初中数学知识点:比例线段
- 格式:docx
- 大小:24.07 KB
- 文档页数:1
4·1线段的比1. 线段的比:如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这注意点:(1)两线段的比值总是正数.(2)讨论线段的比时,不指明长度单位.(3)对两条线段的长度一定要用同一长度单位表示.3. 比例线段四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.(a 、d 叫做比例线段的外项,b 、c 叫做比例线段的内项) 4. 比例的基本性质. (比例线段中两个外项的积等于两个内项的积)反之也成立。
即如果ad =bc (a 、b 、c 、d 都不等于0),那么5. 合比性质.6. 等比性质7.线段的比和比例线段的区别和联系两条线段的比:=:或写成,其中,线段、分别叫做AB CD m n AB CD mn AB CD =这个线段比的前项和后项,如果把表示成比值,那么或。
m n k ABCDk AB k CD ==⋅2. 比例尺=图上距离实际距离四条线段、、、中,如果与的比等于与的比,即,那么,这a b c d a b c d a b cd=如果,那么。
a b cdad bc ==a b cd =如果,那么。
a b c d a b b c dd =±=±如果,那么。
a b c d m n b d n a c m b d n a b ===+++≠++++++= ()0鹏翔教图1BCA 线段的比是指两条线段之间的比的关系,比例线段是指四条线段间的关系. 若两条线段的比等于另两条线段的比,则这四条线段叫做成比例线段. 线段的比有顺序性,四条线段成比例也有顺序性.如dcb a =是线段a 、b 、c 、d 成比例,而不是线段a 、c 、b 、d 成比例.8. 注意点:①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a, b a 与ab互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a =1. 已知A 、B 两地的实际距离是80千米,在某地图上测得这两地之间的距离为1cm ,则该地图的比例尺为_____________,现量得该地图上太原到北京的距离为6.4cm ,则将两地实际距离用科学记数法表示为____________千米.(保留两个有效数字) 【解析】∴图上距离与实际距离之比为1:8000000∴太原到北京的实际距离=6.4×8000000=51200000(cm )=512千米 点评:注意单位要统一.2.在某市城区地图(比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16 cm 、10 cm.(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢? 【解析】(1)根据题意,得808000000千米=cm太原到北京的图上距离太原到北京的实际距离=1800000090001=新安大街的实际长谎新安大街的图上长度90001=光华大街的实际长度光华大街的图上长度因此,新安大街的实际长度是 16×9000=144000(cm ), 144000 cm=1440 m; 光华大街的实际长度是 10×9000=90000(cm ) 90000 cm=900 m.(2)新安大街与光华大街的图上长度之比是16∶10=8∶5 新安大街的实际长度与光华大街的实 际长度之比是144000∶90000=8∶5 由例2的结果可以发现:光华大街的图上长度新安大街的图上长度光华大街的实际长度新安大街的实际长度= 3.在比例尺为1∶8000的某学校地图上,矩形运动场的图上尺寸是1 cm ×2 cm ,矩形运动场的实际尺寸是多少? 【解析】根据题意,得矩形运动场的图上长度∶矩形运动场的实际长度=1∶8000 因此,矩形运动场的长是 2×8000=16000(cm )=160(m ) 矩形运动场的宽是1×8000=8000(cm )=80(m )所以,矩形运动场的实际尺寸是长为160 m,宽为80 m4.为了参加北京市申办2008年奥运会的活动,如果有两边长分别为1,a (其中a >1)的一块矩形绸布,要将它剪裁出三面矩形彩旗(面料没有剩余),使每条彩旗的长和宽之比与原绸布的长和宽之比相同,画出两种不同裁剪方法的示意图,并写出相应的a 的值. 【解析】方案(1):∵长和宽之比与原绸布的长和宽之比相同,(*)∴1311a a = 解得:a =3图4-1方案(2): 由(*)得axa 112111-==∴x =a1,a =2 方案(3): 由(*)得211ya = ∴y =a21 且11z a = ∴z =a 1 由aa 211+=a 得a =621图4-2方案(4): 由(*)得an ab a 11111-==m a a a 11-= ∴b =a1 n =1-21am =a 2-1∵m +n =1 ∴1-21a+a 2-1=1∴a =2522+(负值舍去)55.(1)如图,已知d c b a ==3,求b b a +和d dc +; (2)如果dc b a ==k (k 为常数),那么d dc b b a +=+成立吗?为什么? 【解析】(1)由dcb a ==3,得 a =3b ,c =3d .因此,bbb b b a +=+3=4 ddd d d c +=+3=4 (2)d d c b b a +=+成立. 因为有dcb a ==k ,得a =bk ,c =dk .所以b bbk b b a +=+=k +1, dddk d d c +=+=k +1. 因此:ddc b b a +=+. 6. 在菱形ABCD 中,∠B =60°,求AC 与BD 的比值.【解析】设AO =x7.下图(1)中的鱼是将坐标为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点O ,A ,B ,C ,D ,B ,E ,O 用线段依次连接而成的;(2)中的鱼是将(1)中鱼上每个点的横坐标,纵坐标都乘以2得到的.AB O DCAC BD ABO B AB AO x ⊥∠=∠===,,则123022又菱形中 ABCD AC x =2BO AB AO x x x=-=-=222223()∴==BD BO x 223∴===AC BD x x 2231333图4-4(1)线段CD 与HL ,OA 与OF ,BE 与GM 的长度分别是多少?(2)线段CD 与HL 的比,OA 与OF 的比,BE 与GM 的比分别是多少?它们相等吗? (3)在图(2)中,你还能找到比相等的其他线段吗? 【解析】(1)CD =2,HL =4,OA =415422=+, OF =41281022=+ BE =52122=+, GM =524222=+(2)2141412,2142====OF OA HL CD , 21525==GM BE . 所以,21===GM BE OF OA HL CD . (3)其他比相等的线段还有21====GL BD GH BC FG AB OM OE 8. 已知四条线段a =8cm ,b =4cm ,c =2.5cm ,d =5cm ,试判断它们是否成比例(若a =8cm ,b =0.05m ,c =0.6dm ,d =10cm 呢)? 【解析】分析先按从小到大或从大到小的顺序排列,然后比较最大和最小两线段长度的乘积与中间两条线段长度的乘积是否相等.(1)从小到大排列为c 、b 、d 、a ac =8×2.5=20,bd =4×5=20 ac =bd ∴成比例(2)先化成同一单位,并从小到大排列为b 、c 、a 、d b =5cm ,c =6cm ,a =8cm ,d =10cm bd =5×10=50,ac =6×8=48 bd ≠ac ∴不成比例9.(1)如果dc b a =,那么d dc b b a -=-成立吗?为什么? (2)如果f e d c b a ==,那么baf d b e c a =++++成立吗?为什么? (3)如果dc b a =,那么d dc b b a ±=±成立吗?为什么. (4)如果d c b a ==…=nm (b +d +…+n ≠0),那么b an d b m c a =++++++ 成立吗?为什么.【解析】(1)如果dc b a =,那么d dc b b a -=-. ∵d cb a = ∴d cb a =-1-1 ∴dd c b b a -=-. (2)如果f e d c b a ==,那么baf d b e c a =++++ 设fe d c b a ===k ∴a =bk ,c =dk ,e =fk ∴bak f d b f d b k f d b fk dk bk f d b e c a ==++++=++++=++++)((3)如果dc b a =,那么d dc b b a ±=±∵d c b a = ∴d c b a =+1+1 ∴dd c b b a +=+ 由(1)得ddc b b a -=- ∴dd c b b a ±=±. (4)如果d c b a ==…=n m(b +d +…+n ≠0)那么b a n d b m c a =++++++设d c b a ==…=nm =k ∴a =bk ,c =dk ,…,m =nk ∴bak n d b m d b k n d b nk dk bk n d b m c a ==++++++=++++++=++++++ )(10.已知:d c b a ==fe=2(b +d +f ≠0) 求:(1)f d b e c a ++++;(2)f d b ec a +-+-;(3)f d b e c a 3232+-+-;(4)fb e a 55--.【解析】∵d c b a ==f3=2 ∴a =2b ,c =2d ,e =2f∴(1)f d b f d b f d b f d b f d b e c a ++++=++++=++++)(2222=2(2)fd b f d b f d b f d b f d be c a +-+-=+-+-=+-+-)(2222=2(3)f d b f d b f d b f d b f d b e c a 32)32(2326423232+-+-=+-+-=+-+-=2(4)f b f b f b e a 510255--=--=fb f b 5)5(2--=211.已知a ∶b ∶c =4∶3∶2,且a +3b -3c =14. (1)求a ,b ,c (2)求4a -3b +c 的值. 【解析】(1)设a =4k ,b =3k ,c =2k ∵a +3b -3c =14 ∴4k +9k -6k =14 ∴7k =14 ∴k =2 ∴a =8,b =6,c =4(2)4a -3b +c =32-18+4=1812的面积.精析:根据比例的性质及已知条件求出a 、b 、c 的值,然后由三角形的面积公式求解.【解析】解之得:k =5∴△ABC 是以a =15cm ,b =20cm 为两条直角边,以c =25cm 为斜边的直角三角形.点评:比例实际上是比例性质的应用问题。
平行线分线段成比例阅读与思考平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论.运用平行线分线段成比例定理解题的关键是寻找题中的平行线.若无平行线,需作平行线,而作平行线要考虑好过哪一个点作平行线,一般是由成比例的两条线段启发而得.此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例题与求解【例1】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.解题思路:建立含PQ 的比例式,为此,应首先判断PQ 与AD (或BC )的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系.【例2】如图,在△ABC 中,D ,E 是BC 的三等分点,M 是AC 的中点,BM 交AD ,AE 于G ,H ,则BG ︰GH :HM 等于( )A .3︰2︰1B .4︰2︰1C .5︰4︰3D .5︰3︰2解题思路:因题设条件没有平行线,故须过M 作BC 的平行线,构造基本图形.【例3】如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA ,BC 的延长线于Q ,ABCDEGH MQA BCDEFPR ,交CD ,AD 于S ,T . 求证:PQ •PT =P R •PS .解题思路:要证PQ •PT =P R •PS ,需证PQ PS =PRPT,由于PQ ,PT ,P R ,PS 在同一直线上,故不能直接应用定理,需观察分解图形.【例4】梯形ABCD 中,AD //BC ,AB =DC .(1)如图1,如果P ,E ,F 分别是BC ,AC ,BD 的中点,求证:AB =PE +PF ;(2)如图2,如果P 是BC 上的任意一点(中点除外),PE ∥AB ,PF ∥DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.解题思路:(1)不难证明;对于(2),先假设结论成立,从平行线出发证明AB =PE +PF ,即要证明PE AB +PF AB =1,将线段和差问题的证明转化为与成比例线段相关问题的证明.【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .A BCD EF P图2A BCD EF P图1QARBCD SP求证:MN +PQ =2PN .解题思路:考虑延长BA ,EC 构造平行四边形,再利用平行线设法构造有关的比例式.【例6】已知:△ABC 是任意三角形.(1)如图1,点M ,P ,N 分别是边AB ,BC ,CA 的中点,求证:∠MPN =∠A ; (2)如图2,点M ,N 分别在边AB ,AC 上,且AM AB =13,AN AC =13,点P 1,P 2是 边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由;(3)如图3,点M ,N 分别在边AB ,AC 上,且P 1,P 2,…,P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +…+∠MP 2009N =____.解题思路:本题涉及的考点有三角形中位线定理、平行四边形的判定、相似三角形的判定与性质.ABCM NP图1ABC MN1P 2P 图2AMNBC1P 2P 2009P 图3QA BCDEFGM NP。
23.1 成比例线段第1课时教学目标1.知道线段的比的概念,会计算两条线段的比;2.理解成比例线段的概念;3.掌握成比例线段的判定方法.教学重难点【教学重点】线段的比的概念,成比例线段的概念,会计算两条线段的比.【教学难点】成比例线段的判定方法.课前准备无教学过程一、情景导入请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】求线段的比已知线段AB=2.5m,线段CD=400cm,求线段AB与CD的比.解析:要求AB和CD的比,只需要根据线段的比的定义计算即可,但注意要将AB和CD的单位统一.解:∵AB =2.5m =250cm , ∴AB CD =250400=58. 方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】 比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm ,则甲、乙两地的实际距离是 m.解析:根据“比例尺=图上距离实际距离”可求解. 设甲、乙两地的实际距离为x cm ,则有1:50 000=3:x ,解得x =150 000. 150 000cm =1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段【类型一】 判断线段成比例下列四组线段中,是成比例线段的是( )A.3cm ,4cm ,5cm ,6cmB.4cm ,8cm ,3cm ,5cmC.5cm ,15cm ,2cm ,6cmD.8cm ,4cm ,1cm ,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.故选C. 方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】 由线段成比例求线段的长已知:四条线段a 、b 、c 、d ,其中a =3cm ,b =8cm ,c =6cm.(1)若a 、b 、c 、d 是成比例线段,求线段d 的长度;(2)若b 、a 、c 、d 是成比例线段,求线段d 的长度.解析:紧扣成比例线段的概念,利用比例式构造方程并求解.解:(1)由a 、b 、c 、d 是成比例线段,得a b =c d ,即38=6d,解得d =16. 故线段d 的长度为16cm ;(2)由b 、a 、c 、d 是成比例线段,得b a =cd ,即83=6d ,解得d =94. 故线段d 的长度为94cm. 方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x :1=2:2,则x =22;若1:x =2:2,则x =2;若1:2=x :2,则x =2;若1:2=2:x ,则x =2 2. 所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线 段AB ,CD 的长度分别是m ,n ,那么 这两条线段的比就是它们长度的比, 即AB :CD =m :n ,或写成AB CD =m n 成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比 等于c 与d 的比,即a b =c d ,那么这 四条线段a ,b ,c ,d 叫做成比例线段, 简称比例线段四、教学反思从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.。
湘教版数学九年级上册3.1《比例线段》说课稿1一. 教材分析湘教版数学九年级上册3.1《比例线段》是整个初中数学的重要内容,是对比例的基本概念和性质的进一步延伸。
本节内容通过比例线段的概念,引入了线段之间的比例关系,让学生体会数学与实际生活的联系,培养学生的抽象思维能力。
教材从生活实例出发,引出比例线段的概念,然后通过大量的例题和练习,使学生掌握比例线段的性质和运用。
教材在编写上注重引导学生主动探究,培养学生的动手操作能力和合作意识。
二. 学情分析九年级的学生已经掌握了比例的基本概念和性质,对数学知识有一定的积累。
但是,对于比例线段的理解和运用,还需要进一步的引导和培养。
因此,在教学过程中,我将以学生为主体,注重启发式教学,引导学生主动探究,提高学生的数学素养。
三. 说教学目标根据新课程标准的要求,本节课的教学目标如下:1.知识与技能:让学生理解比例线段的概念,掌握比例线段的性质,并能运用比例线段解决实际问题。
2.过程与方法:通过观察、操作、讨论等数学活动,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:让学生感受数学与实际生活的联系,培养学生的合作意识,激发学生学习数学的兴趣。
四. 说教学重难点1.教学重点:比例线段的概念及其性质。
2.教学难点:比例线段的运用和解决实际问题。
五. 说教学方法与手段为了实现本节课的教学目标,我将以学生为主体,采用启发式教学法、讨论法、案例教学法等多种教学方法,引导学生主动探究,提高学生的数学素养。
同时,利用多媒体课件和教具,辅助教学,使抽象的数学概念形象化、直观化。
六. 说教学过程1.导入:从生活实例出发,引出比例线段的概念,激发学生的学习兴趣。
2.新课导入:介绍比例线段的性质,引导学生主动探究,培养学生的抽象思维能力。
3.案例分析:分析实际问题,引导学生运用比例线段解决问题,提高学生的动手操作能力。
4.课堂练习:设计具有针对性的练习题,巩固所学知识,提高学生的应用能力。
(精华)初中数学知识点大全(完整版)15篇初中数学知识点大全(完整版)1一、线段的比※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;⑤比例的基本性质:若,则ad=bc;若ad=bc,则二、黄金分割※1、如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.※2、黄金分割点是最优美、最令人赏心悦目的点.四、相似多边形¤1、一般地,形状相同的图形称为相似图形.※2、对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五、相似三角形※1、在相似多边形中,最为简简单的就是相似三角形.※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.六、探索三角形相似的条件※1、相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例.①一个锐角对应相等;②两条边对应成比例:a.两直角边对应成比例;b.斜边和一直角边对应成比例.※2、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.※3、平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八、相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方.九、图形的放大与缩小※1.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比.※2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3.位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.提高数学思维的方法转化思维转化思维,既是一种方法,也是一种思维。
浙教版数学九年级上册4.1《比例线段》说课稿4一. 教材分析《比例线段》是浙教版数学九年级上册4.1的内容,本节课的主要目标是让学生理解比例线段的定义,掌握比例线段的性质和应用。
在教材中,通过引入实际问题,引导学生探究比例线段的关系,从而让学生体会数学与实际生活的联系。
教材内容由浅入深,逐步引导学生掌握比例线段的知识,为后续学习相似三角形打下基础。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对图形的认识有一定的基础。
但是,对于比例线段这一概念,学生可能较为陌生,需要通过具体的实例和引导,让学生逐步理解和掌握。
此外,学生可能对实际问题中的比例关系有一定的了解,但如何将实际问题转化为数学问题,运用比例线段解决问题,还需要在本节课中进行引导和培养。
三. 说教学目标1.知识与技能目标:让学生理解比例线段的定义,掌握比例线段的性质,能运用比例线段解决实际问题。
2.过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的动手能力、观察能力和推理能力。
3.情感态度与价值观目标:让学生感受数学与实际生活的联系,激发学生学习数学的兴趣,培养学生的合作意识。
四. 说教学重难点1.教学重点:比例线段的定义及其性质。
2.教学难点:比例线段在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,积极思考。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示实际问题,引导学生关注比例线段的概念,激发学生的学习兴趣。
2.探究新知:引导学生通过观察、操作、猜想、验证等过程,发现并总结比例线段的性质。
3.应用拓展:让学生运用比例线段解决实际问题,巩固所学知识,提高解决问题的能力。
4.课堂小结:总结本节课的主要内容,强调比例线段的概念和性质。
5.布置作业:设计具有针对性的练习题,让学生巩固所学知识,提高解题能力。
成比例线段练习题及答案成比例线段是初中数学中的一个重要知识点,它在几何图形的相似性质、比例关系以及实际问题的解决中起着重要的作用。
掌握成比例线段的求解方法,对于提高学生的数学能力和解决实际问题具有重要意义。
本文将介绍一些成比例线段的练习题及其解答,帮助读者更好地理解和掌握这一知识点。
1. 题目:已知线段AB与线段CD成比例,AB = 5,CD = 15,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/15。
将已知条件代入,得到5/15 = EF/15。
通过交叉相乘法,我们可以得到EF = 5/15 * 15 = 5。
所以线段EF的长度为5。
2. 题目:已知线段AB与线段CD成比例,AB = 3/4,CD = 9/10,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(9/10)。
将已知条件代入,得到(3/4)/(9/10) = EF/(9/10)。
通过分数的除法,我们可以得到EF = (3/4)/(9/10) * (9/10) = 3/4 * 10/9 = 30/36 = 5/6。
所以线段EF的长度为5/6。
3. 题目:已知线段AB与线段CD成比例,AB = 2x,CD = 3x + 4,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(3x + 4)。
将已知条件代入,得到(2x)/(3x + 4) = EF/(3x + 4)。
通过交叉相乘法,我们可以得到EF =(2x)/(3x + 4) * (3x + 4) = 2x。
所以线段EF的长度为2x。
4. 题目:已知线段AB与线段CD成比例,AB = 3a + 2,CD = 5a - 1,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(5a - 1)。
将已知条件代入,得到(3a + 2)/(5a - 1) = EF/(5a - 1)。
通过交叉相乘法,我们可以得到EF = (3a + 2)/(5a - 1) * (5a - 1) = 3a + 2。
比例线段知识定位比例线段这部分内容较多,例如平行线分线段成比例定理、三角形一边的平行线的性质定理、判定定理,圆中的比例关系等,极为精彩。
在数学竞赛中,它容易与相似三角形、三角形重心的性质、切割线定理等相结合,内容杂,难度也比较大,经常会涉及证明及计算,需要引起足够重视。
知识梳理知识梳理1:比例线段相关定理平行线分线段成比例定理:如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==平行的判定定理:如上图,如果有AD AEAB AC=,那么DE BC ∥. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,ED CBAB DAE C则BD EGDC FG=.知识梳理2:圆中的比例线段角在圆中能灵活转化,为寻找构造相似三角形,得到比例线段提供了可能;而圆幂定理实质上反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段相关。
相交弦定理、切割线定理、割线定理统称为圆幂定理。
1、相交弦定理如图①,若圆内两条弦AB 、CD 交于点P ,则PD PC PB PA •=•。
2、切割线定理如图②,若从圆外一点P 引圆的切线TP ,和割线PAB ,则PB PA PT •=2。
3、割线定理如图③,若从圆外一点P 引圆的两条割线PAB 、PCD ,则PD PC PB PA •=•。
例题精讲【试题来源】【题目】如图,在梯形ABCD 中,AB ∥CD ,AC 与BD 交于O ,MON ∥AB ,且MON 交AD 、BC 分别于M 、N 。
若MN=1,求11AB CD+的值。
G FE DCBAADAEGFCPOC ABAOPBTAOPBCD【答案】2【解析】【知识点】比例线段【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】如图,△ABC中,AC=BC,F为底边AB上的一点,BFAFmn=(m,n>0),取CF的中点D,连结AD并延长交BC于E,⑴求BEEC的值;⑵如果BE=2EC,那么CF所在直线与边AB有怎样的位置关系?证明你的结论;⑶E点能否为BC中点?如果能,求出相应的BFAFmn=的值;如果不能,证明你的结论。
比例线段专题1.线段的比定义:在同一长度单位下,两条线段的长度的比叫做这两条线段的比。
说明:(1)统一单位:如果用同一长度单位量得线段a 、b 的长度分别是m 、n ,那么n m b a ::=或nmb a =。
(2)前项后项:在b a :或ba 中,a 叫比的前项,b 叫比的后项。
(3)应用:(比例尺)若实际距离是250m ,图上距离是5cm ,求比例尺. 解析: 比例尺=实际距离图上距离,50001250005=∴, ∴比例尺为1:5000.注意:(1)若k b a =:,说明a 是b 的k 倍;(2)两条线段的比与所采用的长度单位无关,但求比时两条线段的长单位必须一致。
(单位要统一);(3)两条线段的比值是一个没有单位的正数; (4)线段的比是有顺序性,即a b b a ::≠。
2.比例线段定义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。
图解:注意:(1)顺序性:如dcba=叫做线段a、b、c、d成比例,而不能说成是b、a、c、d成比例。
如dcba=中,线段d叫做a、b、c的第四比例项,而不能说成“线段d 叫做b、a、c的第四比例项”。
3.比例性质(1)基本性质:adbdbbabcaddcba=⇔==⇔=2::::(简称:外项积等于内项积)深层推导:①dcba=⇒②dbca=(交换bc);③acbd=(交换ad);④cdab=(上下对称);⑤badc=(左右对称);⑥cadb=(左右对称);⑦bdac=(左右对称);⑧abcd=(左右对称)。
(2)更比性质:①dcba=⇒②dbca=(交换bc);③acbd=(交换ad)。
(3)合比性质:dcba=⇔ddcbba+=+(4)分比性质:dcba=⇔ddcbba-=-(5)合分比性质:dcdcbaba-+=-+或dadcbaba+-=+-深层解析: 方法一:解析: d c b a =∴11+=+d cb a ∴dd c b b a +=+……① 同理,ddc b b a -=-……② 由①÷②得,d c dc b a b a -+=-+ 由②÷①得,da dc b a b a +-=+- 方法二: dcb a =∴可令k dcb a ==,则bk a =,dkc =∴11-+=-+=-+k k b bk b bk b a b a 同理,11-+=-+k k d c d c 故,d c dc b a b a -+=-+ 同理,da dc b a b a +-=+- (6)等比性质:d c b a =⇔)0(≠+++==d b db ca d cb a深层解析: 方法一:d cb a = dbc a =∴(更比性质)d d b c c a +=+∴(合比性质)dc d b c a =++∴(更比性质) 故,)0(≠+++==d b db c a d c b a方法二:dc b a = ∴可令kd cb a ==,则bk a =,dkc =∴k d b dk bk d b c a =++=++ 故,)0(≠+++==d b db c a d c b a深层推导:)0(≠+++===n d b n m d c b a ⇔b an d b m c a =++++++解析: )0(≠+++===n d b n md c b a∴可令k nmd c b a ==== ,则bk a =,dk c =,…,nk m =∴k n d b nk dk bk n d b m c a =+++++=++++++ 故,ba n db mc a =++++++4.经典习题考点1:比例基本性质1. 若4x=5y,则x ∶y = .( 45) 2. 已知3∶x =8∶y ,求yx = (83)3. 等腰直角三角形中,一直角边与斜边的比是 .(2:1)4. 正方形对角线的长与它的边长的比是 。