高一物理简谐运动
- 格式:ppt
- 大小:330.50 KB
- 文档页数:19
大一简谐运动知识点归纳简谐运动是物理学中一个重要的概念,它是指物体在受到一个恢复力(即与偏离平衡位置成正比的力)作用下以一定频率做往复振动的运动。
简谐运动具有许多特点和规律,本文将对大一学生需要掌握的简谐运动知识点进行归纳和总结。
一、简谐运动的基本特点简谐运动的基本特点包括:振动物体的周期、频率、振幅和相位。
周期指的是一个完整振动所需要的时间,通常用T表示,单位是秒。
频率指的是单位时间内完成的振动次数,通常用f表示,单位是赫兹(Hz)。
振幅表示振动物体偏离平衡位置的最大距离。
相位表示振动物体当前所处的状态。
二、简谐运动的描述简谐运动可以通过各种方式进行描述。
其中,最常用的是通过位移-时间图、速度-时间图和加速度-时间图。
位移-时间图是一条曲线,横轴表示时间,纵轴表示位移,它能够直观地展示振动物体的运动情况。
速度-时间图和加速度-时间图同样是使用时间作为横轴,但纵轴分别表示速度和加速度。
三、简谐运动的数学表示简谐运动可以通过使用正弦函数或余弦函数进行数学表示。
设物体的位移为x,时间为t,角频率为ω,初相位为φ,则简谐运动的数学表示可以写为:x = A * sin(ωt + φ)或x = A * cos(ωt + φ)其中,A表示振幅,ω表示角频率,φ表示相位。
这两种表示方式是等效的,可以根据需要选择其中一种进行使用。
四、简谐运动的能量简谐运动的能量由势能和动能组成。
势能是指振动物体由于位置发生变化而具有的能量,动能是指振动物体由于速度发生变化而具有的能量。
在简谐运动中,势能和动能之间相互转化,总能量不变。
五、简谐运动的共振共振是指在外力作用下,当物体的振动频率与外力频率接近或相等时,振幅达到最大的现象。
共振可以放大物体的振动,使其接收到更多的能量。
然而,如果超过物体的势能极限,共振可能会导致物体破坏。
六、简谐运动的应用简谐运动在生活和工程中有着广泛的应用。
例如,钟表的摆锤运动、弹簧振子的振动、音叉的振动等都是简谐运动的实例。
高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。
专题46 简谐运动考点一简谐运动物理量的分析考点二简谐运动的周期性与对称性考点三简谐运动的表达式和图像的理解和应用考点四单摆及其周期公式考点五受迫振动和共振1.简谐运动概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动是简谐运动。
2.分析简谐运动问题紧抓住两个模型——弹簧振子和单摆,结合两种模型的振动情景分析求解.考点一简谐运动物理量的分析1.简谐运动的物理量1)位移:振动质点在某一时刻的位移指的是质点在该时刻相对平衡位置的位移.2)回复力:F=-kx;回复力是使物体返回到平衡位置的力,回复力的方向时刻指向平衡位置。
3)振幅:振动质点离开平衡位置的最大距离;振幅越大,简谐运动能量越大。
4)周期:振动物体完成一次全振动所需要的时间。
5)频率:振动物体完成全振动的次数与所用时间之比。
6)相位:物理学中把(ωt+φ)叫作相位,它代表了做简谐运动的物体此时正处于一个运动周期中的哪个状态。
2.靠近平衡位置时,物体的a、F、x都减小,v增大;远离平衡位置时,a、F、x都增大,v减小1.(2021·高考河北卷)如图,一弹簧振子沿x轴做简谐运动,振子零时刻向右经过A点,2 s后第一次到达B点,已知振子经过A、B两点时的速度大小相等,2 s内经过的路程为0.4 m。
该弹簧振子的周期为________s,振幅为________m。
2.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,平衡位置为O,小球在A、B间振动,如图所示.下列结论正确的是( )A.小球在O位置时,动能最大,加速度最小B .小球在A 、B 位置时,动能最大,加速度最大C .小球从A 经O 到B 的过程中,回复力一直做正功D .小球在O 位置时系统的总能量大于小球在B 位置时系统的总能量3.(多选)如图所示,物体A 与滑块B 一起在光滑水平面上做简谐运动,A 、B 之间无相对滑动,已知水平轻质弹簧的劲度系数为k ,A 、B 的质量分别为m 和M ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,则下列说法正确的是( )A .物体A 的回复力是由滑块B 对物体A 的摩擦力提供的 B .滑块B 的回复力是由弹簧的弹力提供的C .物体A 与滑块B (整体看成一个振子)的回复力大小跟位移大小之比为kD .若A 、B 之间的动摩擦因数为μ,则A 、B 间无相对滑动的最大振幅为μ(M+m )gk考点二 简谐运动的周期性与对称性1.周期性:做简谐运动的物体的位移、回复力、加速度和速度均随时间做周期性变化,变化周期就是简谐运动的周期T ;动能和势能也随时间做周期性变化,其变化周期为T22.对称性:(1)如图所示,做简谐运动的物体经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等(2)物体由P 到O 所用的时间等于由O 到P ′所用时间,即t PO =t OP ′ (3)物体往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO(4)从平衡位置和最大位移之外的任意一点开始计时,经过半个周期,质点一定运动到关于平衡位置的对称点且运动方向相反.3.对于周期性和对称性问题可以通过画运动过程示意图来辅助分析,也可以利用振动图象解决.4.(多选)一振子沿x 轴做简谐运动,平衡位置在坐标原点.t =0时振子的位移为-0.1 m ,t =1 s 时位移为0.1 m ,则( )A .若振幅为0.1 m ,振子的周期可能为23 sB .若振幅为0.1 m ,振子的周期可能为45 sC .若振幅为0.2 m ,振子的周期可能为4 sD .若振幅为0.2 m ,振子的周期可能为6 s5.一个质点在平衡位置O 点附近做简谐运动,若从O 点开始计时,经过3 s 质点第一次经过M 点,如图所示,再继续运动,又经过4 s 第二次经过M 点,则再经过多长时间第三次经过M 点( )A .7 sB .14 sC .16 sD .103 s6.下列说法中正确的是( )A .若t 1、t 2两时刻振动物体在同一位置,则t 2-t 1=TB .若t 1、t 2两时刻振动物体在同一位置,且运动情况相同,则t 2-t 1=TC .若t 1、t 2两时刻振动物体的振动反向,则t 2-t 1=T2D .若t 2-t 1=T2,则在t 1、t 2时刻振动物体的振动反向7.如图所示,质量为m 的物体放在弹簧上,与弹簧一起在竖直方向上做简谐运动,当振幅为A 时,物体对弹簧的最大压力是物重的1.5倍,则物体对弹簧的最小压力是________.要使物体在振动中不离开弹簧,振幅不能超过________.(重力加速度为g )考点三 简谐运动的表达式和图像的理解和应用1.简谐运动的表达式x =A sin_(ωt +φ0),ωt +φ0为相位,φ0为初相位,ω为圆频率,ω=2πT.2.简谐运动的振动图像表示做简谐运动的物体的位移随时间变化的规律,是一条正弦曲线.甲:x =A sin2πT t乙:x =A sin (2πTt +π2).3.从图像可获取的信息(1)振幅A 、周期T (或频率f )和初相位φ0(如图所示). (2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度大小和方向,速度的方向也可根据下一相邻时刻质点的位移的变化来确定.(4)某时刻质点的回复力方向:回复力总是指向平衡位置,回复力方向和位移方向相反. (5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况. 4.路程与振幅的关系(1)振动物体在一个周期内的路程为四个振幅. (2)振动物体在半个周期内的路程为两个振幅. (3)振动物体在14个周期内的路程不一定等于一个振幅.8.一质点做简谐运动,其位移x 与时间t 的关系图像如图所示,由图可知( )A .质点振动的频率是4 Hz ,振幅是2 cmB .质点经过1 s 通过的路程总是2 cmC .0~3 s 内,质点通过的路程为6 cmD .t =3 s 时,质点的振幅为零9.(2022·北京西城区统测)用小球和轻弹簧组成弹簧振子,使其沿水平方向振动,振动图像如图所示,下列描述正确的是( )A .1~2 s 内,小球的速度逐渐减小,加速度逐渐增大B .2~3 s 内,弹簧的势能逐渐减小,弹簧弹力逐渐增大C .t =4 s 时,小球的动能达到最大值,弹簧的势能达到最小值D .t =5 s 时,弹簧弹力为正的最大值,小球的加速度为负的最大值10.(多选)如图所示,水平弹簧振子沿x 轴在M 、N 间做简谐运动,坐标原点O 为振子的平衡位置,其振动方程为x =5sin ⎝⎛⎭⎪⎫10πt +π2 cm 。
简谐运动的规律和图像一、简谐运动的基本规律1.简谐运动的特征2.注意:(1)弹簧振子(或单摆)在一个周期内的路程一定是4A,半个周期内路程一定是2A,四分之一周期内的路程不一定是A。
(2)弹簧振子周期和频率由振动系统本身的因素决定(振子的质量m和弹簧的劲度系数k ),与振幅无关。
二、简谐运动的图像1.简谐运动的数学表达式:x=A sin(ωt+φ)2.根据简谐运动图象可获取的信息(1)振幅A、周期T(或频率f)和初相位φ(如图所示).(2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定.(4)某时刻质点的回复力、加速度的方向:回复力总是指向平衡位置,回复力和加速度的方向相同,在图象上总是指向t轴.(5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x -t 图象的意义,其次要把x -t 图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二 直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三、针对练习1、一个小物块拴在一个轻弹簧上,并将弹簧和小物块竖直悬挂处于静止状态,以此时小物块所处位置为坐标原点O ,以竖直向下为正方向建立Ox 轴,如图所示。
先将小物块竖直向上托起使弹簧处于原长,然后将小物块由静止释放并开始计时,经过s 10π,小物块向下运动20cm 第一次到达最低点,已知小物块在竖直方向做简谐运动,重力加速度210m /s g =,忽略小物块受到的阻力,下列说法正确的是( )A .小物块的振动方程为0.1sin 102x t π⎛⎫=+ ⎪⎝⎭(m ) B .小物块的最大加速度为2gC 2m /sD .小物块在0~1330s π的时间内所经过的路程为85cm2、(多选)某弹簧振子在水平方向上做简谐运动,其位移x 随时间变化的关系式为x =A sin ωt ,如图所示,则( )A .弹簧在第1 s 末与第5 s 末的长度相同B .简谐运动的频率为18Hz C .第3 s 末,弹簧振子的位移大小为22A D .第3 s 末至第5 s 末,弹簧振子的速度方向不变3、(多选)如图甲所示,悬挂在竖直方向上的弹簧振子,在C 、D 两点之间做简谐运动,O 点为平衡位置。
【高中物理】高考必备简谐运动知识点总结,考前必过一遍!一、简谐运动1、机械振动(1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。
(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。
(3)振动特点:振动是一种往复运动,具有周期性和重复性。
2、简谐运动(1)弹簧振子一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。
②形成原因:振子离开平衡位置后,回复力的作用使振子回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。
(3)振动过程分析振子的运动A→O O→A′A′→O O→A对O点位移的方向怎样?大小如何变化?向右减小向左增大向左减小向右增大回复力的方向怎样?大小如何变化?向左减小向右增大向右减小向左增大加速度的方向怎样?大小如何变化?向左减小向右增大向右减小向左增大速度的方向怎样?大小如何变化?向左向左向右向右增大减小增大减小动量的方向怎样?大小如何变化?向左增大向左减小向右增大向右减小振子的动能增大减小增大减小弹簧的势能减小增大减小增大系统总能量不变不变不变不变(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。
②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。
简谐运动的动力学特征是判断物体是否为简谐运动的依据。
③简谐运动的运动学特征a=- x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
简谐运动加速度的大小和方向都在变化,是一种变加速运动。
知识点:一、简谐运动定义1.机械振动物体在平衡位置附近所做的往复运动叫机械振动。
机械振动的条件是:(1)物体受到回复力的作用;(2)阻力足够小。
2.回复力使振动物体返回平衡位置的力叫回复力。
回复力时刻指向平衡位置。
回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等。
3.简谐运动物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动。
表达式为:F=-kx。
4.描述简谐运动的物理量(1)位移x:由平衡位置指向振子所在处的有向线段,最大值等于振幅;(2)振幅A:是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)(3)周期T:是描述振动快慢的物理量。
频率f=1/T二、理解简谐运动重难点1.平衡位置的理解平衡位置是做机械振动物体最终停止振动后振子所在的位置,也是振动过程中回复力为零的位置。
(1)平衡位置是回复力为零的位置;(2)平衡位置不一定是合力为零的位置;(3)不同振动系统平衡位置不同:竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。
2.回复力的理解(1)回复力是指振动物体所受的总是指向平衡位置的合外力,但不一定是物体受到的合外力。
(2)性质上,回复力可以是重力、弹力、摩擦力、电场力、磁场力等。
(3)回复力的方向总是“指向平衡位置”。
(4)回复力的作用是使振动物体回到平衡位置。
3.简谐运动(1)简谐运动的判定在简谐运动中,回复力的特点是大小和位移成正比,方向与位移的方向相反,即满足公式F=-kx。
所示对简谐运动的判定,首先要正确分析出回复力的来源,再根据简谐运动中回复力的特点进行判定。
(2)简谐运动的特点周期性:简谐运动的物体经过一个周期或n个周期后,能回复到原来的运动状态,因此处理实际问题时,要注意多解的可能性或需定出结果的通式。