强烈酸水解法能断裂所有糖苷键,但能使苷元脱水。
C. 碱水解氢氧化钙---使α-脱氧糖、α-羟基糖、苷元上酰基水解,但能保留内酯结构
碳酸钾、碳酸钠只水解α-脱氧糖上乙酰基
D. 药用植物中共存酶只水解β-糖苷键酶,而保留α-糖苷键。
而蜗牛消化酶能逐步水解所有糖苷键得苷元。