35kV变电站保护定值的计算
- 格式:doc
- 大小:758.50 KB
- 文档页数:34
35kV变电站的继电保护配置及其整定计算摘要:电网运行过程中,电力元件只有受到继电器的保护,才能保证安全运行,防止用电事故的发生,在本文中主要针对35kV变电站的继电保护配置及其整定计算进行以下介绍,旨在为变电站继电保护方面提供可行性思路,从而推动我国电力行业稳健发展。
关键词:35kV变电站;继电保护配置;整定计算;在35kV变电站建设的过程中,继电保护配置是重要的工作。
从原理上来看,继电保护就是利用系统预警机制实现信号预警、故障预警和电力保护等动作的联动,从而为电力系统运行提供保护。
而继电保护配置与整定计算的原理虽然不复杂,但是却存在一定规律,还要给予足够的重视。
因此,相关人员还应加强有关问题的研究,以便更好的开展相关工作。
一、35kV变电站继电保护配置实际应用1.1 35kV变电站概述智能化技术是当前提升变电站功能成效的主要途径,具体来说,通过计算机网络技术35kV变电站正在朝着数字化智能化前进,其数字化智能化水平也在不断提高,信息共享也已经初步成为现实变电站一旦应用数字化技术其信息采集、处理等工作的效率将更高,其电力系统发挥的作用也将更大。
通俗来讲,智能化后的变电站出现停电等供电事故的可能性将大大降低,而且其应用电力设备出现故障的频率也将大大降低继电保护装置便是变电站智能化的典型代表,通过这个装置变电站可以自动对故障进行识别并作出保护动作,因而智能化的继电保护装置具有十分广阔发展前景。
通常来说35kV变电站智能化系统主要包括三个层次:过程层包含有大量的设备,从而涉及到很多的电力元件,一旦出现问题将直接影响变电站的供电,因此对其进行重点继电保护是十分必要的间隔层主要针对于二次设备。
能切实起到间隔设备作用站控层的工作主要是进行数据采集、设备监控等,而且这一切都可以通过自动化技术实现。
1.2 35kV变电站设备继电保护功能分析1.2.1线路保护线路保护十分重要。
且其重要性主要体现在以下几个方面:(变电站实际应用中,如何在不同电压等级下对间隔单元进行良好监控是需要考虑的重点问题,而相应的电路保护装置便能够解决这一问题。
35kv变电所微机保护定值整定计算一、301#、302#(供1#、2#主变)盘保护整定计算1、过流保护整定计算1.1、动作电流式中:---过流保护继电器动作电流值;---接线系数,当继电器接于相上为1,接于相差为 ;----可靠系数1.3~1.5,取1.5;---- SF9-8000/10变压器一次侧额定电流;----电流互感器的变比,=150/5=30。
取过流保护继电器动作电流=7.5A,则一次动作电流为7.5×30=225A。
1.2.动作时限取动作时限为1.1s。
1.3.灵敏度校验式中:----灵敏度系数;---过流保护继电器动作电流值;--- SF9-8000/10变压器二次侧发生短路时的两相(折算35kv 侧)短路电流。
2、过负荷保护整定计算2.1、动作电流按躲过变压器的额定电流进行整定。
式中:---过负荷保护动作电流值;---可靠系数,取1.05~1.1;--- SF9-8000/10变压器一次侧额定电流;---电流互感器的变比,=150/5=30。
取过负荷保护动作电流=5.5A,则一次动作电流为5.5×30=165A.2.2.动作时限取动作时限为6s。
3、301#、302#(供1#、2#主变)盘(CAT211)保护定值表3.1 装置定值整定序号定值名称整定值动作时限备注1过流Ⅰ段定值7.5安培 1.1秒过流Ⅰ段定值投入3过负荷定值 5.5安培6秒过负荷定值投入二、001#、002#进线盘保护整定计算10kv母线两个回路进线盘只设速断(过流Ⅰ段)保护,则速断保护整定计算如下:1、短路速断保护整定:1.1、动作电流按躲过系统最大运行方式下变压器低压侧三相短路时流过高压侧的短路电流来整定,保护动作电流,取14A式中:---速断保护继电器动作电流值;---接线系数,当继电器接于相上为1,接于相差为 ;----可靠系数,取1.2~1.3;---- SF9-8000/10变压器二次侧发生短路时的三相(折算35kv侧)短路电流。
14-135kV 变电站保护整定值计算1 35kV 线路参数一.35kV 线路1U :35kV 线路1U 线路长2K m ,导线为LGJ-120,对侧接于大电网(可视为无穷大电源)。
2 主变主要参数为: 额定容量:3.15MVA额定电压:(35±2×2.5%)/6.3 短路电抗:6.96%差动速断保护定值的计算 一.主变高、低压侧二次额定电流 1.高压侧额定二次电流:2.低压侧额定二次电流:二.差动速断保护定值计算:取I cszd 为5I 2e ,则:三.计算差动平衡系数:四.差动速断的灵敏度校验:当低压侧出口两相短路时,由35kV 侧电源产生的电流为:由低压侧电源提供的电流为:根据图13-4所示。
A n U SI i ee 3.120053533150/3111=⨯⨯==A n U SI i ee22.720053.633150/322=⨯⨯==AI cszd 1.3622.75=⨯=21.33.6335)5200/5200(321=⨯⨯=⋅=v i i p n n n K []A I d 3120052.18)5.13//12(33675023)2(min 1=⨯+⨯⨯=()A I d 4.12300575.12//83.1531050023)2(min 1=⨯⨯⨯=:,,21)2(min 2)2(min 1)2(min 反相故有由于此时I I I I K I d d p c +=因K Lm >2,故满足灵敏度要求:2 差动保护定值计算一.最小动作差动电流计算:取最小动作电流为0.5倍额定电流二.制动系数K zzd 的计算,K zzd 的计算公式为取K k =1.5 K tx =1f wc =0.1 ΔU=3×0.025=0.075故有 取K zzd =0.4三.二次谐波制动系数整定值K 2zd二次谐波制动系数取0.15。
四.差动保护的灵敏度校验:根据差动保护灵敏系数计算公式,本例中,差动保护的灵敏系数为: 因K Lm >2,故满足灵敏度要求:3 低压侧复合电压启动的过流保护 一.过电流定值I gzd 的计算过流定值I gzd 的计算:按躲过主变低压侧额定电流来整定,故有:取K k =1.20,K fi =0.90,则有:二.低电压定值U qzd 的计算A I I K I d d p c 76.464.1231364.0)2(min 2)2(min 1)2(min =+⨯⨯=+= 5.232.18/76.46/)2(min ===cszd c Lm I I K AI I e czd 61.322.75.05.02=⨯==)(21U f K K K wc tx k zzd ∆+=13.0)075.01.01(5.121=+⨯⨯⨯=zzd K 52.011===zzd Lm K K e fikgzd I K K I 22=A I gzd 63.922.79.020.1=⨯=14-3低电压整定值:根据公式:4 高压侧复合电压启动的过流保护 一.过流定值I gzd 的计算 1.过流整定值I gzd 的计算取K k =1.3 K fi =0.9则:二.低电压定值U qzd 的计算取高压侧母线电压为启动电压:取K k =1.10 K fu -1.10U min =0.9U 1e =90V ,得:三.负序电压整定值的计算负序电压整定值为:6 过负荷保护一.过负荷电流定值I hzd ,过负荷设于高压侧,其电流定值其中K k =1.1、K fi 取0.9、I 1e =1.3A 。
35KV变电站继电保护定值整定分析1.引言35kV变电站继电保护定值整定是保证电力系统运行安全和可靠性的重要环节。
定值整定是指根据电力系统的配置、负荷情况、故障类型和特点,确定继电保护设备的参数取值,以保证在故障发生时,能够实现及时、准确的故障检测,并采取正确的保护动作。
2.定值整定的目的和作用继电保护的定值整定主要目的是在不损害电力系统正常运行情况下,实现对故障的及时检测与保护动作,以最大限度地减小故障对系统的影响。
定值整定的作用是提高电力系统的可靠性、稳定性和经济性,降低故障损失和设备损坏的风险。
3.定值整定的方法和步骤定值整定可以采用手动和自动两种方法。
手动方法需要根据经验和实际情况进行调整,而自动方法是利用计算机软件进行模拟计算和优化。
定值整定的步骤主要包括:收集系统数据和故障记录、确定保护对象和保护类型、选择合适的保护参数、进行定值计算和仿真验证、调试和验证。
4.定值整定的关键因素影响定值整定效果的关键因素包括:系统的特性和结构、负荷特性、设备状态和参数、故障类型和常见故障模式、对系统安全和稳定性的要求等。
在定值整定过程中,需要考虑这些因素,并进行综合分析与权衡,以确定最合适的定值参数。
5.定值整定的优化方法为了实现最佳的定值整定效果,可以采用优化方法进行参数选择和定值计算。
常用的优化方法包括遗传算法、粒子群算法、模拟退火算法等。
这些算法可以通过模拟计算和多次迭代,找到最优的定值参数组合,以提高保护系统的性能和可靠性。
6.定值整定的实施和调试在完成定值整定后,需要对整定参数进行实施和调试。
实施包括对保护设备的参数设置和调整,确保保护设备按照要求进行工作。
调试是指对定值整定结果进行验证和确认,包括测试保护设备对各类故障的检测和动作情况,以及对保护系统进行总体性能测试。
7.结论35kV变电站继电保护定值整定是保证电力系统运行安全和可靠性的重要环节。
在进行定值整定时,需要综合考虑系统的特性和要求,采用合适的方法进行参数选择和定值计算,并进行实施和调试,以确保保护系统的性能和可靠性。
35KV变电站主变差动保护动作分析摘要:介绍变压器差动保护动作原因并进行分析,针对出现的问题给出了处理方法,并通过实际案例进行分析说明。
关键词:差动保护;动作;分析;处理35KV运行变电站系统中,差动保护是变压器的主要保护,应满足可靠性、选择性、灵敏性和速动性的要求,它的工作情况好坏对变压器的正常运行关系极大。
但因其结构复杂,接线繁琐,安装及检修改造过程中很有可能留下隐患,在设计、施工及以后的检修改造过程中,必须严格按照规程要求,认真分析,把好每一个技术关,确保TA型号、变比、二次线及二次电流接地方式等方面正确,杜绝差动保护误动作事故的发生。
变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。
差动保护是反映被保护元件两侧电流差而动作的保护装置。
差动保护是保护变压器的内部短路故障,电流互感器安装在变压器的两侧,在正常负荷情况或外部发生短路时,流入差动继电器的电流为不平衡电流,在适当选择好两侧电流互感器的变比和接线方式的条件下,该不平衡电流值很小,并小于差动保护的动作电流,故保护不动作;在变压器内部发生短路时,流入的电流大于差动保护的动作电流,差动保护动作于跳闸。
由于变压器一二次电流、电压大小不同、相位不同,电流互感器特性差异,电源侧有励磁涌流,都将造成不平衡电流,因此必须采用相应措施消除不平衡电流的影响。
变压器差动保护在选择TA变比时,可在原常规计算的基础上,根据经验适当增大1至2档,即适当的选大变比的TA,这样可以降低短路电流倍数,减少差动回路中产生的不平衡电流,有效削弱励磁涌流,提高差动保护的灵敏度。
这对避免保护区外故障,防止变压器差动保护误动作不失为较有效的方法。
TA型号及变比的正确选择是保证差动保护动作可靠性的基础。
高压继电保护整定计算目录35KV中央变电所开关继电保护整定值 (1)35KV变电所主变差动保护定值 (2)地面高压供、配电场所 (3)井下中央变电所继电保护定值 (5)采区继电保护定值 (6)矿井各变电所、高压配电硐室短路电流 (9)矿井高压供电线路短路电流计算 (10)35KV变电所整定计算 (21)地面高压配、供电场 (44)中央变电所继电保护计算整定 (52)采区高压继电保护整定 (66)35KV中央变电所开关继电保护整定值35KV变电所主变差动保护定值地面高压供、配电场所井下中央变电所继电保护定值采区继电保护整定矿井各变电所、高压配电硐室短路电流矿井高压供电线路短路电流计算邱集煤矿35KV 变电所供电一路来自来自齐河变电站,架空线路采用,LGJ-120长度44.5KM,短路容量348.1MV A ;另一路来自赵官变电站,LGJ-150长度7.5KM 。
两台主变8MV A,一台运行,一台冷备.下井供电采用交联聚氯乙烯铠装电缆四路供电,采区供电采用双回路交联聚氯乙烯铠装电缆,一路运行,一路带电热备。
(一)、选取基准容量:S j =100MV A 。
计算d 1点时选取U j1=37KV I j1=KA 56.17331001Uj 3Sb =⨯= 计算d 2, d 3, d 4, d 5, d 6 d 7, d 8, d 9, d 10, d 11, d 12点时选取U j2=6.3KV I j2=KA 16.93.63100Ub23Sb =⨯=(二)、计算各元件的电抗标么值: 电力系统: X x *=287.01.348100S S dj ==输电线路L 1: X L1*=X 0l 12jj U S =0.4×44.5×237100=1.27 变压器: X b *=U d %bj S S =0.0756×8100=0.945 下井电缆L 2:X L2*= X 0l 22jj U S =0.08×0.6×23.6100=0.1212 中央变电所至东翼变电所L3:X L3*= X 0l 32jj U S =0.08×0.8×23.6100=0.16中央变电所至东八变电所L4:X L4*= X 0l 42jj U S =0.08×2.5×23.6100=0.5 中央变电所至西部采区变电所L5: X L5*= X 0l 52jj U S =0.08×1.1×23.6100=0.2222 东八变电所至东八上部移变L6: X L6*= X 0l 62jj U S =0.08×0.32×23.6100=0.064 东八变电所至东八中部变电所L7: X L7*= X 0l 72jj U S =0.08×1.1×23.6100=0.2217 西部采区变电所至西三移动变电站L8:X L8*= X 0l 82jj U S =0.08×1.2×23.6100=0.2424 东八中部变电所至东八中部移变L9: X L9*= X 0l 92jj U S =0.08×0.2×23.6100=0.0403 东八中部变电所至东八底部变电所L10: X L10*= X 0l 102jj U S =0.08×0.9×23.6100=0.1814 西部变电所至西五变电所L11: X L11*= X 0l 112jj U S =0.08×2×23.6100=0.4031东八底部变电所至综采移变L12: X L12*= X 0l 122jj U S =0.08×0.5×23.6100=0.1008 西五变电所至西五中部变电所L13:X L13*= X 0l 132jj U S =0.08×0.9×23.6100=0.1814 西五变电所至综采移变L14:X L14*= X 0l 142jj U S =0.08×0.5×23.6100=0.1008XX *10.287X L1*21.27X B*30.945d1d240.121250.121260.121270.1212d390.580.16d4100.5d7d8d13d10d5d11d6d9d12d14XL2*XL3*XL4*X L5*XL6*X L7*X L8*XL9*X L10*X L11*X L12*X L13*110.2222120.2222电 抗 等 值 电 路 图130.064140.2217150.2217160.2424170.2424210.4013220.4013180.0403190.1814200.1814230.1008240.1814250.1814d15XL4*180.1008XL15*260.8465d16(三)计算各点短路电流d1点短路时短路电流(主变35KV 侧):I d1*=∑*1X =0.64227.1287.01X *Xx 1*L1=+=+ ==1*1)3(1j d d I I I 0.642⨯1.56=1.002KAKA I Id d 868.02732.1002.123)3(1)2(1=⨯==MVAS KA I KA i d ch ch 64.20.642100 1.52352.11.002 2.55555.2002.1111=⨯==⨯==⨯=d2点短路电流计算(主变6KV 侧):I d2*=0.4945.027.1287.01X X *Xx 1*b*L1=++=++ ==2*2)3(2j d d I I I 0.4⨯9.16=3.664KAKA I Id d 173.32664.3323)3(2)2(2=⨯==MVAS KA I KA i d ch ch 404.0100569.552.1664.39.34355.2664.3222=⨯==⨯==⨯= d3点短路电流计算(中央变电所):395.041212.0945.027.1287.014X *Xx 1Id3**2**L1=+++=+++=L bX X==2*3)3(3j d d I I I 0.395⨯9.16=3.618KAKA I I d d 133.3618.32323)3()2(3=⨯== MVAS KA I KA i d ch ch 39.5395.0100 5.49952.13.6189.22655.2618.3333=⨯==⨯==⨯= d4点短路电流计算(东翼配电点):713.016.041212.0945.027.1287.014X *Xx 1Id4**3*2**L4=++++=++++=L L bX X X==2*4)3(4j d d I I I 0.371⨯9.16=3.398KAKA I I d d 942.2398.32323)3(4)2(4=⨯==MVAS KA I KA i d ch ch 37.1371.0100165.552.13.398665.855.2983.3444=⨯==⨯==⨯= d5点短路电流计算(东八变电所):33.05.041212.0945.027.1287.014X X *Xx 1Id5**4*2*b*L1=++++=++++=L L X X ==2)3(55j d I I I 0.33⨯9.16=3.022KA 617.22022.3323)3(5)2(5=⨯==d d I IMVAS KA I KA i d ch ch 3333.0100593.452.1022.3706.755.2022.3555=⨯==⨯==⨯= d6点短路电流计算(西部采区变电所):363.02222.041212.0945.027.1287.014X X *Xx 1Id6**5*2*b*L1=++++=++++=L L X X ==2*6)3(6j d d I I I 0.363⨯9.16=3.325KA864.22325.3323)3(6)2(6=⨯==d d I IMVAS KA I KA i d ch ch 36.3363.0100054.552.1325.38.47955.2325.3666=⨯==⨯==⨯= d7点短路电流计算(东八上部移变):323.0064.016.041212.0945.027.1287.014X X *Xx 1Id7**6*4*2*b*L1=+++++=+++++=L L L X X X==2*7)3(7j d d I I I 0.323⨯9.16=2.959KAKA I Id d 562.22959.2323)3(7)2(7=⨯==MVAS KA I KA i d ch ch 3.32233.0100498.452.1959.2545.755.2959.2777=⨯==⨯==⨯= d8点短路电流计算(东八中部变电所):3073.02217.05.041212.0945.027.1287.014X X *Xx 1Id8**7*4*2*b*L1=+++++=+++++=L L L X X X==2*7)3(8j d d I I I 0.3073⨯9.16=2.815KAKA I Id d 438.22815.2323)3(8)2(8=⨯==MVAS KA I KA i d ch ch 73.307303.0100279.452.1815.2178.755.2815.2888=⨯==⨯==⨯=d9点短路电流计算(西部 变电所):334.02424.02222.041212.0945.027.1287.014X X *Xx 1Id9**9*5*2*b*L1=+++++=+++++=L L L X X X==2*9)3(9j d d I I I 0.334⨯9.16=3.059KAKA I Id d 649.22059.3323)3(9)2(9=⨯==MVAS KA I KA i d ch ch 3.43334.010065.452.1059.37.855.2059.3999=⨯==⨯==⨯=d10点短路电流计算(东八中部移变):0.3040403.02217.05.041212.0945.027.1287.014X X *Xx 1Id10**9*7*4*2b *L1=++++++=++++++=L L L L X X X X==2*10)3(10j d d I I I 0.304⨯9.16=2.785KAKA I Id d 412.22785.2323)3(11)2(10=⨯==MVAS KA I KA i d ch ch 4.03043.0100 4.22952.12.785021.755.22.785101010=⨯==⨯==⨯= d11点短路电流计算(东八底部变电所):3.01814.02217.05.041212.0945.027.1287.014X X *Xx 1Id11**10*7*4*2*b*L1=++++++=++++++=L L L L X X X X==2*11)3(11j d d I I I 0.3⨯9.16=2.748KAKA I Id d 38.22748.2323)3(11)2(11=⨯==MVAS KA I KA i d ch ch 303.0100177.452.1748.2007.755.2748.2111111=⨯==⨯==⨯=d12点短路电流计算(西五变电所):2943.04013.02424.02222.041212.0945.027.1287.014X X *Xx 1Id12**11*8*5*2*b*L1=++++++=++++++=L L L L X X X X==2*12)3(12j d d I I I 0.2943⨯9.16=2.696KAKA I Id d 335.22696.2323)3(12)2(12=⨯==MVAS KA I KA i d ch ch 29.439432.0100098.452.1696.2875.655.2696.2121212=⨯==⨯==⨯=d13点短路电流计算(综采移变):2828.01008.01814.02217.05.041212.0945.027.1287.014X X *Xx 1Id13**12*10*7*4*2*b*L1=+++++++=+++++++=L L L L L X X X X X==2*13)3(13j d d I I I 0.2828⨯9.16=2.59KAKA I Id d 243.2259.2323)3(13)2(11=⨯==MVAS KA I KA i d ch ch 28.288282.0100937.352.159.2605.655.259.2131313=⨯==⨯==⨯=d14点短路电流计算(西五中部变电所):2794.01814.04013.02424.02222.041212.0945.027.1287.014X X *Xx 1Id14**13*11*8*5*2*b*L1=+++++++=+++++++=L L L L L X X X X X==2*14)3(14j d d I I I 0.2794⨯9.16=2.559KAKA I Id d 216.22559.2323)3(14)2(14=⨯==MVAS KA I KA i d ch ch 27.492749.010089.352.1559.2525.655.2559.2141414=⨯==⨯==⨯=d15点短路电流计算(综采移变):2858.01008.04013.02424.02222.041212.0945.027.1287.014X X *Xx 1Id15**14*11*8*5*2*b*L1=+++++++=+++++++=L L L L L X X X X X==2*15)3(15j d d I I I 0.2858⨯9.16=2.618KAKA I Id d 267.22618.2323)3(15)2(15=⨯==MVAS KA I KA i d ch ch 28.582858.0100979.352.1618.2676.655.2618.2141515=⨯==⨯==⨯=35KV 变电所整定计算邱集煤矿35KV 变电所高压保护采用微机保护单元,整定计算返回系数按0.95,CT 接线方式除主变差动保护采用星角补偿,35KV 侧采用星形接法,6KV 侧采用不完全星形接法,接线系数为1,计算式中未标出.四路下井并列运行。
专业资料继电保护装置是电力系统重要二次设备,它对电力系统安全稳定地运行起着重要的作用。
电力系统对继电保护装置的要求是快速性、可靠性、选择性。
要满足这三点要求,除选用性能良好的继电保护装置外,还必须正确地进行整定。
性能再好的保护装置,如整定不正确,也不能正确地完成保护功能。
本章就采用微机保护装置的35kV变电站的线路、主变、电容等设备的保护定值的计算,作简单的介绍,以帮助用户正确地进行35kV变电站,继电保护装置进行整定,充分发挥各种保护装置的作用,保证变电站设备的安全和可靠、经济、稳定运行。
§16-1 线路保护整定值的计算对于35KV及以下电压等级电力系统,一般为中性点不直接接地系统,其线路保护,通常采用反应故障时电压、电流的三段式电流保护。
第Ⅰ段电流保护为瞬时电流速断保护、第Ⅱ段为限时电流速断保护、第Ⅲ段为过流保护;第Ⅰ段及第Ⅱ段电流保护构成本线路的主保护,过流保护为后备保护。
当电流第Ⅰ段、第Ⅱ段保护灵敏系数不够时,可采用电流闭锁电压速断保护,如过流保护作远后备时的灵敏系数不够,可带低电压或复合电压启动。
如果被保护线路为双侧电源时,应加方向闭锁,以防止在保护设置处后方发生短路时保护误动。
电流、电压整定值受电网结构及运行方式影响较大,整定值的准确计算比较复杂,下面以图16-1所示的单侧电源环网供电电网,母线B、C间断路器5QF的保护为例,简单介绍采用EDCS-6110单元线路的各种保护整定值的计算。
16-1.1 电流速断保护整定值I sdz1的计算电流速断保护为无时限保护,其动作时间为保护装置的固有动作时间,按“规程”规定微机保护的固有动作时间为40ms以下。
一.电流速断保护的整定计算1. 电流速断保护动作电流整定值I szd1的基本计算公式:根据保护的选择性要求,电流速断保护只有在本线路内发生短路时才动作,为使计算简单,通常取线路末端母线(母线C )短路来计算线路短路电流I dmax ,考虑到末端母线上其它线路近端短路时,短路电流与母线短路电流接近,为保证电流速断保护不误动,则电流速断保护电流整定值为:为电流速断保护的可靠系数,一般取1.2~1.3。
35kV及以下系统变压器及线路保护的配置与整定一、保护配置要求GB/T-14285-2006《继电保护和安全自动装置技术规程》要求:(一)35kV线路保护35kV为中性点非有效接地电力网的线路,对相间短路和单相接地,应按本条的规定装设相应的保护。
1、对相间短路,保护应按下列原则配置:1)保护装置采用远后备方式。
2)下列情况应快速切除故障:A)如线路短路,使发电厂厂用电母线低于额定电压的60%时;B)如切除线路故障时间长,可能导致线路失去热稳定时;C)城市配电网络的直馈线路,为保证供电质量需要时;D)与高压电网邻近的线路,如切除故障时间长,可能导致高压电网产生稳定问题时。
2、对相间短路,应按下列规定装设保护装置。
1)单侧电源线路可装设一段或两段式电流速断保护和过电流保护,必要时可增设复合电压闭锁元件。
由几段线路串联的单侧电源线路及分支线路,如上述保护不能满足选择性、灵敏性和速动性的要求时,速断保护可无选择地动作,但应以自动重合闸来补救。
此时,速断保护应躲开降压变压器低压母线的短路。
2)复杂网络的单回路线路A)可装设一段或两段式电流速断保护和过电流保护,必要时,保护可增设负荷电压闭锁元件和方向元件。
如不满足选择性、灵敏性和速动性的要求或保护构成过于复杂式,宜采用距离保护。
B)电缆及架空短线路,如采用电流电压保护不能满足选择性、灵敏性和速动性要求时,宜采用光纤电流差动保护作为主保护,以带方向或不带方向的电流电压保护作为后备保护。
C)环形网络宜开环运行,并辅以重合闸和备用电源自动投入装置来增加供电可靠性。
如必须环网运行,为了简化保护,可采用故障时先将网络自动解列而后恢复的方式。
3、平行线路平行线路宜分列运行,如必须并列运行时,可根据其电压等级,重要查那关度和具体情况按下列方式之一装设保护,整定有困难时,运行双回线延时段保护之间的整定配合无选择性:A)装设全线速动保护作为主保护,以阶段式距离保护作为主保护和后备保护;B)装设有相继速动功能的阶段式距离保护作为主保护和后备保护。