重庆南开中学高2020级高三3月月考理科数学(含解析)
- 格式:doc
- 大小:947.50 KB
- 文档页数:8
2020届重庆市直属校高三3月月考理科数学试题第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分)1.设集合A={x|x 2<9},B={-3,-2,-1,0,1,2},则A∩B=A.{0,1,2}B.{-1,0,1,2}C.{-2,-1,0,1,2}D.{-2,–1,0}2.设(1+i)(a+bi)=2,其中a,b 是实数,i 为虚数单位,则|3a+bi|=A.2C.3.已知数列{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16,则log 2a 9=A.15B.16C.17D.184.若实数x,y 满足约束条件20,20,240x y x y x y -+⎧⎪⎪⎪-⎨⎪⎪+-⎪⎩…„?,则z=x+y 的最小值为A.-8B.-6C.1D.35.我国古代有着辉煌的数学研究成果,其中《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》有着丰富多彩的内容,是了解我国古代数学的重要文献。
这5部专著中有3部产生于汉、魏、晋、南北朝时期。
现拟从这5部专著中选择2部作为学生课外兴趣拓展参考书目,则所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著的概率为 A.35 B.710 C.45 D.9106.如图,四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E,F 分别在线段DB,DD 1上,且112DE DF EB FD ==,G 在CC 1上且平面AEF ∥平面BD 1G ,则1CG CC =A.12B.13C.23D.147.在直角坐标系xOy 中,半径为lm 的⊙C 在t= 0时圆心C 与原点O 重合,⊙C 沿x 轴以1m/s 的速度匀速向右移动,⊙C 被y 轴所截的左方圆弧长记为x ,令y=cosx ,则y 关于时间t (0≤t≤l, 单位:s )的函数的图象大致为8.(()n mx n N +∈的展开式中,各二项式系数和为32,各项系数和为243,则展开式中x 3的系数为A.40B.30C.20D.10 9.设函数f(x)=cos(ωx+φ)(x∈R)(ω>0,-π<φ<0)的部分图象如图所示,如果127,(,)1212x x ππ∈,x 1≠x ,且f(x 1)=f(x 2),则f(x 1+x 2)=A.2-B.12-C.2 D .1210.已知三棱锥P-ABC 的四个顶点在球O 的球面上,球O 的半径为4,ΔABC 是边长为6的等边三角形,记ΔABC 的外心为O 1.若三棱锥P-ABC的体积为PO 1=A.B.C.D.11.设双曲线2222:1(0,x y C a b a b-=>>)的左顶点为A,右焦点为F(c,0),若圆A:(x+a)2+y 2=a 2与直线bx-ay=0交于坐标原点O 及另一点E ﹐且存在以O 为圆心的圆与线段EF 相切,切点为EF 的中点,则双曲线的离心率为D.3212.函数1ln()(0)()(0)x x x f x xe x -'-<⎧⎪=⎨⎪⎩…,若关于x 的方程f 2(x)-af(x)+a-a 2=0有四个不等的实数根,则a的取值范围是 A. 4(,1]5B.(–∞,-1)∪[1,+∞)C.(-∞,-1)∪{1}D.(-1,0)∪{1}第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知向量a r 与b r 的夹角为120°,且(1,3),||a b =-=r r 则a b ⋅=r r ____.14.已知函数f(x)=3|x-a|(a ∈R)满足f(x)=f(4-x),则实数a 的值为____.15.设各项均为正数的数列{a n }的前n 项和S n 满足222(2)2()0n n S n n S n n -+--+=,n ∈N *,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2020项和T 2020=___.16.设抛物线y 2=2x 的焦点为F,准线为1,弦AB 过点F 且中点为M ﹐过点F,M 分别作AB 的垂线交l 于点P,Q,若|AF|=3|BF|,则|FP|·|MQ|=____.三、解答题:(共70分)17.(本小题满分12分)在ΔABC 中,角A,B,C 的对边分别为a,b,c,且满足(cos )c b A A =+(I)求角B 的大小;(II)若a=4,且BC求ΔABC 的周长.18.(本小题满分12分)如图,四边形ABCD 为平行四边形,点E 在AB 上,AE=2EB=2,且DE ⊥AB.以DE 为折痕把ΔADE 折起,使点A 到达点F 的位置,且∠FEB=60°.(I)求证:平面BFC ⊥平面BCDE ﹔(II)若直线DF 与平面BCDE,求二面角E-DF-C 的正弦值.19.(本小题满分12分)为了保障某治疗新冠肺炎药品的主要药理成分在国家药品监督管理局规定的值范围内,武汉某制药厂在该药品的生产过程中,检验员在一天中按照规定从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:mg).根据生产经验,可以认为这条药品生产线正常状态下生产的产品的主要药理成分含量服从正态分布N(μ,σ2).在一天内抽取的20件产品中,如果有一件出现了主要药理成分含量在(μ-3σ,μ+3σ)之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查.(I)下面是检验员在2月24日抽取的20件药品的主要药理成分含量:其中x i为抽取的第i件药品的主要药理成分含量,i=1,2,…,20.用样本平均数x作为μ的估计值ˆμ,用样本标准差s作为σ的估计值ˆσ,利用估计值判断是否需对本次的生产过程进行检查?(I)假设生产状态正常,记X表示某天抽取的20件产品中其主要药理成分含量在(μ-3σ,μ+3σ)之外的药品件数,求P(X=1)及X的数学期望.附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.20.(本小题满分12分)已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为F1,F2,过点F1的直线与C交于A,B两点.ΔABF2的周长为,且椭圆的离心率为2.(Ⅰ)求椭圆C的标准方程:(I)设点P为椭圆C的下顶点,直线PA,PB与y=2分别交于点M,N,当|MN|最小时,求直线AB的方程.21.(本小题满分12分)已知函数f(x)=e ax-x-1,且f(x)≥0.(I)求a﹔(IⅡ)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k,问:是否存在x0∈(x1,x2),使f'(x)=k成立?若存在,求出x的值(用x1,x2表示);若不存在,请说明理由.请从下面所给的22、23两题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4-4:坐标系与参数方程.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,直线l的参数方程为2x ty t=-+⎧⎪⎨⎪=⎩(t为参数),直线l与曲线C交于M,N两点.(I)若点P的极坐标为(2,π),求|PM|·|PN|的值; (Ⅱ)求曲线C的内接矩形周长的最大值.23.(本小题满分10分)选修4-5:不等式选讲.已知函数f(x)=x|x-a|,a∈R.(Ⅰ)当f(2)+f(-2)>4时,求a的取值范围;(Ⅱ)若a>0,∀x,y∈(-∞,a],不等式f(x)≤|y+3|+|y-a|恒成立,求a的取值范围.。
重庆南开中学高高三3月考试卷数 学(理科)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间1.第Ⅰ卷(选择题,共50分)注意事项:1.答题前,考生务必将自己的姓名、考号、考试科目填涂在机读卡上.2.每小题选出答案后,用铅笔把机读卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案,不能答在试题上.3.考试结束,监考人员将机读卡和答题卷一并收回.一、选择题:(本大题10个小题,每小题5分,共50分)各题答案必须答在机读卡上. 1.233lim9x x x →-+=-( )A .13B .0C .16D .16-2.给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要3.等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S =( ) A .16 B .24 C .36 D .424.过抛弧线24y x =的焦点作直线l 交抛物线于A B 、两点,若线段AB 中点的横坐标为3,则AB 等于( )A .10B .8C .6D .45.若函数812 (,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩,则使01()4f x >的0x 的取值范围为 ( )A .(,1)(3,)-∞+∞B .(,2)(3,)-∞+∞C .(,2](4,)-∞+∞ D .(,3)(4,)-∞+∞6.函数()f x 在定义域R 内可导,若()(2),(1)()0f x f x x f x '=--<,设(0)a f =,1()2b f = ,(3)c f =,则( )A .a b c <<B .c a b <<C .c b a <<D .b c a <<7.已知D 是不等式组2030x y x y -≥⎧⎨+≥⎩所确定的平面区域,则圆224x y +=在区域D 内的弧长为( )A.4πB.2π3C. 4π 3D. 2π8.已知*1log (2)()n n a n n N +=+∈我们把使乘积123n a a a a 为整数的数n 叫做“成功数”,则在区间(1,2011)内的所有成功数的和为 ( ) A .1024 B . C . D .9.若x y R +∈、≤a 的最小值是 ( )A. 1 D. 12+10.如图所示,PA ⊥平面ABCD ,底面ABCD 为直角梯形,,,AD BC AD AB PA ⊥=∥32,,2AD BC ==60,ADC O ∠=为四棱锥P ABCD -内一点,1,AO =若DO 与平面PCD 成角最小角为α,则α=( )A. 15B. 30C. 45D.第Ⅱ卷(非选择题,共100分)二、填空题:(本大题5个小题,每小题5分,共25分)各题答案必须填写在答题卡Ⅱ上(只填结果,不要过程).11.已知(0,1),(1,1)a b ==,且()a nb a +⊥,则n = ;12.在等比数列}{n a 中,12341,2,a a a a +=+=,则5678a a a a +++= ;13.ABC ∆的三内角,,A B C 的对边边长分别为,,a b c ,若,2a A B ==,则cos B = ;14.在体积的球的表面上有,,A B C 三点,1,,AB BC A C ==两点的球面距离为,则球心到平面ABC 的距离为 ; 15.已知过点(,0)(2)A t t >且倾斜角为60的直线与双曲线22:145x y C -=交于,M N 两点,交双曲线C 的右准线于点P ,满足3PA AN =,则t = .三、解答题:(本大题6个小题,共75分)各题解答必须答在答题卡Ⅱ上(必须写出必要的文字说明、演算步骤或推理过程) 16.已知函数2()sin(2)cos .6f x x x π=-+(1)若()1,f θ=求sin cos θθ的值; (2)求函数()f x 的单调区间.17.己知21(1,),(1,)a x m b m x=-+=+,当0m >时,求使不等式0a b >成立的x 的取值范围.18.如图所示, PA ⊥平面ABCD ,底面ABCD 为菱形,60,2,ABC PA AB N ∠===为PC 的中点.(1)求证:BD ⊥平面PAC . (2)求二面角B AN C --的正切值.19.(本小题12分)已知1x =为函数2()(1)xf x x ax e =-+的一个极值点. (1)求a 及函数)(x f 的单调区间;(2)若对于任意2[2,2],[1,2],()22x t f x t mt ∈-∈≥-+恒成立,求m 取值范围.本小题12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为e =圆短半轴长为半径的圆与直线20x y -+=相切,,A B 分别是椭圆的左右两个顶点,P 为椭圆C 上的动点. (1)求椭圆的标准方程;(2)若P 与,A B 均不重合,设直线PA PB 与的斜率分别为12,k k ,求12k k 的值;(3)M 为过P 且垂直于x 轴的直线上的点,若(1)3OP OM λλ=≤<,求点M 的轨迹方程,并说明轨迹是什么曲线.21.(本小题12分)已知数列}{n a 的前n 项和为n S ,且*1(1)4,2(2,)2n n n n a S na n n N -==+-≥∈. (1)求数列}{n a 的通项公式;(2)设数列}{n b 满足:2*114,(1)2()n n n b b b n b n N +==---∈且,求证:*(2,)n n b a n n N >≥∈;(3)求证:*23344511111(1)(1)(1)(1)2,).n n n n N b b b b b b b b +++++<≥∈重庆南开中学高高三月考(3月)数学参考答案 (理科)一、选择题:DCDBA BBCCA二、填空题: 11.-1 12.12 13.4514.3215.3 三、解答题:16.解:(1)1cos 2()sin 2coscos 2sin662xf x x x ππ+=-+122x=+ ………………………………………………5分 由,1)(=θf 可得sin 2θ=所以1sin cos sin 22θθθ==. …………9分(2)当222,,22k x k k Z ππππ-+≤≤+∈即[,],44x k k k Z ππππ∈-++∈时,)(x f 单调递增.所以,函数)(x f 的单调增区间是[,],.44k k k Z ππππ-++∈ (13)分17.解:22(1)(1)()(1)0x m x m x m x x m a b m x x x+-++--=-++==> ………………4分∴当0<m <l 时,(0,)(1,)x m ∈+∞;…………………………7分当m =l 时,(0,1)(1,)x ∈+∞; ………………………………10分当m >l 时,(0,1)(,)x m ∈+∞⋅ ………………………………13分18.解:(1) ABCD BD AC PA ABCD BD PA BD PAC BD ABCD PA AC A ⇒⊥⎫⎪⊥⎫⎪⇒⊥⇒⊥⎬⎬⊂⎭⎪⎪=⎭是菱形平面平面平面 ………5分(2)由(l)可知,BO ⊥平面P AC ,故在平面P AC 内,作OM ⊥A , 连结BM (如图),则∠BMO 为二面角B AN C --的平 面角.在Rt BMO ∆中,易知22,3==OM AOtan BMO ∴∠=即二面角B AN C --………………13分19.解:(1)2()[(2)(1)](1)(1),xxf x x a x a e x x a e '=+-+-=++- ……………………2分由(1)0f '=得:,2=a (3)分()(,1),(1,)f x ∴-∞-+∞在上单调递增,)(x f 在(-1,1)上单调递减 (6)分(2))2,2(-∈x 时,)(x f 最小值为0 ………………………………8分2220t mt ∴-+≤对]2,1[∈t 恒成立,分离参数得:tt m 12+≥易知:]2,1[∈t 时,2312≤+t t 23≥∴m ………………………12分 :(1)由题意可得圆的方程为 ,222b y x =+直线02=+-y x 与圆相切,,22b d ==∴即,2=b又c e a==即222,,a a b c ==+得,1,3==c a 所以椭圆方程为.12322=+y x ……………………………………4分(2)设),0)(,(000=/y y x P ),0,3(),0,3(B A -则,1232020=+y x 即,3222020x y -=则1k =2k =即22200012222000222(3)233.3333x x y k k x x x --====---- 12k k ∴的值为2.3- ………………………………………………8分(3)设(,)M x y ,其中[x ∈由已知222||||λ=OM OP 及点P 在椭圆C 上可得,)(3632222222222λ=++=+-+y x x yx x x 整理得,63)13(2222=+-y x λλ其中[x ∈ ………………10分①当33=λ时,化简得,62=y 所以点M 的轨迹方程为),33(6≤≤-±=x y轨迹是两条平行于x 轴的线段;…………………………………………11分 ②当133<<λ时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足33≤≤-x的部分.…………………………………………………………12分21.解:(1)当3≥n 时,(1)2,2n n n n S na -=+-11(1)(2)(1)2,2n n n n S n a ----=-+- 可得:11(1)2,2n n n n a na n a --=---⨯*11(3,)n n a a n n N -∴-=≥∈⋅.3,1222221=∴-+=+a a a a 可得,*4,(1)1(2,)n n a n n n N =⎧=⎨+⋅≥∈⎩……………4分 (2)1当n =2时,,31422212a b b =>=-=不等式成立.2假设当*(2,)n k k k N =≥∈时,不等式成立,即.1+>k b k 那么,当1+=k n 时,21(1)2(1)2222(1)222,k k k k k k b b k b b b k b k k k +=---=-+->->+-=≥+所以当n =k +l 时,不等式也成立.根据(1),(2)可知,当*2,n n N ≥∈时,.n n b a >………………8分(3)设1()ln(1),()10,11x f x x x f x x x-'=+-=-=<++ )(x f ∴在),0(+∞上单调递减,.)1ln(),0()(x x f x f <+∴<∴ 当*2,n n N ≥∈时,,1111+=<n a b n n ,2111)2)(1(11)11ln(11+-+=++<<+∴++n n n n b b b b n n n n 23341111ln(1)ln(1)ln(1)n n b b b b b b +∴++++++31213121114131<+-=+-+++-<n n n .)11()11)(11(314332e b b b b b b n n <+++∴+ ……………………………12分。
绝密★启用前2020届重庆市南开中学高三下学期3月月考数学(理)试题学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题 1.如果复数12aii-+(a R ∈,i 为虚数单位)的实部与虚部相等,则a 的值为( ) A .1 B .-1C .3D .-3D由复数的除法运算化简得到实部和虚部,令其相等即可得解. 解:()()()()()1221212225ai i a a iai i i i ----+-==++-, 由题意知:21255a a-+=-,解得3a =-. 故选D. 点评:本题主要考查了复数的除法运算及实部和虚部的定义,属于基础题. 2.若{0,1,2}A =,{|2,}aB x x a A ==∈,则A B =U ( ) A .{0,1,2} B .{0,1,2,3}C .{0,1,2,4}D .{1,2,4}C先求出集合B ,再求并集即可. 解:由{}0,1,2A =,得{}{}|2,1,2,4a B x x a A ==∈=.{}0,1,2,4A B ⋃=.故选C. 点评:本题主要考查了集合的描述法及并集的运算,属于基础题.3.向量(2,)a t =v,(1,3)b =-v,若a v ,b v的夹角为钝角,则t 的范围是( ) A .23t < B .23t >C .23t <且6t ≠- D .6t <-若a v ,b v 的夹角为钝角,则0a b v n v <且不反向共线,进而利用坐标运算即可得解.解:若a v,b v的夹角为钝角,则0a b v n v<且不反向共线,230a b t =-+<vv n ,得23t <.向量()2,a t =v ,()1,3b =-v 共线时,23t ⨯=-,得6t =-.此时2a b v v =-.所以23t <且6t ≠-. 故选C. 点评:本题主要考查了利用数量积研究向量的夹角,当为钝角时,数量积为0,容易忽视反向共线时,属于易错题.4.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( ) (参考数据:2 1.414,3 1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米B由题分析出“弓”所在弧长,结合弧长公式得出这段弧所对圆心角,双手之间距离即是这段弧所对弦长.由题:“弓”所在弧长54488 lππππ=++=,其所对圆心角58524ππα==,两手之间距离2 1.25 1.768d=⨯≈.故选:B点评:此题考查扇形的圆心角和半径与弧长关系的基本计算,关键在于读懂题目,提取有效信息.5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A.60种B.70种C.75种D.150种C试题分析:因,故应选C.【考点】排列数组合数公式及运用.6.已知某个几何体的三视图如图,根据图中标出的尺寸,可得这个几何体的表面积是( )A.162+B.122226+C.1822+D.1622+B如图所示,还原几何体,证明CD CP⊥,计算表面积得到答案.解:还原几何体,如图所示:连接AC简单计算得到22AC CD ==4=AD ,故AC CD ⊥,PA ⊥平面ABCD ,故PA CD ⊥.故CD CP ⊥,23PC =表面积为:()111112422242222222322222S =⨯+⨯+⨯⨯+⨯⨯+⨯⨯⨯122226=+故选:B 点评:本题考查了三视图,表面积的计算,还原几何体是解题的关键. 7.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 26y x π⎛⎫=-⎪⎝⎭ C .2sin 23x y π⎛⎫=+ ⎪⎝⎭D .2sin 23y x π⎛⎫=-⎪⎝⎭B首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 解:先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值为0,3,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 点评:8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .20i <,1S S i=-,2i i = B .20i ≤,1S S i=-,2i i = C .20i <,2SS =,1i i =+ D .20i ≤,2SS =,1i i =+ D先由第一天剩余的情况确定循环体,再由结束条件确定循环条件即可. 解:根据题意可知,第一天12S =,所以满足2S S =,不满足1S S i =-,故排除AB ,由框图可知,计算第二十天的剩余时,有2SS =,且21i =,所以循环条件应该是20i ≤.故选D. 点评:本题考查了程序框图的实际应用问题,把握好循环体与循环条件是解决此题的关键,属于中档题.9.已知α是第二象限角,且3sin()5πα+=-,则tan2α的值为( ) A .45B .237-C .247-D .249-C根据诱导公式得sin α,进而由同角三角函数的关系及角所在象限得tan α,再利用正切的二倍角公式可得解.由()3sin 5πα+=-,得3sin 5α=. 因为α是第二象限角,所以4cos 5α=-. 34sin tan cos ααα==-. 232tan 242tan291tan 7116ααα-===---. 故选C. 点评:本题主要考查了同角三角函数的关系及正切的二倍角公式,属于基础题.10.己知函数()ln 1f x x x kx =-+在区间1,e e ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数k 的取值范围是( )A .{|1k k =或1}k e >-B .1{|11k k e≤≤+或1}k e >- C .1{|11k k e e +<≤-或1}k e >- D .1{|11k k e e+<≤-或1}k = D构造函数()1ln g x x x=+,利用导数得出其单调性,将零点问题,转化为函数的交点问题,即可得出答案. 解:解:令ln 10x x kx -+=,则1ln k x x =+;.令()1ln g x x x=+;()22111x g x x x x-'=-=; ∴当1,1x e ⎡⎫∈⎪⎢⎣⎭时,()0g x ¢<,()g x 单调递减;当[]1,x e ∈时,()0g x ¢>,()g x 单调递增;∴当1x =时,有()min 1g x =,又∵11g e e ⎛⎫=- ⎪⎝⎭,()11g e e =+,∴()1g e g e ⎛⎫< ⎪⎝⎭∵()f x 在1,e e⎡⎤⎢⎥⎣⎦上只有一个零点,∴()g x k =只有一个解;∴1k =或111k e e+<≤-.。
重庆南开中学2020届高三第三次教学质量检测考试数学(理科)2020.4第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.()A. B. C. D.【答案】D【解析】【分析】利用复数的除法的运算法则化简复数为的形式即可.【详解】复数.故选:D【点睛】本题主要考查复数的除法运算,意在考查学生对该知识的理解掌握水平和分析推理计算能力.2.设集合,,则()A. B. C. D.【答案】C【解析】【分析】先化简集合A和B,再求得解.【详解】由题得A=[-4,1],B=(0,1 ],所以.故选:C【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.等差数列的前7项和为28,,则()A. 6B. 7C. 9D. 14【答案】A【解析】【分析】先根据已知得到关于的方程组,解方程组得的值,再求的值.【详解】由题得.故选:A【点睛】本题主要考查等差数列的通项的基本量的计算,考查等差数列的前n项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.若双曲线的一条渐近线方程为,则()A. B. 1 C. 2 D. -8【答案】A【解析】【分析】先根据已知求出a,b,再由题得,解方程即得m的值.【详解】由题得,所以.故选:A【点睛】本题主要考查双曲线的简单几何性质,考查双曲线的渐近线方程,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 42B. 45C. 46D. 48【答案】C【解析】【分析】先通过三视图找到几何体原图,再求几何体的体积.【详解】由三视图可知原几何体为如图所示的多面体ABEHM-CDGF,所以该几何体的体积为.故选:C【点睛】本题主要考查三视图找几何体原图,考查几何体的体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.重庆奉节县柑桔栽培始于汉代,历史悠久.奉节脐橙果皮中厚、脆而易剥,酸甜适度,汁多爽口,余味清香,荣获农业部优质水果、中国国际农业博览会金奖等荣誉.据统计,奉节脐橙的果实横径(单位:)服从正态分布,则果实横径在的概率为()附:若,则;;A. 0.6826B. 0.8413C. 0.8185D. 0.9544 【答案】C【解析】【分析】先计算出和,再求果实横径在的概率.【详解】由题得=5,由题得,所以,由题得,所以,所以P(85<X<90=,所以果实横径在的概率为+0.1359=0.8185.故选:C【点睛】本题主要考查正态分布,考查指定区间概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.7.设,满足约束条件,则的最小值是()A. 4B. 5C. 8D. 9【答案】A【解析】【分析】先作出不等式组对应的可行域,再利用数形结合分析得解.【详解】由题得不等式组对应的可行域为如图所示的△ABC,由题得y=-2x+z,当直线经过点A时,直线的纵截距最小,z最小.联立得A(1,2),所以的最小值是2×1+2=4.故选:A【点睛】本题主要考查利用线性规划求最值,意在考查学生对该知识的理解掌握水平和数形结合分析推理能力.8.如图,给出的是求的值的一个程序框图,则判断框内填入的条件是()A. B. C. D.【答案】D【解析】【分析】由已知中程序的功能是计算的值,根据已知中的程序框图,我们易分析出进行循环体的条件,进而得到答案.【详解】模拟程序的运行,可知程序的功能是计算的值,即,时,进入循环,当时,退出循环,则判断框内填入的条件是.故选:.【点睛】本题考查的知识点是循环结构的程序框图的应用,解答本题的关键是根据程序的功能判断出最后一次进入循环的条件,属于基础题.9.记,则()A. 81B. 365C. 481D. 728 【答案】B【解析】【分析】令x=0得求出的值,令x=-2得的值,再求的值.【详解】令x=0得1=,令x=-2得,所以.故选:B【点睛】本题主要考查二项式定理展开式的系数和求值问题,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.10.已知函数的最小正周期为,且是函数图象的一条对称轴,则的最大值为()A. 1B.C.D. 2【答案】D【解析】【分析】利用辅助角公式化简,根据最小正周期为,可得的值,一条对称轴是建立关系即可求解.【详解】由题得函数,其中.最小正周期为,即.那么.一条对称轴是,可得:则.即..的最大值为.故选:.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知函数,若不等式对任意上恒成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】【分析】对x分三种情况讨论,当x∈(0,1时,求得;当x∈时,求得;当x∈时,求得a≥3,综合即得解.【详解】由题得,取特值代入上面的不等式得a≥3,所以,(1)在x∈(0,1上,0<x≤1<,恒有a≤3+2x-lnx成立,记g(x)=2x-lnx+3(0<x≤1)所以,所以所以.(2)在x∈上,,恒有,所以x∈上恒成立,又在x∈上,的最小值为5,所以.(3)在x∈时,x≥,恒有.综上.故选:C【点睛】本题主要考查分段函数和不等式的恒成立问题,考查绝对值不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.如图,抛物线:,圆:,过焦点的直线从上至下依次交,于点,,,.若,为坐标原点,则()A. -2B. 1C. 4D.【答案】B【解析】【分析】由题可设A,其中a>0,d<0.根据得,再利用平面向量的数量积运算化简得解.【详解】由题可设A,其中a>0,d<0.又焦点F(1,0),所以|FD|=1+,所以|AB|=|FA|-|OB|=,由题得.所以,所以1.故选:B【点睛】本题主要考查抛物线的简单几何性质和定义,考查平面向量的数量积的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置.13.已知向量,且,则实数__________.【答案】-2【解析】14.已知函数,则不等式的解集为__________.【答案】【解析】【分析】先求出函数的奇偶性和单调性,再利用函数的奇偶性和单调性解不等式得解.【详解】由题得函数的定义域为R,由题得=-f(x),所以函数f(x)是奇函数,因为,所以函数f(x)是定义域上的增函数,所以=f(x-4),所以2x+1<x-4,所以x<-5.故答案:【点睛】本题主要考查函数的奇偶性和单调性的判断和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.在正三棱柱中,,,分别为,的中点,则异面直线与所成角的余弦值为__________.【答案】【解析】【分析】如图,连接,则所以异面直线与所成的角就是直线和所成锐角或直角.再解三角形利用余弦定理求出异面直线与所成角的余弦值.【详解】如图,连接,则所以异面直线与所成的角就是直线和所成锐角或直角.由题得,在△中,由余弦定理得.所以异面直线与所成角的余弦值为.故答案为:【点睛】本题主要考查异面直线所成的角的计算,考查空间几何体的性质,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.16.在正项递增等比数列中,,记,,则使得成立的最大正整数为__________.【答案】9【解析】【分析】先化简得,再根据得到,再解不等式得解.【详解】由题得,因为数列是正项递增等比数,所以,所以.因为,所以,所以.所以使得成立的最大正整数为9.故答案为:9【点睛】本题主要考查等比数列的前n项和,考查等比数列的通项,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共6小题,共计70分.解答应写出必要的文字说明、证明过程或演算步骤.17.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.【答案】(1);(2).【解析】【分析】(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.随着电子商务的兴起,网上销售为人们带来了诸多便利.商务部预计,到2020年,网络销售占比将达到.网购的发展同时促进了快递业的发展,现有甲、乙两个快递公司,每位打包工平均每天打包数量在范围内.为扩展业务,现招聘打包工.两公司提供的工资方案如下:甲公司打包工每天基础工资64元,且每天每打包一件快递另赚1元;乙公司打包工无基础工资,如果每天打包量不超过240件,则每打包一件快递可赚1.2元;如果当天打包量超过240件,则超出的部分每件赚1.8元.下图为随机抽取的打包工每天需要打包数量的频率分布直方图,以打包量的频率作为各打包量发生的概率.(同一组中的数据用该组区间的中间值作代表).(1)(i)以每天打包量为自变量,写出乙公司打包工的收入函数;(ii)若打包工小李是乙公司员工,求小李一天收入不低于324元的概率;(2)某打包工在甲、乙两个快递公司中选择一个公司工作,如果仅从日平均收入的角度考虑,请利用所学的统计学知识为该打包工作出选择,并说明理由.【答案】(1)(i);(ii)0.4;(2)建议该打包工去甲快递公司工作.【解析】【分析】(1)(i)乙公司打包工的收入函数;(ii)由,解得,再求小李一天收入不低于324元的概率;(2)设打包工在甲、乙两个快递公司工作的日平均收入为,,先列出打包工在甲、乙两个快递公司工作的收入情况表,再求,,比较它们的大小即得解.【详解】解:(1)(i)当时,y=1.2x当时,y=12×240+(x-240)×1.8=1.8x-144所以,(ii)由,解得,∴小李一天收入不低于324元的概率为.(2)设打包工在甲、乙两个快递公司工作的日平均收入为,,用频率估计概率,则打包工在甲、乙两个快递公司工作的收入情况为故,.因为,故从日平均收入的角度考虑,建议该打包工去甲快递公司工作.【点睛】本题主要考查函数解析式的求法,考查平均值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知,是椭圆:上两点.(1)求椭圆的标准方程;(2)设为坐标原点,为椭圆上一动点,点,线段的垂直平分线交轴于点,求的最小值.【答案】(1);(2).【解析】【分析】(1)代点A,B的坐标到椭圆的方程,得到关于a,b的方程组,解方程组即得椭圆的标准方程;(2)设坐标为,求出,再利用基本不等式求得的最小值为.【详解】解:(1)代入,两点:,,,所以椭圆的标准方程为:.(2)设坐标为,则①线段的中点,,所以:.令,并结合①式得,,当且仅当,时取等,所以的最小值为.【点睛】本题主要考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的最值问题和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.如图,在四棱锥中,底面为菱形,顶点在底面的射影恰好是菱形对角线的交点,且,,,,其中.(1)当时,求证:;(2)当与平面所成角的正弦值为时,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】(1)先证明面,再证明;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,由与面所成角的正弦值为得到.再利用向量法求二面角的余弦值.【详解】解:(1)∵顶点在底面的射影是,∴面,由面,∴.∵,,,连,∴,,,,∴,则,∴.由,,∴面,由面,∴,∵菱形,,∴.(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系,则,,,,∵,则,∴.∵,则,∴,设面的法向量为,由,解得.由与面所成角的正弦值为,即有,解得.设面的法向量为,由,解得.∴二面角的余弦值.【点睛】本题主要考查空间几何元素的垂直关系,考查空间线面角和二面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知函数,其中.(1)若函数仅在处取得极值,求实数的取值范围;(2)若函数有三个极值点,,,求证:.【答案】(1);(2)详见解析.【解析】【分析】(1),因为仅在处取得极值,则.再对a 分类讨论,利用数形结合分析得到a的取值范围;(2)由题得,由题意则有三个根,则有两个零点,有一个零点,,再利用分析法证明.【详解】解:(1)由,得,由仅在处取得极值,则,即.令,则,当单调递减,单调递增,则,∴当时,,此时仅一个零点,则仅一个为极值点,当时,与在同一处取得零点,此时,,,,∴仅一个零点,则仅一个为极值点,所以a=e.当a>e时,显然与已知不相符合.∴.(2)由,则.由题意则有三个根,则有两个零点,有一个零点,,令,则,∴当时取极值,时单调递增,∴,则时有两零点,,且,若证:,即证:,由,,则,即证:,由在上单调递增,即证:,又,则证,令,,∴.∴恒成立,则为增函数,∴当时,,∴得证.【点睛】本题主要考查利用导数研究函数的极值问题,考查分析法证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.在直角坐标系中,直线的参数方程为(为参数,),以原点为极点,轴的正半轴为极轴,建立极坐标系.曲线的极坐标方程为:.(1)求曲线的直角坐标方程;(2)设直线与曲线相交于,两点,当到直线的距离最大时,求.【答案】(1);(2)16.【解析】【分析】(1)直接利用极坐标和直角坐标互化的公式求曲线的直角坐标方程;(2)设,当到直线的距离最大时,得到,故.再利用直线的参数方程的弦长公式求.【详解】解:(1)曲线:,即:.∴曲线的标准方程为:.(2)设,当到直线的距离最大时,,故.∴的参数方程为(为参数),将直线的参数方程代入得:.∴,∴.【点睛】本题主要考查极坐标方程与直角方程坐标的互化,考查直线参数方程t的几何意义的应用,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.23.已知函数的最小值为.(1)求;(2)若正实数,,满足,求证:.【答案】(1);(2)详见解析.【解析】【分析】(1)先化简函数的解析式,再通过函数的图像得到当时,取得最小值;(2)由题得,再利用均值不等式证明不等式.【详解】解:(1),由于函数y=,减函数,y=,是减函数,y=,是增函数,故当时,取得最小值(2).【点睛】本题主要考查分段函数的图像和性质,考查分段函数的最值和不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
班级: 姓名: 线订装绝密★启用前重庆南开中学2020级高三第三次教学质量检测理科数学时间:120分钟满分:150分命卷人:*审核人:一、选择题(每小题5分,共60分)1. 已知集合U ={1,2,3,4,5},,则C U A =( )A. {5}B. {4,5}C. {3,4,5}D. {2,3,4,5}2. 已知复数2+ai1−i为纯虚数,则实数a =( )A. 4B. 3C. 2D. 13. 已知平面向量a ⃗=(m,1),b ⃗⃗=(8,m −2),则“m =4”是“a ⃗//b⃗⃗”的( ) A. 充要条件B. 既不充分也不必要条件C. 必要不充分条件D. 充分不必要条件4. 函数f(x)=sinx −√3cosx 的一条对称轴为( )A. x =−π6B. x =−π3C. x =π6D. x =π35. 已知等比数列{a n }的前n 项和为S n ,a 1a 2<0,a 4=6a 2+a 3,则S 4S 3=( )A. −157B. −53C. 53D.1576. 已知非零平面向量a ⃗,b ⃗⃗满足(6a ⃗+b ⃗⃗)⊥(a ⃗−b⃗⃗),,则a ⃗与b⃗⃗的夹角为( ) A. π6 B. π3C.2π3 D. 5π67. 已知定义在R 上的函数f(x)满足f(2−x)+f(x)=0,当x >1时,f(x)=x −2,则不等式f(x)<0的解集为( )A. (1,2)B. (−∞,0)C. (0,2)D. (−∞,0)∪(1,2) 8. 明代数学家程大位在《算法统宗》中提出如下向题“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传”意思是将996斤绵分给八个人,从第二个人开始,每个人分得的绵都比前一个人多17斤,则第八个人分得绵的斤数为( )A. 150B. 167装订线C. 184D. 2019. 函数y =lnxcosx 的图象大致为( )A.B.C.D.10. 在ΔABC 中,AC =AB =3,点M ,N 分别在边AC ,AB 上,且AM =BN =2,BM ⊥CN ,则ΔABC 的面积为( )A. 9√1011B. 8122C. 4511D.18√101111. 在ΔABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若c −a =2acosB ,则3a+c b的最小值为( )A. √2B. √3C. 2√2D. 312. 已知数列{a n },{b n }满足:a n+1=2a n +b n ,b n+1=a n +2b n +lnn+1n3(n ∈N ∗),a 1+b 1>0,给出下列四个命题:①数列{a n −b n }单调递增;②数列{a n +b n }单调递增;③数列{a n }从某项以后单调递增;④数列{b n }从某项以后单调递增.这四个命题中的真命题是( )A. ②③④B. ②③C. ①④D. ①②③④ 二、填空题(每小题5分,共20分)13. 已知曲线y =x 3+ax 在x =1处的切线与直线y =2x +1平行,则a 的值为__________.14. 已知函数f(x)=Asin(ωx +φ),其中A >0,ω>0,φ∈(−π,π)的部分图象如图所示,则φ=__________.15. 已知函数f(x)=2e x +(1−k)x 2在(0,+∞)上单调递增,则实数k 的取值范围是__________.16. 已知平面向量a ⃗,b⃗⃗,,a ⃗⊥b⃗⃗,,则的最大值是__________.班级: 姓名: 线订装三、解答题(每小题12分,共60分)17. 已知公差不为0的等差数列{a n }的前n 项和为S n ,a 2,a 4,a 7成等比数列,且S 5=50. (1)求a n ; (2)求数列{1a n a n+1}的前n 项和T n .18. 在ΔABC 中,AB =2,AC =3,D 为BC 边上的中点. (1)求sin∠BADsin∠DAC的值; (2)若∠BAD =2∠DAC ,求AD .19. 某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g )作为质量指标值.由检测结果得到如下频率分布表和频率分布直方图.(1)求图中a ,b 的值; (2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间[47,49)和(51,53]内为合格品,重量在区间[49,51]内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该批零件重量的概率分布.若这批零件共400件,现有两种销售方案: 方案一:对剩余零件不再进行检测,回收处理这100件样本中的不合格品,余下所有零件均按150元/件售出; 方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出. 仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.20. 已知函数f(x)=ax 2−ln(x −1)+1(a ∈R)存在极值点. (1)求a 的取值范围; (2)设f(x)的极值点为x 0,若f(x 0)<x 0,求a 的取值范围.装订线21. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率为√32,点D 在椭圆C 上,且ΔDF 1F 2的周长为4+2√3. (1)求椭圆C 的方程; (2)已知过点(1,0)的直线与椭圆C 交于A ,B 两点,点P 在直线x =4上,求的最小值.四、选做题(每小题10分,共20分)22A. 在直角坐标系xOy 中,直线l 的参数方程为(t 为参数,0<α<π),以O 为极点,x 轴为极轴建立极坐标系,曲线C 的极坐标方方程为ρ(1−cos2Θ)=8cosΘ. (1)判断直线l 与曲线C 的公共点的个数,并说明理由; (2)设直线l 与曲线C 交于不同的两点A ,B ,点P(1,−1),若,求tanα的值.22B. 已知实数a ,b 满足,. (1)证明:; (2)若pq >0,证明:(ap +bq)(aq +bp)⩾pq .班级: 姓名: 线 订装重庆南开中学2020级高三第三次教学质量检测理科数学答案和解析第1题: 【答案】C【解析】由集合,,则.第2题: 【答案】C【解析】复数为纯虚数,∴,,解得.第3题: 【答案】D【解析】两个平面向量,平行,则,或,所以“”是“”的充分不必要条件,故选D.第4题: 【答案】A【解析】.令,解得,, 当时,,所以A 选项是正确的.第5题: 【答案】B【解析】由已知可得,∴, 又,即,解得,∴.第6题: 【答案】C【解析】∵,∴,又∵, ∴,∴,∴与的夹角为.第7题: 【答案】D【解析】由已知,即,∴关于中心对称, 又当时,,作出函数的图象如图所示,由图可知的解集为.第8题: 【答案】C【解析】设第八人分得,则等差数列公差为,,解得.第9题: 【答案】A【解析】当时,,,∴,排除C 、D; 又当时,,,∴,排除B,故选A.第10题:装订线【答案】A【解析】由已知得,, ∵,∴,解得, ∴,∴.第11题: 【答案】C【解析】已知,根据余弦定理,可得,整理得,即,∴,∴即,当且仅当时,有最小值.第12题: 【答案】A【解析】将两式相减得,整理得,,当时,,当时,,∴①错; 将两式相加得, 化简得. 令,∴为公比等于的等比数列,其首项为, ∴,∴, ∵,∴递增,递增,∴为递增数列,∴②正确; 由上式可得,,,, ∴, 令,∴, 又,∴, ∵,递增,递增,∴为递增数列,∴③正确; 由上式可知,,, ∵,∴为递增数列,且按指数增长,为递增数列,且按对数增长,∴,使得当时,,即,∴④正确.第13题:【答案】【解析】,∴当时,; ∴据题意,得,∴,故答案为:.第14题:【答案】【解析】由图可知,,, ∴,即,得,∴, 又∵函数图像过,∴,解得, 又,∴.第15题:【答案】【解析】由已知得,∵在单调递增, ∴在上恒成立,化简得, 令,∴,∴,∴.第16题:【答案】【解析】不妨设,,,∵, ∴,代入坐标得,即, ∴以原点为起点,向量的终点在以为圆心,为半径的圆上, ∴可表示为到的距离, ∴其最大值为.第17题:【答案】见解答【解析】(1)由题知,而,故, 由,∴,,∴. (2), ∴前项和.第18题:【答案】见解答【解析】(1)由题知,即, ∴. (2)由,∴∴, 在中,, 在中,,而,∴.第19题:【答案】见解答【解析】(1)由题知,. (2)该工厂若选方案一:收入为元, 若选方案二:收入为元, 利润方案二比方案一高元,所以,选方案二.第20题:【答案】见解答班级:姓名: 线订装【解析】(1)函数的定义域为,, 当时,,无极值点;当时,或,设,则,当时,的两根一个小于、一个大于,故有一个极值点;当时,对称轴为知的两根均小于,故无极值点;综上所述,. (2)由(1)知且,∴,,令,显然在上单增,又,∴即,∴,∴.第21题:【答案】见解答【解析】(1)由题意可得:,解得:,故椭圆方程为:. (2)①当直线与轴平行时,取,,,则,,,所以最小值为; ②当直线不与轴平行时,设,,,设直线方程为. 联立方程有, 设线段的中点为,则有,其中, 令,则, 又令,则, 当,即时,取最小值, 当且当时取等号, 所以,,当时取等号. ∴的最小值为.第22A 题: 【答案】见解答【解析】(1), 即,将直线的参数方程代入得, 即,由知,,故直线与曲线有两个公共点. (2)由(1)可设方程的两根为,, 则,, 故, ∴,即,∴.第22B 题: 【答案】见解答 【解析】(1)∵,故. (2), 由,得,得证.。
2019-2020学年重庆市南开中学高三(下)3月月考数学试卷(理科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如果复数1−ai 2+i(a ∈R ,i 为虚数单位)的实部与虚部相等,则a 的值为( )A.1B.−1C.3D.−3【答案】 D【考点】 复数的运算 【解析】 求出复数1−ai 2+i 的代数形式,根据复数的实部与虚部相等列出方程,解方程即可得到a 的值. 【解答】 复数1−ai2+i =(1−ai)(2−i)(2+i)(2−i)=(1−a)−(2a+1)i5,复数1−ai2+i 的实部与虚部相等,所以1−a =−2a +1,解得a =−3,2. 若A ={0, 1, 2},B ={x =2a , a ∈A},则A ∪B =( ) A.{0, 1, 2} B.{0, 1, 2, 3} C.{0, 1, 2, 4} D.{1, 2, 4}【答案】 C【考点】 并集及其运算 【解析】求出A ,B ,由此利用并集的定义能求出A ∪B . 【解答】∵ A ={0, 1, 2},B ={x =2a , a ∈A}=(1, 2, 4),则A ∪B =(0, 1, 2, 4)3. 向量a →=(2,t),b →=(−1,3),若a →,b →的夹角为钝角,则t 的范围是( ) A.t <23B.t >23C.t <23且t ≠−6D.t <−6【答案】 C【考点】数量积表示两个向量的夹角 【解析】可先求出a →⋅b →=−2+3t ,根据a →,b →的夹角为钝角即可得出a →⋅b →<0,且a →,b →不平行,从而得出{−2+3t <06+t ≠0,解出t 的范围即可.【解答】a →⋅b →=−2+3t ; ∵ a →与b →的夹角为钝角; ∴ a →⋅b →<0,且a →,b →不平行; ∴ {−2+3t <06+t ≠0 ;∴ t <23,且t ≠−6.4. 《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为π4米,肩宽约为π8米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( ) (参考数据:√2≈1.414,√3≈1.732)A.1.012米B.1.768米C.2.043米D.2.945米 【答案】 B【考点】三角函数模型的应用 【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长. 【解答】由题得:弓所在的弧长为:l =π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴ 两手之间的距离d =2r sin π4=√2×1.25≈1.768.5. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种【答案】C【考点】排列、组合及简单计数问题【解析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种.故选C.6. 已知某个几何体的三视图如图,根据图中标出的尺寸,可得这个几何体的表面积是()A.16+√2B.12+2√2+2√6C.18+2√2D.16+2√2【答案】B【考点】由三视图求体积【解析】作出直观图,根据三视图中的尺寸计算各个面的面积.【解答】几何体为四棱锥P−ABCD,PA⊥平面ABCD,底面ABCD为直角梯形,AD // BC,AB⊥BC,且PA=AB=BC=2,AD=4.∴S△PAD=12×2×4=4,S△PAB=12×2×2=2,S梯形ABCD =12×(2+4)×2=6,由PA⊥平面ABCD可得PA⊥BC,PA⊥CD,又BC⊥AB,PA∩AB=A,故BC⊥平面PAB,于是BC⊥PB,∵PA=AB=2,故PB=2√2,∴S△PBC=12×2×2√2=2√2,连接AC,则AC=2√2,∠CAD=∠BAC=45∘,∴CD=√16+8−2×4×2√2×cos45=2√2,∴AC2+CD2=AD2,∴CD⊥AC,又CD⊥PA,PA∩AC=A,∴CD⊥平面PAC,于是CD⊥PC,又PC=√PA2+AC2=2√3,∴S△PCD=12×2√2×2√3=2√6.故四棱锥的表面积为S=4+2+6+2√2+2√6=12+2√2+2√6.7. 下列函数中最小正周期是π且图象关于直线x=π3对称的是()A.y=2sin(2x+π3) B.y=2sin(2x−π6)C.y=2sin(x2+π3) D.y=2sin(2x−π3)【答案】B【考点】正弦函数的图象【解析】根据函数的周期性和对称性分别进行判断即可.【解答】C的周期T=2π12=4π,不满足条件.当x=π3时,A,y=2sin(2×π3+π3=2sinπ=0≠±2,B.y=2sin(2×π3−π6)=2sinπ2=2,D.y=2sin(2×π3−π3=2sinπ3≠±2,故满足条件的是B,8. 我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A.i<20,S=S−1i ,i=2i B.i≤20,S=S−1i,i=2iC.i<20,S=S2,i=i+1 D.i≤20,S=S2,i=i+1D【考点】 程序框图 【解析】由图可知第一次剩下12,第二次剩下122,…由此得出第20次剩下1220,结合程序框图即可得出答案. 【解答】由题意可得:由图可知第一次剩下12,第二次剩下122,…由此得出第20次剩下1220, 可得①为i ≤20? ②s =s2,③i =i +1,9. 已知α是第二象限角,且sin (π+α)=−35,则tan 2α的值为( ) A.45B.−237C.−247D.−83【答案】 C【考点】二倍角的正切公式 运用诱导公式化简求值同角三角函数间的基本关系 【解析】根据诱导公式由已知的等式求出sin α的值,然后由α是第二象限角得到cos α小于0,利用同角三角函数间的基本关系即可求出cos α的值,进而求出tan α的值,把所求的式子利用二倍角的正切函数公式化简后,把tan α的值代入即可求出值. 【解答】解:由sin (π+α)=−sin α=−35,得到sin α=35,又α是第二象限角,所以cos α=−√1−sin 2α=−45,tan α=−34, 则tan 2α=2tan α1−tan 2α=2×(−34)1−(−34)2=−247.故选C .10. 已知抛物线x 2=4y 焦点为F ,经过F 的直线交抛物线与A(x 1, y 1),B(x 2, y 2),点A 、B 在抛物线准线上的投影分别为A 1,B 1,以下四个结论:①x 1x 2=−4,②|AB|=y 1+y 2+1,③∠A 1FB 1=π2,④AB 的中点到抛物线的准线的距离的最小值为2,其中正确的个数为( ) A.1B.2C.3D.4【答案】命题的真假判断与应用【解析】求得人品微信的焦点和准线方程,设过F的直线方程为y=kx+1,联立抛物线方程,运用韦达定理,以及弦长公式,以及中点坐标公式,两直线垂直的条件:斜率之积为−1,二次函数的最值求法,即可判断.【解答】抛物线x2=4y焦点为F(0, 1),准线方程为y=−1,可设过F的直线方程为y=kx+1,代入抛物线方程可得x2−4kx−4=0,即有x1+x2=4k,x1x2=−4,|AB|=y1+y2+2;AB的中点纵坐标为12(y1+y2)=12[k(x1+x2)+2]=1+2k2,AB的中点到抛物线的准线的距离为2k2+2,k=0时,取得最小值2;由F(0, 1),A1(x1, −1),B1(x2, −1),可得k A1F ⋅k B1F=2−x1⋅2−x2=4x1x2=−1,即有∠A1FB1=π2,综上可得①③④正确,②错误.11. 已知函数f(x)=x ln x−kx+1在区间[1e,e]上只有一个零点,则实数k的取值范围是()A.{k|k=1或k>e−1}B.{k|1≤k≤1+1e或k>e−1}C.{k|k≥1}D.{k|k=1或1+1e<k≤e−1}【答案】D【考点】利用导数研究函数的极值【解析】构造方程x ln x−kx+1=0,可知k=ln x+1x ;将问题转化为求函数g(x)=ln x+1x与直线y=k只有一个交点时k的取值范围即可,通过对g(x)求导判断其增减区间,进而得到k的取值.【解答】令x ln x−kx+1=0,则k=ln x+1x;令g(x)=ln x+1x;g′(x)=1x −1x2=x−1x2;∴ 当x ∈[1e ,1)时,g′(x)<0,g(x)单调递减;当x ∈[1, e]时,g′(x)>0,g(x)单调递增; ∴ 当x =1时,有g(x)min =1; 又∵ g(1e)=e −1,g(e)=1+1e;∴ g(e)<g(1e);∵ f(x)在[1e ,e]上只有一个零点; ∴ g(x)=k 只有一个解; ∴ k =1或1+1e <k ≤e −1;12. △ABC 中AB =AC =√3,△ABC 所在平面内存在点P 使得PB 2+PC 2=3PA 2=3,则△ABC 面积最大值为( ) A.2√233B.5√2316C.√354D.3√3516【答案】B【考点】 正弦定理 【解析】以BC 的中点为坐标原点,BC 所在直线为x 轴,建立直角坐标系,设B(−a, 0),C(a, 0),(a >0),则A(0, √3−a 2),设P(x, y),运用两点距离公式可得P 在两圆上,由圆与圆的位置关系的等价条件,解不等式可得a 的范围,再由三角形的面积公式,结合二次函数的最值求法,可得最大值. 【解答】以BC 的中点为坐标原点,BC 所在直线为x 轴, 建立直角坐标系,设B(−a, 0),C(a, 0),(a >0),则A(0, √3−a 2),设P(x, y),由PB 2+PC 2=3PA 2=3,可得(x +a)2+y 2+(x −a)2+y 2=3[x 2+(y −√3−a 2)2]=3, 可得x 2+y 2=32−a 2,x 2+(y −√3−a 2)2=1,即有点P 既在(0, 0)为圆心,半径为√32−a 2的圆上, 也在(0, √3−a 2)为圆心,1为半径的圆上, 可得|1−√32−a 2|≤√3−a 2≤1+√32−a 2, 由两边平方化简可得a 2≤2316,则△ABC 的面积为S =12⋅2a ⋅√3−a 2=a√3−a 2=√3a 2−a 4=√−(a 2−32)2+94, 由a 2≤2316,可得a 2=2316,S 取得最大值,且为5√2316.二、填空题(本题共4小题,每小题5分,共20分)(x+y)(2x−y)5的展开式中x3y3的系数为________.(用数字填写答案)【答案】40【考点】二项式定理及相关概念【解析】由二项式定理及分类讨论思想得:(2x−y)5的展开式的通项为T r+1=C5r(2x)5−r(−y)r,则(x+y)(2x−y)5的展开式中x3y3的系数为−C5322+C5223=40,得解.【解答】由(2x−y)5的展开式的通项为T r+1=C5r(2x)5−r(−y)r,则(x+y)(2x−y)5的展开式中x3y3的系数为−C5322+C5223=40,在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且√3a=2c sin A,c=√7,且△ABC的面积为3√32,则a+b=________.【答案】5【考点】正弦定理【解析】利用正弦定理将边化角求出sin C,根据面积公式求出ab,代入余弦定理得出(a+b)的值.【解答】∵√3a=2c sin A,∴√3sin A=2sin C sin A,∴sin C=√32.∵S△ABC=12ab sin C=√34ab=3√32,∴ab=6.∵△ABC是锐角三角形,∴cos C=12,由余弦定理得:cos C=a 2+b2−c22ab=(a+b)2−2ab−c22ab=(a+b)2−1912=12,解得a+b=5.如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.(1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);①f(3)=________;②f(n)=________.【答案】=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即ℎ7,2n−1【考点】归纳推理【解析】根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.【解答】=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即ℎ=3=22−1;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用ℎ(1)种方法把中、小两盘移到2柱,大盘3柱;再用ℎ(2)种方法把中、小两盘从2柱3柱,完成],ℎ(3)=ℎ(4)×ℎ(5)+1=3×2+1=7=23−1,ℎ(6)=ℎ(7)×ℎ(8)+1=7×2+1=15=24−1,…以此类推,ℎ(n)=ℎ(n−1)×ℎ(n−1)+1=2n−1,故答案为:7;2n−1.四面体ABCD的顶点在空间直角坐标系O−xyz中的坐标分别是A(0,0,√5),B(√3, 0, 0),C(0, 1, 0),D(√3, 1, 5),则四面体ABCD的外接球的体积为________.【答案】9π2【考点】球的体积和表面积【解析】如图所示,把四面体补为长方体,设四面体ABCD的外接球的半径为R,可得2R为长方体的对角线.【解答】如图所示,把四面体补为长方体,设四面体ABCD的外接球的半径为R,则2R为长方体的对角线.∴(2R)2=12+(√3)2+(√5)2=9,解得R=32.∴四面体ABCD的外接球的体积V=4π3R3=9π2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)(一)必考题:共60分.设数列{a n}满足a n+1=13a n+2,a1=4(1)求证{a n −3}是等比数列,并求a n ;(2)求数列{a n }的前n 项和T n . 【答案】数列{a n }满足a n+1=13a n +2,所以:a n+1−3=13(a n −3),故:a n+1−3a n −3=13(常数),故:数列{a n }是以a 1−3=4−3=1为首项,13为公比的等比数列. 则:a n −3=1⋅(13)n−1,故:a n =(13)n−1+3(首项符合通项). 由于:a n =(13)n−1+3,故:T n =(13)0+(13)1+⋯+(13)n−1+(3+3+..+3),=1(1−13n )1−13+3n ,=32(1−13n )+3n .【考点】 数列的求和 数列递推式 【解析】(1)直接利用递推关系式求出数列的通项公式.(2)利用(1)的通项公式,进一步利用分组法求出数列的和. 【解答】数列{a n }满足a n+1=13a n +2, 所以:a n+1−3=13(a n −3), 故:a n+1−3a n −3=13(常数),故:数列{a n }是以a 1−3=4−3=1为首项,13为公比的等比数列. 则:a n −3=1⋅(13)n−1,故:a n =(13)n−1+3(首项符合通项). 由于:a n =(13)n−1+3,故:T n =(13)0+(13)1+⋯+(13)n−1+(3+3+..+3),=1(1−1 3n )1−13+3n,=32(1−13n)+3n.某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布N(100, 152),现从甲校100分以上(含10的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,.,200),统计如下:试卷得分135138135137135139142144148150注:表中试卷编号n1<n2<029<n3<n4<...<n20(1)写出表中试卷得分为144分的试卷编号________;(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲、乙两校这40份学生的试卷中,从成绩在140分以上(含14的学生中任意抽取3人,该3人在全市排名前15名的人数记为X,求随机变量X的分布列和期望.附:若随机变量X服从正态分布N(μ, σ2),则P(μ−σ<X<μ+σ)=68.3%,P(μ−2σ<X<μ+2σ)=95.5%,P(μ−3σ<X<μ+3σ)=99.7%【答案】180由茎叶图得甲、乙两校这40份学生的试卷中,成绩在140分以上(含14的学生有8人,其中145分以上有3人,全市前15名为145分以上,X服从超几何分布,X=0,1,2,3P(X=0)=C53C83=528,P(X=1)=C31C52C83=1528,P(X=2)=C32C51C83=1556,P(X=3)=C33C83=156,∴X的分布列为:∴E(X)=0×528+1×1528+2×1556+3×156=98.【考点】系统抽样方法茎叶图离散型随机变量的期望与方差【解析】(1)利用系统抽样的性质求解.(2)由茎叶图得甲、乙两校这40份学生的试卷中,成绩在140分以上(含140分)的学生有8人,其中145分以上有3人,全市前15名为145分以上,X服从超几何分布,X =0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).【解答】180.由茎叶图得甲、乙两校这40份学生的试卷中,成绩在140分以上(含14的学生有8人,其中145分以上有3人,全市前15名为145分以上,X服从超几何分布,X=0,1,2,3P(X=0)=C53C83=528,P(X=1)=C31C52C83=1528,P(X=2)=C32C51C83=1556,P(X=3)=C33C83=156,∴X的分布列为:∴E(X)=0×528+1×1528+2×1556+3×156=98.如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,侧面PAB⊥底面ABCD,E为PC上的点,且BE⊥平面APC(Ⅰ)求证:平面PAD⊥平面PBC;(Ⅱ)当三棱锥P−ABC体积最大时,求二面角B−AC−P的大小;【答案】(1)证明:∵侧面PAB⊥底面ABCD,CB⊥AB,∴CB⊥平面PAB,∴CB⊥AP,又BE⊥平面APC,∴BE⊥AP,∴AP⊥平面PBC,∴平面PAD⊥平面PBC;(2)由(1)中,AP⊥平面PBC,得AP⊥PB,设P到AB的距离为ℎ,则AB×ℎ=PA×PB,∴ℎ=12PA×PB≤12×PA2+PB22=1,当且仅当PA=PB=√2时取等号,此时,三棱锥P−ABC的体积最大,连接BD交AC于O,连接OE,∵AC⊥OB,∴AC⊥OE(垂直斜线则垂直射影),∴∠EOB即为二面角B−AC−P的平面角,在正方形ABCD中,求得OB=√2,在Rt△PBC中,求得BE=√3,∴sin∠EOB=BEOB =√63,∴∠EOB=arcsin√63.【考点】平面与平面垂直二面角的平面角及求法【解析】(Ⅰ)利用面面垂直的性质证得BC⊥AP,利用线面垂直的性质证得BE⊥AP,进而可得AP⊥平面PBC,平面PAD⊥平面PBC;(Ⅱ)首先由不等式证得当PA=PB时,三棱锥体积最大,然后结合三垂线逆定理作出二面角的平面角,不难求解.【解答】(1)证明:∵侧面PAB⊥底面ABCD,CB⊥AB,∴CB⊥平面PAB,∴CB⊥AP,又BE⊥平面APC,∴BE⊥AP,∴AP⊥平面PBC,∴平面PAD⊥平面PBC;(2)由(1)中,AP⊥平面PBC,得AP⊥PB,设P到AB的距离为ℎ,则AB×ℎ=PA×PB,∴ℎ=12PA×PB≤12×PA2+PB22=1,当且仅当PA=PB=√2时取等号,此时,三棱锥P−ABC的体积最大,连接BD交AC于O,连接OE,∵AC⊥OB,∴AC⊥OE(垂直斜线则垂直射影),∴∠EOB即为二面角B−AC−P的平面角,在正方形ABCD中,求得OB=√2,在Rt△PBC中,求得BE=√3,∴sin∠EOB=BEOB =√63,∴∠EOB=arcsin√63.已知点A(−2, 0),B(2, 0),动点M满足直线AM,BM的斜率之积为−34.(1)求点M的轨迹方程.(2)设直线AM:x=my−2(m≠0)与直线l:x=2交于点P,点Q与点P关于x轴对称,直线MQ与x轴交于点D,若△APD的面积为2√6,求m的值.【答案】设点M的坐标为(x, y),则yx+2⋅yx−2=−34,化简得点M 的轨迹方程为x 24+y 23=1(x ≠±2).根据条件得P(2,4m ),∴ Q(2,−4m ), 将x =my −2代入x 24+y 23=1中,得(3m 2+4)y 2−12my =0,∴ y =0或y =12m 3m 2+4,∴ M(6m 2−83m 2+4,12m3m 2+4),∴ 直线MQ 的方程为(12m3m 2+4+4m )(x −2)−(6m 2−83m 2+4−2)(y +4m )=0, 令y =0,则x =6m 2−43m 2+2,∴ D(6m 2−43m 2+2,0),∴ △APD 的面积S =12×12m 23m 2+2×4|m|=24|m|3m 2+2,∴ 24|m|3m 2+2=2√6, ∴ 3m 2−2√6|m|+2=0,∴ m =±√63. 【考点】直线与椭圆结合的最值问题 轨迹方程 【解析】(1)设点M 的坐标为(x, y),由直线AM ,BM 的斜率之积为−34,可得关于x ,y 的方程,化简即可得到点M 的轨迹方程;(2)求出直线MQ 的方程和点D 的坐标,再求出△APD 的面积S ,根据△APD 的面积为2√6得到关于m 的方程,解方程即可得到m 的值. 【解答】设点M 的坐标为(x, y),则y x+2⋅yx−2=−34,化简得点M 的轨迹方程为x 24+y 23=1(x ≠±2).根据条件得P(2,4m ),∴ Q(2,−4m ), 将x =my −2代入x 24+y 23=1中,得(3m 2+4)y 2−12my =0,∴ y =0或y =12m 3m 2+4,∴ M(6m 2−83m 2+4,12m3m 2+4), ∴ 直线MQ 的方程为(12m 3m 2+4+4m )(x −2)−(6m 2−83m 2+4−2)(y +4m)=0,令y =0,则x =6m 2−43m 2+2,∴ D(6m 2−43m 2+2,0),∴ △APD 的面积S =12×12m 23m 2+2×4|m|=24|m|3m 2+2,∴ 24|m|3m 2+2=2√6, ∴ 3m 2−2√6|m|+2=0,∴ m =±√63.已知函数f(x)=e x +ax 2,g(x)=ax ln x +ax −e 3x . (Ⅰ)求函数f(x)的零点个数;(Ⅱ)若f(x)>g(x)对任意的x∈(0, +∞)恒成立,求实数a的取值范围.【答案】(1)由题意,可知f(0)=1,∴x=0不是f(x)的零点.当x≠0时,令f(x)=e x+ax2=0,整理得,−a=e xx2.令t(x)=e xx2,x≠0.则t′(x)=ex⋅x2−e x⋅2xx4=x(x−2)e xx4.令t′(x)>0,即x(x−2)>0,解得x<0,或x>2;令t′(x)=0,即x(x−2)=0,解得x=2;令t′(x)<0,即x(x−2)<0,解得0<x<2.∴函数t(x)在(−∞, 0)上单调递增,在(0, 2)上单调递减,在(2, +∞)上单调递增.在x=2处取得极小值t(2)=e 24.∵x→−∞,t→0;x→0,t→+∞;x→+∞,t→+∞∴函数t(x)大致图象如下:结合图形,可知:①当−a≤0,即a≥0时,−a=e xx2无解,即e x+ax2=0无解,此时f(x)没有零点,②当0<−a<e24,即−e24<a<0时,e x+ax2=0有1个解,此时f(x)有1个零点,③当−a=e24,即a=−e24时,e x+ax2=0有2个解,此时f(x)有2个零点,④当−a>e24,即a<−e24时,e x+ax2=0有3个解,此时f(x)有3个零点,综上所述,可知当a≥0时,函数f(x)没有零点;当−e 24<a<0时,有1个零点;当a=−e 24时,有2个零点;当a<−e 24时,有3个零点.(2)由已知可得:f(x)−g(x)=e x+ax2−ax ln x−ax+e3x=e x+e3x+a(x2−x ln x−x)>0在x∈(0, +∞)上恒成立,∴e xx+e3+a(x−ln x−1)>0在x∈(0, +∞)上恒成立,令ℎ(x)=e xx+e3+a(x−ln x−1),x∈(0, +∞),ℎ′(x)=e x(x−1)x +a(1−1x)=1x(x−1)(e xx+a).令e xx +a<0,可得a>−e xx,x∈(0, +∞).∴a>−e.因此:a>−e时,x=1时,函数ℎ(x)取得极小值即最小值.ℎ(x)≥ℎ(1)=e+e3>0恒成立.a=−e时,函数ℎ(x)在x∈(0, +∞)上单调递增,x→0+,ℎ(x)>0恒成立,a<−e时,令ℎ′(x)=1x (x−1)(e xx+a)=0,解得x=1,e x+ax=0,由e x0+ax0=0,a<−e,可得e x0=−ax0>ex0,则x0>1.∴函数ℎ(x)在(0, 1)上单调递增,在(1, x0)上单调递减,在(x0, +∞)上单调递增.ℎ(x)min=ℎ(x0)=−a+e3+a(ln(−a)−1)=a ln(−a)−2a+e3=F(a),a<−e.F′(a)=ln(−a)+1−2=ln(−a)−1>0,∴F(a)在a<−e时单调递增,而F(−e3)=−e3ln(−e3)+2e3+e3=0.∴−e3<a<−e时,ℎ(x)min=ℎ(x0)>0,满足题意.综上可得:a∈(−e3, +∞).【考点】利用导数研究函数的最值【解析】(Ⅰ)求出f′(x),x>0,由此利用导数研究函数的单调性极值与最值,画出图象.对a 分类讨论即可得出函数的零点的个数.(Ⅱ)由已知可得:f(x)−g(x)=e x+ax2−ax ln x−ax+e3x=e x+e3x+a(x2−x ln x−x)>0在x∈(0, +∞)上恒成立,可得:e xx+e3+a(x−ln x−1)>0在x∈(0, +∞)上恒成立,令ℎ(x)=e xx+e3+a(x−ln x−1),x∈(0, +∞),ℎ′(x)=e x(x−1)x2+a(1−1x)=1x(x−1)(e xx+a).对a分类讨论,研究函数的单调性即可得出.【解答】(1)由题意,可知f(0)=1,∴x=0不是f(x)的零点.当x≠0时,令f(x)=e x+ax2=0,整理得,−a=e xx2.令t(x)=e xx2,x≠0.则t′(x)=ex⋅x2−e x⋅2xx4=x(x−2)e xx4.令t′(x)>0,即x(x−2)>0,解得x<0,或x>2;令t′(x)=0,即x(x−2)=0,解得x=2;令t′(x)<0,即x(x−2)<0,解得0<x<2.∴函数t(x)在(−∞, 0)上单调递增,在(0, 2)上单调递减,在(2, +∞)上单调递增.在x=2处取得极小值t(2)=e 24.∵x→−∞,t→0;x→0,t→+∞;x→+∞,t→+∞∴函数t(x)大致图象如下:结合图形,可知:①当−a≤0,即a≥0时,−a=e xx2无解,即e x+ax2=0无解,此时f(x)没有零点,②当0<−a<e24,即−e24<a<0时,e x+ax2=0有1个解,此时f(x)有1个零点,③当−a=e24,即a=−e24时,e x+ax2=0有2个解,此时f(x)有2个零点,④当−a>e24,即a<−e24时,e x+ax2=0有3个解,此时f(x)有3个零点,综上所述,可知当a≥0时,函数f(x)没有零点;当−e 24<a<0时,有1个零点;当a=−e 24时,有2个零点;当a<−e 24时,有3个零点.(2)由已知可得:f(x)−g(x)=e x+ax2−ax ln x−ax+e3x=e x+e3x+a(x2−x ln x−x)>0在x∈(0, +∞)上恒成立,∴e xx+e3+a(x−ln x−1)>0在x∈(0, +∞)上恒成立,令ℎ(x)=e xx+e3+a(x−ln x−1),x∈(0, +∞),ℎ′(x)=e x(x−1)x2+a(1−1x)=1x(x−1)(e xx+a).令e xx +a<0,可得a>−e xx,x∈(0, +∞).∴a>−e.因此:a>−e时,x=1时,函数ℎ(x)取得极小值即最小值.ℎ(x)≥ℎ(1)=e+e3>0恒成立.a=−e时,函数ℎ(x)在x∈(0, +∞)上单调递增,x→0+,ℎ(x)>0恒成立,a<−e时,令ℎ′(x)=1x (x−1)(e xx+a)=0,解得x=1,e x+ax=0,由e x0+ax0=0,a<−e,可得e x0=−ax0>ex0,则x0>1.∴函数ℎ(x)在(0, 1)上单调递增,在(1, x0)上单调递减,在(x0, +∞)上单调递增.ℎ(x)min=ℎ(x0)=−a+e3+a(ln(−a)−1)=a ln(−a)−2a+e3=F(a),a<−e.F′(a)=ln(−a)+1−2=ln(−a)−1>0,∴F(a)在a<−e时单调递增,而F(−e3)=−e3ln(−e3)+2e3+e3=0.∴−e3<a<−e时,ℎ(x)min=ℎ(x0)>0,满足题意.综上可得:a∈(−e3, +∞).(二)选考题:共10分请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=2a cosθ(a>0),直线l的参数方程为{x=−2+√22ty=−4+√22t(t为参数).(1)写出曲线C的直角坐标方程和直线l的普通方程.(2)已知点P(−2, 4),直线l与曲线C交于M,N两点,若|PM|,|MN|,|PN|成等比数列,求a的值.【答案】曲线C的极坐标方程为ρsin2θ=2a cosθ(a>0),转化为直角坐标方程为y2=2ax.直线l的参数方程为{x=−2+√22ty=−4+√22t(t为参数).转换为直角坐标方程为x−y−2=0.把直线l的参数方程为{x=−2+√22ty=−4+√22t(t为参数).代入y2=2ax得到:(√22t−4)2=2a(√22t−2),整理得:t2−(8√2+4√2a)t+32+8a=0,所以t1+t2=8√2+4√2a,t1t2=32+8a,由于|PM|,|MN|,|PN|成等比数列,所以:|MN|2=|PM||PN|,整理得(8√2+2√2a)2=5(32+8a),解得a=1或−4(负值舍去).故a=1.【考点】圆的极坐标方程参数方程与普通方程的互化【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数关系式的应用求出结果.【解答】曲线C的极坐标方程为ρsin2θ=2a cosθ(a>0),转化为直角坐标方程为y2=2ax.直线l的参数方程为{x=−2+√22ty=−4+√22t(t为参数).转换为直角坐标方程为x−y−2=0.把直线l的参数方程为{x=−2+√22ty=−4+√22t(t为参数).代入y2=2ax得到:(√22t−4)2=2a(√22t−2),整理得:t2−(8√2+4√2a)t+32+8a=0,所以t1+t2=8√2+4√2a,t1t2=32+8a,由于|PM|,|MN|,|PN|成等比数列,所以:|MN|2=|PM||PN|,整理得(8√2+2√2a)2=5(32+8a),解得a =1或−4(负值舍去). 故a =1.[选修4-5:不等式选讲](10分)已知函数f(x)=m −|x −1|−|x +1|. (1)当m =5时,求不等式f(x)>2的解集;(2)若二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,求实数m 的取值范围. 【答案】当m =5时,f(x)={5+2x(x <−1)3(−1≤x ≤1)5−2x(x >1) ,由f(x)>2得不等式的解集为{x|−32<x <32}.由二次函数y =x 2+2x +3=(x +1)2+2,该函数在x =−1取得最小值2, 因为f(x)={m +2x(x <−1)m −2(−1≤x ≤1)m −2x(x >1),在x =−1处取得最大值m −2,所以要使二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点, 只需m −2≥2,即m ≥4. 【考点】二次函数的图象 二次函数的性质 分段函数的应用 【解析】(1)当m =5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由二次函数y =x 2+2x +3=(x +1)2+2在x =−1取得最小值2,f(x)在x =−1处取得最大值m −2,故有m −2≥2,由此求得m 的范围. 【解答】当m =5时,f(x)={5+2x(x <−1)3(−1≤x ≤1)5−2x(x >1) ,由f(x)>2得不等式的解集为{x|−32<x <32}.由二次函数y =x 2+2x +3=(x +1)2+2,该函数在x =−1取得最小值2, 因为f(x)={m +2x(x <−1)m −2(−1≤x ≤1)m −2x(x >1) ,在x =−1处取得最大值m −2,所以要使二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点, 只需m −2≥2,即m ≥4.。
2020届高三下期3月月考数学(理)一、选择题;本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知集合{}2|230A x x x =-->,则C R A =( )A. {|1}{|3}<-⋃>x x x xB. {|1}{|3}≤-⋃≥x x x xC. {|13}x x -≤≤D. {|13}x x -<<【答案】C【分析】直接通过解不等式2230x x --≤求出R C A .【详解】解:集合{}{}2|230|13R C A x x x x x =--≤=-≤≤,2.复数(23)i i -对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A3.设向量a ⃗=(x ,-4),b ⃗⃗=(1,-x )若向量a ⃗与b ⃗⃗同向,则x =( ) A .2 B .-2 C .2± D .0 【答案】A4.已知双曲线()222210,0x y a b a b -=>>的离心率为53,则其渐近线方程为( )A .20x y ±=B . 20x y ±=C .340x y ±=D .430x y ±= 【答案】D5. 执行如图所示的程序框图,正确的是( )A .若输入,,a b c 的值依次为1,2,3,则输出的值为5B .若输入,,a b c 的值依次为1,2,3,则输出的值为7C .若输入,,a b c 的值依次为2,3,4,则输出的值为8D .若输入,,a b c 的值依次为2,3,4,则输出的值为10 【答案】C6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .24πB .30π C.42π D .60π 【答案】A7.函数131()2xf x x =-的零点所在的区间为( ) A. 1(0,)4 B. 11(,)43C. 11(,)32D. 1(,1)2【答案】C【分析】先判断出函数的单调性,结合零点存在定理即可判断出零点所在区间. 【详解】函数131()2x f x x =-所以函数在R 上单调递增 因为1113331311111033322f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,1113321211111022222f ⎛⎫⎛⎫⎛⎫⎛⎫=-=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以函数零点在11,32⎛⎫⎪⎝⎭故选:C 8.设数列{}n a 前n 项和为n S ,已知3=-n n S a n ,则3=a ( ) A.98B.198C.158D.278【答案】B【详解】解:当2n ≥时,[]1133(1)n n n n n a S S a n a n --=-=----,整理得1231n n a a -=+,又11131S a a ==-,得11a 2=,21323112a a ∴=+=+,得254a =,321523114a a ∴=+=+,得3198a =, 故选:B9.已知函数22()1log log (4)=+--f x x x ,则( ) A. ()y f x =的图像关于直线2x =对称 B. ()y f x =的图像关于点(2,1)对称 C. ()f x 在(0,4)单调递减 D. ()f x 在(0,4)上不单调【答案】B【详解】解:040x x >⎧⎨->⎩,得函数定义域为(0,4),222(1)1log log (41)1l 13og f =+--=-,222(3)1log log (43)1l 33og f =+--=+,所以(1)(3)f f ≠,排除A ;(1)(3)f f <,排除C ;2log x 在定义域内单调递增,2log (4)x -在定义域内单调递减,故22()1log log (4)=+--f x x x 在定义域内单调递增,故排除D ; 现在证明B 的正确性:方法一、2222()(4)1log log (4)1log (4)log 2f x f x x x x x +-=+--++--=,所以()y f x =的图像关于点(2,1)对称,故选:B . 方法二、10.下列说法正确的个数为( )①“p q ∨为真”是“p q ∧为真”的充分不必要条件;②若数据123,,,,n x x x x ⋯的平均数为1,则1232,22,,2,n x x x x ⋯的平均数为2; ③在区间[]0,π上随机取一个数x ,则事件“6sin cos x x +≥”发生的概率为12④已知随机变量X 服从正态分布2(2,)N σ,且(4)0.84P X ≤=,则(0)0.16P X ≤=.A. 4B. 3C. 2D. 1【详解】对于①,由复合命题“p q ∨为真”,可知p 为真,或q 为真;若“p q ∧为真”,则p 为真,且q 为真.所以“p q ∨为真”是“p q ∧为真”的必要不充分条件,所以①错误; 对于②,若数据1231nx x x x n+++⋯+=的平均数为1,由平均数公式可知()123123222222n n x x x x x x x x n n+++⋯++⋯+=+=+的平均数为2,所以②正确;对于③,在区间[]0,π上.若6sin cos 2sin 42x x x π⎛⎫+=+≥ ⎪⎝⎭,解得5,1212x ππ⎡⎤∈⎢⎥⎣⎦. 则在区间[]0,π上随机取一个数x ,则事件“6sin cos 2x x +≥”发生的概率为5112123p πππ-==,所以③错误; 对于④,随机变量X 服从正态分布2(2,)N σ,则2μ=.,由正态分布曲线规律可知,(0)(4)10.840.16P X P X ≤=≥=-=,所以④正确. 综上可知,正确的为②④ 故选:C11.已知水平地面上有一篮球,球的中心为O ',在斜平行光线的照射下,其阴影为一椭圆(如图),在平面直角坐标系中,椭圆中心O 为原点,设椭圆的方程为22142x y +=,篮球与地面的接触点为H ,则||OH 的长为( )A.62B. 2C. 32D.103 【答案】B【分析】在平行光线照射过程中,椭圆的短半轴长是圆的半径,球心到椭圆中心的距离是椭圆的长半轴,过球心向(4)0.84P X ≤=地面做垂线,垂足是H ,得到一个直角三角形,可得要求的结果. 【详解】:在照射过程中,椭圆的短半轴长是圆的半径,由图()1101809022AB O BA A AB B BA ''''︒︒∠+∠=∠+∠=⨯=,,由是中点 故有球心到椭圆中心的距离是椭圆的长半轴,过球心向地面做垂线,垂足是H , 在构成的直角三角形中,222OH O H O O ''=+,OH∴==,故选:B .12.若直线l 与函数()xf x e =和()ln 2g x x =+的图象都相切,则直线的斜率k =( ) A. 2或e B. 1或eC. 0或1D. e【答案】B【分析】设出直线l 与两个函数的切点,求得两个函数的导函数,并根据导数的意义求得切线的斜率.由点在曲线上的性质,可得方程组.化简后求得其中一个切点的坐标,即可求得切线的斜率.【详解】设直线l 与函数()xf x e =的图象相切于点()11,A x y ,直线l 与函数()ln 2g x x =+的图象相切于点()22,B x y ,直线l 的斜率为k .则1122l 2,n x y e y x ==+因为'()xf x e =,()1'g x x =,则121x x k e ==, 所以11122212122ln 211x x y e y x e x y y x x x ⎧=⎪=+⎪⎪⎪=⎨⎪⎪-=⎪-⎪⎩,则()12212ln 21x e x x x x -+=- 由121x e x =,可得21ln x x =-,代入上式可得()22222ln 2l 1n 1x x x x x -+=--,化简可得2222ln ln 10x x x x ---= 即()()221ln 10x x -+=,解得21,x =或21x e =. 代入21k x =,可得1k =或k e = 故选:B二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应位置上.13. 若,x y 满足约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为 .【答案】814. 二项式61()x x-的展开式中4x 项的系数为__________. 【答案】6-; 【解析】90AO B '︒∴∠=O l【分析】根据二项展开式的通项,代入即可求得4x 项的系数.【详解】根据二项定理展开式的通项1C r n r rr n T a b -+=则二项式61x x ⎛⎫- ⎪⎝⎭的展开通项为()66216611rr r r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭所以当1r =时,4x 的系数为()11616C -=-,故答案为:6-15. 已知递增等差数列{}n a 中,122a a =-,则3a 的 最小值为__________ 【答案】4【详解】因为122a a =-由等差数列通项公式,设公差为d ,可得()112a a d +=-,变形可得112d a a =--因为数列{}n a 为递增数列,所以1120d a a =-->,即10a < 而由等差数列通项公式可知312a a d=+()11111242a a a a a ⎛⎫⎛⎫=+--=-+- ⎪ ⎪⎝⎭⎝⎭由10a ->,140a >-结合基本不等式可得()()311114424a a a a a ⎛⎫⎛⎫=-+-≥-⋅-= ⎪ ⎪⎝⎭⎝⎭当且仅当12a =-时取得等号所以3a 的最小值为416.在边长为1的正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上,若AP ⃗⃗⃗⃗⃗⃗=λAB ⃗⃗⃗⃗⃗⃗+μAD ⃗⃗⃗⃗⃗⃗,则λμ+的最大值为________. 【答案】3【详解】解:根据题意,如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴建立坐标系: 则(0,0),(1,0)A B ,C(1,1),D(0,1), 则BD 的方程为x +y =1, 点C 为圆心且与BD 相切的圆C ,其半径222r d ===, 则圆C 的方程为221(1)(1)2x y -+-=;因P 在圆C 上,所以设P 的坐标为221cos ,1sin θθ⎛⎫++ ⎪ ⎪⎝⎭, 则22(1,0),(0,1),1cos ,1sin AB AD AP θθ⎛⎫===++ ⎪ ⎪⎝⎭u u u r u u u r u u u r ,由AP AB AD λμ=+uu u r uu u r uuu r,得221cos ,1sin (1,0)(0,1)θθλμ⎛⎫++=+ ⎪ ⎪⎝⎭,则有221cos ,1sin 22λθμθ=+=+; 22(cos sin )2sin 34πλμθθθ⎛⎫+=++=++≤ ⎪⎝⎭,即λμ+的最大值为3;故答案为:3. 【点睛】本题考查直线与圆方程的应用,涉及平面向量的基本定理,注意建立坐标系,分析P 的坐标与,λμ的关系,是中档题.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分.17. ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos cos -=a c bA B. (1)求A ;(2)若1a =,求ΔABC 面积的最大值. 【详解】解:(1)由2cos cos -=a c bA B可得:cos 2cos cos =-a B c A b A , 由正弦定理可得:sin cos 2cos sin cos sin =-A B A C A B ,∴sin()2cos sin sin 2cos sin +=⇒=A B A C C A C ,∵sin 0C ≠,∴1cos 2A =,∵(0,)A π∈, ∴3A π=;(6分)(2)由(1)知3A π=,由余弦定理得2222cos a b c bc A =+-,即221b c bc =+-(8分)∵222b c bc +≥,所以1bc ≤(当且仅当1b c ==时取等号) ∴13sin 2=≤V ABC S bc A ,所以ABC V 面积的最大值为3.(12分) 18.如图,几何体ABCDFE 中,ABC ∆,DFE ∆均为边长为2的正三角形,且平面//ABC 平面DFE ,四边形BCED 为正方形.(1)若平面BCED ⊥平面ABC ,求证:平面//ADE 平面BCF ;(2)若二面角D BC A --为150︒,求直线BD 与平面ADE 所成角的正弦值. 【详解】(1)证明:取BC 的中点O ,ED 的中点G ,连接,,,AO OF FG AG .如下图所示: 因为AO BC ⊥,且平面BCED ⊥平面ABC , 所以AO ⊥平面BCED ,同理FG ⊥平面BCED , 所以//AO FG ,(2分) 又因为3AO FG ==, 所以四边形AOFG 为平行四边形,所以//AG OF //AG 平面BCF ,又//DE BC ,DE ⊄ 平面BCF ,又因为AG 和 DE 交于点G 所以平面//ADE 平面BCF .(6分)(2)连结GO ,则GO BC ⊥,又AO BC ⊥,所以GOA ∠为二面角D BC A --的平面角,所以150GOA ∠=︒ 建立如图所示的空间直角坐标系,则(23,0,0),(0,1,1),(0,1,1),(3,1,0)A D E B - 所以(23,1,1),(0,2,0)AD ED =-=u u u ru u u r设平面ADE 的一个法向量是(,,)n x y z =r,则00n AD n ED ⎧⋅=⎨⋅=⎩u u uv r u u uv r ,即2300x y z y ⎧-++=⎪⎨=⎪⎩, 令3,6x z =∴=,即(3,0,6)n =r,(8分)又因为(3,0,1)BD =-u u u r,所以39sin ,||||239BD n BD n n BD ⋅〈〉===⋅u u u r ru u u r r u u u r r, 即所求的角的正弦值为39.(12分) 19.从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下图所示.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[50,150)内的用户记为A 类用户,标记为低用电家庭,用电量在区间[250,350)内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,并将打分数据绘制成茎叶图如下图所示:,①从B 类用户中任意抽取3户,求恰好有2户打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意与否与用电量高低有关”?附表及公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.解:(1)1(0.0060.00360.002450x =-++20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 所以估计平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯186=度.(4分)(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =.(8分) ②因为2K 的观测值224(6963)1212915k ⨯⨯-⨯=⨯⨯⨯ 1.6 3.841=<,(11分)所以没有95%的把握认为“满意与否与用电量高低有关”.(12分) 20.已知动圆过定点(0,2)A ,且在x 轴上截得的弦长为4. (1)求动圆圆心M轨迹方程C ;(2)设不与x 轴垂直的直线l 与轨迹C 交手不同两点()11,P x y ,()22,Q x y .若12112+=x x , 求证:直线l 过定点.【详解】解:(1)设动圆圆心为(,)M x y ,则222(2)4+--=x y y ,化简得24x y =;(4分)(2)易知直线l 的斜率存在,设:l y kx b =+,则(5分)由24x y y kx b⎧=⎨=+⎩,得2440x kx b --=,由韦达定理有:124x x k +=,124x x b =-.(7分) 从而12121122+=⇒+=x x x x x x ,即48=-k b ,则12=-b k (10分) 则直线11:22⎛⎫=-=- ⎪⎝⎭l y kx k k x ,故直线过定点1,02⎛⎫⎪⎝⎭.(12分)21.已知函数()f x 满足:①定义域为R ;②2()2()9xxf x f x e e +-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有−x 12+(a-2)x 1+6≥(1−x 2)f (x 2)成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x xg x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解. 【详解】(1)2()2()9xx f x f x e e+-=+-Q ,…① 所以2()2()9xx f x f x ee ---+=+-即1()2()29xxf x f x e e -+=+-…② 由①②联立解得:()3xf x e =-.(3分)(2)设2()(2)6x x a x ϕ=-+-+, ()()()1333xx xF x x e e xe x =--=+--,依题意知:当11x -≤≤时,min max ()()x F x ϕ≥()()33x x x x F x e e xe xe '+=-+=-+Q的又()(1)0xF x x e ''=-+<Q 在(1,1)-上恒成立,所以()F x '在[1,1]-上单调递减()(1)30min F x F e ∴'='=->,()F x ∴在[1,1]-上单调递增,max ()(1)0F x F ∴==,所以min ()0x ϕ≥(1)70(1)30a a ϕϕ-=-≥⎧∴⎨=+≥⎩,解得:37a -≤≤ ,实数a 的取值范围为[3,7]-.(8分) (3)()g x 的图象如图所示:令()T g x =,则()1g T =,1232,0,ln 4T T T ∴=-== 当()2g x =-时有1个解3-,当()0g x =时有2个解:(12)-+、ln3,当()ln 4g x =时有3个解:ln(3ln 4)+、12(1ln 2)-±-.故方程[()]10g g x -=的解分别为:3-,(12)-+、ln3,ln(3ln 4)+、12(1ln 2)-±-(12分)22.在直角坐标系中,曲线1C 的参数方程为3cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数,[0,)απ∈),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为224([0,])43cos =∈-ρθπθ.点(3,0)P . (1)写出曲线2C 的普通方程和参数方程;(2)曲线1C 交曲线2C 于A ,B 两点,若2||||5⋅=PA PB ,求曲线1C 的普通方程. 【详解】解:(1)()22222222443cos 43443cos =⇒-⇒+-=-x y x ρρρθθ所以,曲线2C 的普通方程为:2214x y +=(2分)曲线2C 的参数方程为:2cos sin x y θθ=⎧⎨=⎩(θ为参数)(5分)(2)由题知点P 在曲线上,将1C 的参数方程3cos sin x t y t αα⎧=+⎪⎨=⎪⎩代入曲线2C 的普通方程为:2214x y +=得:1C()223sin 1cos 10++-=t αα所以0∆>,设12,t t是方程的两根,1212221,3sin 13sin 1t t t t ααα∴+=-=-++ 12212||||3sin 15PA PB t t α⋅===+,sin 24⇒=⇒=παα或34π(9分) 所以曲线1C的普通方程为:y x ==-+y x 10分)【点睛】本题考察极坐标方程和普通方程的互化,普通方程和参数方程的互化,考查了直线参数方程的应用,是基础题.23.已知1()=+f x x x(1)求不等式1()3||+<f x x 的解集; (2)()f x 的最小值为M ,12+=a b M ,(),a b R +∈,求22()()+f a f b 的最小值. 【答案】(1){|2l x x -<<-或12}x <<;(2)252 【解析】【分析】(1)将12()3||3||||f x x x x +<⇒+<,求出||x 的范围,进而可得x 的范围; (2)首先求出()f x 的最小值,即可得+a b 的值,利用柯西不等式和基本不等式求22()()+f a f b 的最小值.【详解】解:(1)∵1112()33||3||||||+<⇒++<⇒+<f x x x x x x x , (||1)(||2)01||2||-⋅-<⇒<<x x x x , 不等式1()3||+<f x x 的解集为:{|2l 12}x x x -<<-<<或;(5分) (2)11()||2||=+=+≥=f x x x x x , 所以,1a b +=,.()2222222211111()()112⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+++=++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦f a f b a b a b a b a b 21112⎛⎫≥+++ ⎪⎝⎭a b a b 222111125112222⎛⎫⎪⎛⎫ ⎪=+≥+= ⎪ ⎪⎝⎭+⎛⎫ ⎪ ⎪⎝⎭⎝⎭ab a b .(10分)。
重庆南开中学2020级高三第三次教学质量检测考试理科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合{1,2,3,4,5}U =,{}2|30A x x x =∈-<Z ,则U A =ð( )A. {}5B. {}4,5C. {}3,4,5D. {}2,3,4,52.已知复数21aii+-纯虚数,则实数a =( )A. 4B. 3C. 2D. 13.已知平面向量()()182a m b m ==-r r ,,,,则“4m =”是“//a b r r”的( )A. 充要条件B. 既不充分也不必要条件C. 必要不充分条件D. 充分不必要条件4.函数()sin f x x x =的一条对称轴为( ) A. 6x π=-B. 3x π=-C. 6x π=D. 3x π=5.已知等比数列{}n a 的前n 项和为n S ,120a a <,4236=+a a a ,则43S S =( ) A. 157-B. 53-C. 53D. 1576.已知非零平面向量a br r ,满足()()64a b a b b a +⊥-=r r r r r r ,,则a r 与b r 的夹角为( ) A.6π B.3π C.23π D.56π 7.已知定义在R 上的函数()f x 满足()()20f x f x -+=,当1x >时,()2f x x =-,则不等式()0f x <的解集为( )A. ()12,B. ()0-∞,C. ()02,D. ()()012-∞⋃,, 8.明代数学家程大位在《算法统宗》中提出如下问题“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意思是将996斤绵分给八个人,从第二个人开始,每个人分得的绵都比前一个人多17斤,则第八个人分得绵的斤数为( )A. 150B. 167C. 184D. 2019.函数lncosxyx的图象大致为()A.B.C.D10.在ABC ∆中,3AC AB ==,点M ,N 分别在AC AB ,上,且2AM BN ==,⊥BM CN ,则ABC ∆的面积为( )A.B.8122C.4511D.11.在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,,若2cos c a a B -=,则3a cb+的最小值为( )A.B.C. D. 312.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,给出下列四个命题:①数列{}n n a b -单调递增;②数列{}n n a b +单调递增;③数列{}n a 从某项以后单调递增;④数列{}n b 从某项以后单调递增.这四个命题中的真命题是:( ) A ②③④B. ②③C. ①④D. ①②③④本试卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知曲线3y x ax =+在1x =处的切线与直线21y x =+平行,则a 的值为___________.14.已知函数()()sin f x A x =+ωϕ,其中()00A ωϕππ>>∈-,,,的部分图象如图所示,则ϕ=______________.15.已知函数()()221xf x e k x =+-在()0+∞,上单调递增,则实数k 的取值范围是__________. 16.已知平面向量a b r r,满足:2a b ==r r ,⊥r r a b ,22230-⋅+=r r r r b b c c ,则2a c +r r 的最大值是__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知公差不为0的等差数列{}n a 的前n 项和为247n S a a a ,,,成等比数列,且550S =. (1)求n a ;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭前n 项和.18.在ABC ∆中,23AB AC D ==,,为BC 边上的中点. (1)求sin sin BADDAC∠∠的值;(2)若2BAD DAC ∠=∠,求AD .19.某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g )作为质量指标值.由检测结果得到如下频率分布直方图.(1)求图中a b ,的值;(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间[)4749,和(]5153,内为合格品,重量在区间[]4951,内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共m 件()*100m m N>∈,,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150元/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.20.已知函数()()()2ln 11f x ax x a R =--+∈存在极值点.(1)求a 的取值范围;(2)设()f x 的极值点为0x ,若()00f x x <,求a 的取值范围.21.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12F F ,D 在椭圆C 上,且12DF F ∆的周长为.(1)求椭圆C 的方程;(2)已知过点()10,的直线与椭圆C 交于A B ,两点,点P 在直线4x =上,求222PA PB AB ++的最小值.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t xy t x=+⎧⎨=-+⎩(t 为参数,0απ<<),以O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()12cos28cos ρθθ-=. (1)判断直线l 与曲线C 的公共点的个数,并说明理由; (2)设直线l 与曲线C 交于不同两点A B ,,点()11P -,,若1143PA PB -=,求tan α的值. 23.已知实数a b ,满足33a b +≥,1a b -≤. (1)证明:1a b +≥;(2)若0pq >,证明:()()ap bq aq bp pq ++≥.的。
重庆南开中学高2020级高三3月月考
理科数学
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若复数12ai
i
-+(a∈R,i 为虚数单位)的实部与虚部相等,则a 的值为() A.1
B.-1
C.3
D.-3
2.若集合A={0,1,2},B={x|x=2a
,a ∈A},则A∪B=() A.{0,1,2}
B.{0,1,2,3}
C.{0,1,2,4}
D.{1,2,4}
3.向量(2,),(1,3)a t b ==-r r ,若,a b r
r 的夹角为钝角,则实数t 的取值范围是()
A. 23
t <
B. 23
t >
C. 2
63
t t <
≠-且 D. 6t <-
4.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间。
现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为
π
4
米,肩宽约为
π
8
米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )(参考数据:2 1.414,
3 1.732≈≈)
A.1.012米
B.1.768米
C.2.043米
D.2.945米
5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()
A.60种
B.70种
C.75种
D.150种
6.已知某几何体的三视图如右,则该几何体的表面积为()
A.16+2
B.12+22+26
C.18+22
D.16+22
7.下列函数中,最小正周期为π,且图象关于直线x=
π
3
对称的是() A. 2sin 23y x π⎛⎫
=+ ⎪⎝
⎭
B. 2sin 26y x π⎛⎫=- ⎪⎝⎭
C. 2sin 23x y π⎛⎫=+
⎪⎝⎭
D. 2sin 23y x π⎛⎫
=-
⎪⎝
⎭
8.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完。
现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则图中①②③处可分别填入()
A. 1
20,,2i s s i i i <=-=
B. 1
20,,2i s s i i i =-=„
C. 20,
,12
s
i s i i <==+
D. 20,
,12
s
i s i i ==+„
9.已知a 是第二象限角,且3
sin()5
πα+=-,则tan2a 的值为() A. 247
-
B. 237
-
C. 249
-
D.
45
10.已知抛物线x 2
=4y 的焦点为F ,过点F 的直线交抛物线于()()1122,,,A x y B x y 两点,点A,B 在抛物线准线上的射影分别为A 1,B 1,以下四个结论:①x 1x 2=-4,②|AB |=y 1+y 2+1,③∠A 1FB 1=π
2
,④线段AB 的中点到抛物线准线的距离的最小值为2.其中正确的个数为()
A.1
B.2
C.3
D.4
1l.已知函数f (x )=xlnx-kx+1在区间1,e e ⎡⎤⎢⎥⎣⎦
上恰有一个零点,则实数k 的取值范围是()
A. {| 1 e 1}k k k =>-或
B. 1|11e 1e k k k ⎧⎫+>-⎨⎬⎩⎭
或剟
C. {|1}k k …
D. 1|1e 11e k k k ⎧
⎫+
<-=⎨⎬⎩⎭
或„
12.在△ABC 中,,且△ABC 所在平面内存在一点P 使得222
33PB PC PA +==,则△ABC
面积的最大值为()
二、填空题(本题共4小题,每小题5分,共20分) 13. 5
()(2)x y x y +-的展开式中x 3y 3
的系数为_____.
14.在锐角△ABC 中,角A,B,C 的对边分别为a,b,c ,且△ABC ,则a+b=____.
15.如右图所示,有三根针和套在一根针上的n 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n 个金属片从1号针移到3号针最少需要移动的次数记为f (n ),则f (n )=_____.。