倒推法解题专题训练
- 格式:doc
- 大小:179.50 KB
- 文档页数:9
倒推法解应用题例1 明明有4张卡通画报,明明的画报数是亮亮的一半,亮亮的画报数是宏宏的一半,宏宏有几张卡通画报?随堂练习1 张老师有3条连衣裙,张老师的裙子数是王老师的一半.张老师和王老师一共有几条连衣裙?例2、有一批水果,第一天卖出一半,第二天卖出剩下的一半,这时还剩4箱水果,这批水果一共有几箱?练习玩具店里有一些卡通玩具,第一天卖出一半,第二天卖出剩下的一半,这时玩具店里还有5个卡通玩具.请你算一算,玩具店里原来共有几个卡通玩具?例3、小红问妈妈多大年龄,妈妈说:“把我的年龄加10,然后乘以5,减25,再除以2,恰巧是100岁."小红妈妈的年龄是多少?随堂练习小明爷爷今年的年龄加上15后,缩小4倍,再减去15之后,扩大10倍,恰好是100岁.小明爷爷今年是多少岁?例4一个水池中睡莲所遮盖的面积,每天扩大l倍,10天正好遮住整个水池.请你算一算,多少天时,睡莲正好遮住水池的一半?随堂练习有一列数,第一个是6,后面每一个数都比前面一个数大3.请你算一算,这列数中,第几个数是21 7例5某数加上6,乘以6,减去6,除以6,最后结果是6.这个数是多少?随堂练习一个数加上5,乘以5,减去5,除以5,最后结果等于5.问:这个数是几?1、二年级舞蹈兴趣组有6个同学,是体育组人数的一半,体育兴趣组的人数是合唱组人数的一半.合唱组有多少个同学?2、姐姐有9张邮票,是哥哥邮票数的一半.姐姐比哥哥少多少张邮票?3、爸爸买了一些巧克力,分给哥哥和弟弟吃,哥哥吃了4颗,弟弟吃了6颗,正好都吃了各自的一半.爸爸买回来多少颗巧克力?4、某数的5倍加上6,再除以7,结果是8,求某数.5、猴子吃桃,第一天吃了桃子的一半,第二天又吃了余下桃子的一半,这时还有8个桃子.原来树上有多少个桃子?6、一筐鸡蛋,第一天吃了全部的一半,第二天吃了余下的一半,第三天吃了5只,刚好吃完.这筐鸡蛋有多少只?7、有一根绳子,第一次剪去一半多2米,第二次剪去剩下的一半多2米,这时绳子还剩2米,这根绳子长几米?8、有一根绳子,第一次剪去一半多1米,第二次剪去剩下的一半少1米,这时绳子还剩3米,这根绳子长几米?9、妈妈买了一些巧克力,送给邻居小妹妹2块后拿回家。
倒推法练习题
1.一个数加上6,所得的和乘6,减去6,其结果等于4
2.求这个数。
2.一个数的4倍加上6,再减去9,最后乘3,结果得135.求这个数。
3.一个数加上12后减去16,再乘以3的129,这个数多少?
4.小强和小优三人共有故事书45本。
如果小强向小军借3本后,又借给小小军优2本,结果三人拥有故事书的本书正好相等。
这三人原来各有故事书多少本?
5.甲、乙、丙三个小朋友共有邮票120枚,如果甲给乙8枚后,乙又送给丙15枚,那么三人的邮票枚数刚好相同。
问甲、乙、丙桑小朋友原来各有邮票多少枚?
6、小红、小丽、小敏三个人各有小贴画若干张。
如果小红给小丽4张,小丽给小敏5张,小敏给小红3张,那么她们每人各有40张。
原来三个人各有小贴画多少张?
挑战题:甲、乙、丙、丁四个小朋友共有彩色玻璃球200,甲给乙26颗,乙
给丙36颗,丙给丁32颗,丁给甲4颗后四人的颗数相等。
他们原来各有玻璃球多少颗?。
第八章倒推问题第八章倒推问题典型题训练1 (难度等级★★)例、甲、乙、丙3个小朋友共有78枚邮票, 如果甲送给乙13枚后, 乙又送给丙6枚, 丙又送给甲9枚, 那么3个小朋友的邮票枚数刚好相等。
甲、乙、丙三个小朋友原来分别有邮票多少枚?1、甲、乙、丙、丁4个花圃共有郁金香176 盆, 如果甲花圃送给乙花圃34盆, 乙花圃送给丙花圃21 盆, 丙花圃又送给丁花圃15 盘, 丁花圃又送给甲花圃8盆, 那么四个花圃的郁金香盆数刚好相等。
甲、乙、丙、丁4个花圃原来分别有郁金香多少盆?2、甲、乙两个汽车站共停了88辆汽车, 如果一天之中从甲站开到乙站12辆, 同时从乙站开到甲站19辆, 那么甲站的汽车数量是乙站的3倍。
甲、乙两站原来分别停汽车多少辆?3、甲、乙两个港口共停船91艘, 如果从甲港口开到乙港口23艘船, 同时从乙港口开到甲港口30艘船, 那么甲港口的船只数量是乙港口的6倍。
甲、乙两个港口原来分别停船多少艘?典型题训练2 (难度等级★★★)例、盘子里有26块糖, 兄弟两人分。
分完后, 哥哥拿了弟弟的一半; 接着, 弟弟又从哥哥那几拿走哥哥的一半, 然后又还给哥哥5块, 这时哥哥比弟弟多2块。
兄弟两人最初分别分了多少块糖?1、甲、乙、两三人分别有图书若干本, 开始时甲先拿出自己图书的一部分分给乙、丙, 使乙、丙的图书数增加1倍;然后乙也这样做了一次, 使甲、丙的图书数增加1倍;最后丙也这样做了一次, 使甲、乙的图书数增加1倍, 这时三人的图书数都是32 本。
甲、乙、丙三人原来分别有多少本图书?2、甲、乙、丙、丁分别有棋子若干枚, 甲先拿出自己棋子的一部分给了乙、丙, 使乙丙每人的棋子数增加1倍;然后乙也把自已棋子的一部分给了丙、丁, 使丙、丁每人的棋子数增加1倍;丙也把自己棋子的一部分给了甲、丁, 使甲、丁每人的棋子数增加1倍;最后丁也把自己棋子的一部分给了甲、乙, 使甲、乙每人的棋子数增加1倍, 这时四人的棋子数都是16枚。
倒推法解题【知识点】有些应用题如果按照一般方法, 顺着题目的要求一步一步地列出算式求解, 过程比较繁琐, 量与量之间的关系也不好找。
对于这种类型的应用题, 解题时, 我们可以从最后的结果出发, 运用加与减、乘与除之间的互逆关系, 从后往前一步一步推算, 这种思考问题的方法就叫倒推法。
运用这种方法, 反向倒推过去, 反而易于解决问题。
【练习题】1. 张大爷提篮去卖蛋, 第一次卖了全部的一半又半个, 第二次卖了余下的一半又半个, 第三次卖了第二次余下的一半又半个, 第四次卖了第三次余下的一半又半个。
这时, 鸡蛋都卖完了。
问张大爷篮中原来有鸡蛋多少个?(15)2.三只猴子去吃篮里的桃子, 第一只猴子吃了, 第二只猴子吃了剩下的, 第三只猴子吃了第二只剩下的, 最后篮子里还剩下6只桃子。
原有桃子多少只?(18)3.一捆电线, 第一次用去全长的一半多3米, 第二次用去余下的一半少10米, 第三次用去15米, 最后还剩7米。
这捆电线原有多少米?(54)4.修一段路, 第一天修全路的还多2千米, 第二天修余下的少1千米, 第三天修余下的还多1千米, 这样还剩下20千米没有修完, 求公路的全长?(85)5.一只猴子偷吃桃子, 它第一天偷吃了树上桃子的, 以后的8天每天偷吃树上桃子的、、……, 这时树上还剩下10个桃子。
问树上原来有多少个桃子?(100)6. 甲、乙二人分16个苹果, 分完后, 甲将自己所得苹果数的分给了乙, 乙又将自己现有苹果数的还给甲;最后甲又将自己现有苹果数的给了乙, 这时两人苹果数恰好相等。
问: 最初甲分得几个苹果?(15)一瓶酒精, 第一次倒出, 然后倒回瓶中40克, 第二次倒出瓶中剩下酒精的, 第三次倒出180克, 瓶中还剩下60克。
问原来瓶中有酒精多少克?(750)8、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲, 这时, 三人的钱刚好相等。
倒推法解题【专题简析】:有些应用题按照一般的方法顺着题目条件一步一步的列式出来解 答过程会比较繁琐,所以有些题我们从后面往前面推会很好的简化题,使题变得 很简单,很容易理解也便于解答?例1、建筑队修一条路,第一天修了全长的51多100米,第二次修了余下的72,还剩下500米,求公路的全长。
练习1、乙队煤上午运走72,下午运走的比余下的31还多6吨,最后还剩下14吨没有运走,这堆煤原有多少吨?例2、某果地里有一些桃树结了一些桃子,有一群调皮猴子每天都去摘果园里的桃子吃,第一天摘下桃子总数的101,第二天摘了剩下总数的91,第三天摘了第二天摘后剩下总数的81……,第八天摘了第七天摘后剩下总数的31,第九天摘了第八天摘后剩下总数的21,这时树上还剩下10个桃子,果园里原来有多少个桃子?练习2、将一根绳子从中间剪开,再取其中的一端再从中间剪开,这样剪了四次,正好剩下一米,这根绳子原来有多长?例3、有甲乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲,这时两桶正好各有24千克,原来甲乙两桶各有多少千克油?练习3、甲乙两人个有钱若干,甲拿出自己钱总数的51给乙,乙从自己现在所有的钱中拿出41给甲,这时两人各有12元钱,原来两人个有多少钱?综合练习:1、一个数减去1,乘以3,再加上2,最后除以4,结果是5,这个数是多少?2、猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?3、兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。
小白兔和小黑兔各运走多少个萝卜?4、一条小虫由幼虫长到成虫,每天长大1倍(即第二天是第一天的2倍,第三天是第二天的2倍,……)。
30天能长到20厘米,那么长到2.5厘米时用了多少天?5、有120个队伍进行单循环淘汰赛比赛,最后要决出一个冠军队,问:需要多少场比赛才能决出冠军队?6.一种荷叶每天长大1倍,第100天把整个池塘铺满了,求盖满池塘的一半需要多少天?盖满池塘的四分之一需要多少天?。
练习一(倒推法)A组1、一个数加上1,乘以8,减去8,结果还是8,这个数是。
2、某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是。
3、甲乙丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数中取出25加到甲数,这时三个数都恰好是160。
那么甲数原来是。
4、三堆苹果各有若干个。
先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第二堆中拿出与第三堆个数相同的苹果放入第三堆,最后再从第三堆中拿出与这时第一堆个数相同的苹果放入第一堆。
这时三堆苹果都正好是16个。
原来第一堆苹果有个。
5、三个盒子里的珠宝数不等,第一次从甲盒里拿出一些珠宝放入乙丙两盒内,使乙丙两盒里的珠宝数各增加一倍;第二次从乙盒里拿出一些珠宝放入甲丙两盒内,使甲丙两盒里的珠宝数各增加一倍;第三次从丙盒里拿出一些珠宝放入甲乙两盒内,使甲乙两盒里的珠宝数各增加一倍。
这时三个盒里都是48颗珠宝。
最初甲盒子里有颗珠宝。
6、甲乙丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给了乙丙,使乙丙的铜板数各增加一倍,后来乙把自己的铜板拿出一部分给了甲丙,使甲丙的铜板数各增加一倍,最后丙也把自己的铜板拿出一部分给了甲乙,使甲乙的铜板数各增加一倍。
这时三人的铜板数都是8枚。
原来最少的人有枚铜板。
7、现有排成一列的七个数,从第三个数起,每个数都是它前面两个数的乘积。
如果最后两个数分别是16、64,那么第一个数是。
8、池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天可覆盖整个池塘。
那么覆盖半个池塘需要天。
9、一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖面的。
(吉林省金翅杯小学生数学竞赛试题)10、一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要小时。
小学奥数专项练习题-----(倒推法)A组1、一个数加上1,乘以8,减去8,结果还是8,这个数是。
2、某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。
那么小强这次考试的成绩是。
3、甲乙丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数中取出25加到甲数,这时三个数都恰好是160。
那么甲数原来是。
4、三堆苹果各有若干个。
先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第二堆中拿出与第三堆个数相同的苹果放入第三堆,最后再从第三堆中拿出与这时第一堆个数相同的苹果放入第一堆。
这时三堆苹果都正好是16个。
原来第一堆苹果有个。
5、三个盒子里的珠宝数不等,第一次从甲盒里拿出一些珠宝放入乙丙两盒内,使乙丙两盒里的珠宝数各增加一倍;第二次从乙盒里拿出一些珠宝放入甲丙两盒内,使甲丙两盒里的珠宝数各增加一倍;第三次从丙盒里拿出一些珠宝放入甲乙两盒内,使甲乙两盒里的珠宝数各增加一倍。
这时三个盒里都是48颗珠宝。
最初甲盒子里有颗珠宝。
6、甲乙丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给了乙丙,使乙丙的铜板数各增加一倍,后来乙把自己的铜板拿出一部分给了甲丙,使甲丙的铜板数各增加一倍,最后丙也把自己的铜板拿出一部分给了甲乙,使甲乙的铜板数各增加一倍。
这时三人的铜板数都是8枚。
原来最少的人有枚铜板。
7、现有排成一列的七个数,从第三个数起,每个数都是它前面两个数的乘积。
如果最后两个数分别是16、64,那么第一个数是。
8、池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天可覆盖整个池塘。
那么覆盖半个池塘需要天。
9、一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖面的。
10、一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万个。
那么增加到25万个需要小时。
11、某人去银行取款,第一取出存款总数的一半还多5元,第二次取了余下的一半还多5元,这时他银行中的存款还剩下130元。
奥数重点常考题第十二讲倒推法解题基础卷1、修一条路,第一天修了全长的25又16米,第二天修了余下的34还剩41米,这条路全长多少米?2、把一根木头对半锯开,再取其中一段对半锯开,这样锯了4次,剩下的木头长度正好是2米,这根木头原长度是多少米?3、有甲、乙两桶油、从甲桶中倒出14给乙桶后,又从乙桶中倒出14给甲桶,这时两桶各有90千克油,原来甲、乙两个桶中各有多少千克油?4、甲、乙、丙三个袋子里各有若干个小球,从甲袋中拿出3个小球放人乙袋,再从乙袋中拿出5 个小球放人丙袋后,三个袋子里的小球个数相等。
原来乙袋比丙袋多几个球?5、甲、乙两校各有图书若干本,从甲校借15给乙校后,又从乙校27借给甲校,这时甲、乙两校的图书本数相等,原来甲校的图书本数是乙校的几分之几?6、有一筐橘子,小明和弟弟第一天吃了13,第二天吃了余下的13,第三天又吃了余下的13,筐里还有8个,原来筐里有多少个橘子?提高卷1、一批大米,第一天用去了15多16千克,第二天用去了余下的13少4千克,还剩下260千克,原来这批大米有多少千克?2、一堆煤,第一次运用总数14又15吨,第二次运出余下的25又20吨,第三次运出余下的34又25吨,最后还剩下15吨。
这堆煤原有多少吨?3、一杯盐水,第一次倒出13,然后倒回杯中20克,第二次再倒出杯中盐水的25,第三次倒出60克,杯中还剩下48克,原来杯中有多少克盐水?4、甲、乙、丙三桶油的质量比是2:3:4,如果从乙桶倒出8千克油平均分给甲、丙两桶,则甲、乙两桶油的质量相等。
这三桶油的总质量是多少千克?5、甲、乙两瓶各有些酒精,从甲瓶倒出13到乙瓶,又从乙瓶倒出35到甲瓶,这时乙瓶中的酒精是甲瓶的25,原来甲瓶的酒精是乙瓶的几分之几?6、小明妈妈买来一篮鸡蛋,第一天吃了17,第二条吃了余下的14,第三、四天都吃了第二天余下的13,第五天吃了余下的12,还剩下3个鸡蛋。
妈妈共买了多少个鸡蛋?答案基础卷。
二年级倒推法的例题一、简单数字运算类。
1. 一个数加上5,再减去3,结果是8,这个数是多少?- 解析:我们从结果8开始倒推。
因为是先减去3得到8的,所以在减3之前的数是8 + 3=11;而这个11是一个数加上5得到的,那么这个数就是11 - 5 = 6。
2. 一个数先乘2,再除以4后是3,这个数是多少?- 解析:从结果3开始倒推。
因为是除以4后得到3的,所以在除以4之前的数是3×4 = 12;而12是这个数乘2得到的,所以这个数是12÷2 = 6。
3. 某数加上7,乘7,减去7,除以7,结果还是7,这个数是多少?- 解析:从最后的结果7开始倒推。
因为是除以7得到7的,所以在除以7之前的数是7×7 = 49;49是减去7得到的,那么在减7之前是49+7 = 56;56是乘7得到的,所以原来的数是56÷7 = 8;8是加上7得到的,所以这个数是8 - 7 = 1。
4. 一个数减去8后,再加上10,结果是15,这个数是多少?- 解析:从结果15开始倒推。
因为是加上10得到15的,所以在加10之前的数是15 - 10 = 5;而5是这个数减去8得到的,所以这个数是5+8 = 13。
5. 一个数除以3后,再乘5得到25,这个数是多少?- 解析:从结果25开始倒推。
因为是乘5得到25的,所以在乘5之前的数是25÷5 = 5;而5是这个数除以3得到的,所以这个数是5×3 = 15。
二、图形表示数类(用简单图形代表数)6. 如果□+5 - 3 = 9,那么□里的数是多少?- 解析:从结果9开始倒推。
因为是先减去3得到9的,所以减3之前是9+3 = 12;12是□加5得到的,所以□里的数是12 - 5 = 7。
7. 已知△×3÷2 = 6,求△代表的数。
- 解析:从结果6开始倒推。
因为是除以2得到6的,所以除以2之前是6×2 = 12;12是△乘3得到的,所以△代表的数是12÷3 = 4。
倒推法解题专题训练————————————————————————————————作者:————————————————————————————————日期:倒推法解题专题训练知识梳理1、用倒推法解题就是根据题目的叙述过程,从最后的结果入手,采用倒推的方法,逐步找到题目的答案。
2、用倒推法解题时,要采用逆向思维和运算方式,原来加的用减,乘的用除。
例题精讲:1、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是多少?解析:从最后的结果往前逆推,结果是691,这是一个数的3倍减5得到的,这个数应该是(691+5)÷3=232,这是经过3次后的结果;同样可知,经过2次后的结果为(232+5)÷ 3=79;经过1次后的结果为(79+5) ÷3=28;因此,原数为(28+5) ÷3==11。
2、一只猴子偷吃一棵桃树上的桃子。
第一天偷吃了,以后八天分别偷吃了当天现有桃子的…,最后树上还剩下10个桃子。
树上原桃子多少个?解析:可以从最后树上的10个桃子依次向前倒推:10(1-)(1-)(1-)(1-)(1-)(1-)(1-)(1-)(1-)=10=100(个)3、李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李教师原来拿了几本书?解析:最后李老师还剩2本书,因此,他到第36位同学家之前应有(2-1)×2=2本书;同样,他到35位同学家之前应有(2-1)×2=2本书;…;由上此可知,他到每位同学家之前都有2本书,故李老师原来拿了2本书。
专题特训:1、小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年多少岁?2、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?3、一块冰,每小时失去其质量的一半,八小时之后其质量为千克,那么一开始这块冰的质量是多少千克?4、修一段公路,第一天修了全路的多2千米,第二天修了余下的少1千米,这时还剩下20米没有修,这条公路有多长?5、甲、乙两人各有钱若干元,甲拿出给乙后,乙又拿出给甲,这时他们各有240元,两人原来各有多少钱?6、一瓶盐水,第一次倒出后又倒回瓶中50千克,第二次倒出瓶中剩下盐水的,第三次倒出150克,这时瓶中还剩下120克盐水,原来瓶子中有多少千克盐水?7、小明和小聪共有小球200个,如果小明取出给小聪,然后小聪又从现有球中取出给小明,这时小明和小聪的小球一样多。
原来小明和小聪各有小球多少个。
8、有一类数,它的30倍减去1能被137整除,这类数中最小的是几?9、有甲、乙两箱糖果,如果第一次从甲箱拿出和乙箱同样多块糖果放到乙箱里,第二次从乙箱拿出和甲箱剩下的同样多块糖果放入甲箱,这样拿4次后,甲、乙两箱糖果都是16块。
甲、乙两箱各有糖果多少块?10、有甲、乙、丙三个油桶,各盛油若干千克。
先将甲桶油倒入乙、丙两桶,使它们各增加原有油的一倍;再将乙桶油倒入丙、甲两桶,使它们的油各增加一倍;最后按同样的规律将丙桶油倒入甲、乙两桶。
这时,各桶油都是16千克。
三个桶原来各有油多少千克?参考答案:1、解:采用逆推法,可知老爷爷的年龄为(100÷10+15)× 4-17=83(岁)2、解:从最后的结果往前逆推,结果是6,是一个数除以6得到的,不除以6,这个数应该是6×6=36;36是一个数减6得来的,那么这个数应该是36+6=42;42是一个数乘以6得来的,那么这个数应该是42÷6=7;7是由某数加上6得来的。
因此,某数是7-6=1。
3、解:这块冰开始的质量是80千克。
4、解:[(20-1)÷(1-)÷2] ÷(1-)=80(千米)。
5、解:乙给甲之前,乙有240÷(1-)=300元,甲有240-300×=180元;甲给乙之前,甲有180÷(1-)=216元,乙有300-216×=264元;所以原来甲有216元、乙有264元。
6、解:(120+150)÷(1-)=450(克),(450-50)÷(1-)=600(克)7、解:经过两次交换后,小明和小聪各有小球200÷2=100(个)小聪给小明小球以前,小聪有小球100÷(1-)=110(个)小明有小球200-110=90(个)小明给小聪小球以前,小明有小球90÷(1-)=99(个)小聪有小球200-99=101(个)8、解:这类数中最小的数是32。
9、解:甲箱有糖果21块,乙箱有糖果11块。
10、解:列表逆推如下:甲桶乙桶丙桶初始状态4+14+8=26 28÷2=14 16÷2=8第一次变化后8÷2=4 8+4+16=28 32÷2=16第二次变化后16÷2=8 16÷2=8 16+8+8=32第三次变化后16 16 16原来甲、乙、丙桶分别有油26、14、8千克。
倒推法解应用题专题训练知识梳理:1、倒推法解题的特征:从已知条件出发,顺着条件和叙述去解会感到困难,如果运用倒推法,即从最后的结果出发,一步一步倒着往前推算(原题是加,倒推为减。
原题是减,倒推为加;原题是乘,倒推为除;原题是除,倒推为乘),逐步靠拢已知条件,直到问题的解决。
2、在解题时可运用线段图帮助我们理解题意,正确解答问题。
例题精讲:例1、一个数的3倍,加上2减去10,乘以2得44,求这个数。
分析:由题可知最后乘以2得44,没有乘以2时,应为44÷2=22;减去10时为22;没有减去10时,应为22+10=32;加上2时为32,没有加2时,应为32-2=30;这个数的3倍是30,那么原数就为30÷3=10。
解:(44÷2+10-2)÷3=10。
答:这个数是10。
例2、一位老年人说:“把我的年纪加上17用4除,再减去15后用10乘,恰巧是100岁。
”这位老年人现年多少岁?分析:从最后一条件“恰好是100岁”向前推算,乘以10后是100岁,没有乘以10前应是100÷10=10(岁),减去15后应是10岁,没有减去15之前,应是10+15=25(岁)。
没有用4除之前,应是25×4=100(岁),加上17之后就是100岁,没有加上17前,应是100-17=83(岁)。
解:(100÷10+15)×4-17=83(岁)。
答:这位老人现年是83岁。
例3、百货商店出售彩色电视机,上午售出总数的一半多20台,下午售出剩下的一半多15台,还剩75台。
店里原有彩色电视机多少台?分析:把剩下的75台和下午出售的台数中比剩下的一半多15台合起来就相当于剩下的一半,这样可求出上午售出后剩下的台数是(75+15)×2=180(台)。
而这180台和上午售出总数的一半多出的20台合起来工180+20=200(台),又正好是总数的一半,那么(180+20)×2=400(台)就是原有彩色电视机的台数。
解:[(75+15)×2+20] ×2[180+20] ×2=200×2=400(台)答:原有彩色电视机400台。
例4、小明的三层书架中共放着48本书。
他先从上层拿8本放入中层;又从中层拿6本放入下层,这时三层书的本数相等。
原来每层放多少本书?分析:从三层书的本数相等入手分析,可得现在每层书的本数为48÷3=16(本),而各层有16本书是怎么变化得到的?由题意知,上层原有书的本数-8本=16本,下层原有书的本数+6本=16本,最后用逆运算使问题得到解决。
解48÷3=16(本),16+8=24(本),16-6=10(本),16+6-8=14(本)。
答:原来上层放24本,下层放10本,中层放14本书。
专题特训:1、一个数加上7,乘以7,减去7,除以7,结果还是7,这个数是多少?2、某个数减去60,以其差的2倍中再减去60,所得差的2倍再减去60,字后得零,求这个数。
3.小刚在做计算题[1800-()] ÷25+192时,没有注意题里的括号,先用()里的数除以25,然后按加减运算的顺序计算,结果得到1968。
这道题应该得多少?4、老爷爷说:“把我的年龄加上12,再用4除,然后减去15,再乘以10,恰好是100岁。
”这位老爷爷现在有多少岁?5、甲、乙、丙三人共有图书120本,乙向甲借3本后,又送给丙5本,结果三个人图书数相等。
问甲、乙、丙三人原来各有多少本图书?6、有一筐苹果,第一次取出全部的一半多2个,第二次取出余下的一半少2个,筐中还剩20个,筐中原有苹果多少个?7、小亮在做一道减法算式时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111,求正确的答案。
8.粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半又7吨,还剩下4吨,问粮库里原来有面粉多少吨?9、某人去储蓄所取款,第一次取了存款数的一半还多5元,第二次取了余下的一半还多10元,还剩125元,他原有存款多少元?10、张、王、李、赵4个小朋友共有课外读物200本,他们相互交流阅读,张给王13本,王给李18本,李给赵16本,赵给张2本。
这时4个人的本数相等。
他们原来各有多少本?答案与解析答案与解析:1、解:可以从运算的结果“7”逐步倒推。
综合算式为(7×7+7)÷7-7=1。
2、解:由题意可知:[(某数-60)×2-60] ×2-60=0。
然后逆推可得:[(0+60)÷2+60] ÷2+60=105,即该数为105。
3、解:根据1800-()÷25+192=1968,可求出()÷25=24,则()=600。
原题为(1800-600)÷25+192=240。
4、解:(100÷10+15)×4-12=88(岁)5、解:甲有:120÷3+3=43(本),乙有:120÷3-3+5=42(本),丙有:120÷3-5=35(本)6、解:[(20-2)×2+2] ×2=76(个)7、解:111-(70-10)+(7-1)=578、解:从“第二次运出剩下的一半又7吨,还剩4吨”向前倒推,可知4+7=11(吨),正好是第一次运出后剩下的一半,第一次运出后剩下的是11×2=22(吨),和2吨合起来就是原有面粉总数的一半,再用(22+3)×2=50(吨)即求出粮库原有面粉50吨。