三年级奥数4-倒推法解题
- 格式:doc
- 大小:543.50 KB
- 文档页数:7
第4讲倒推法【学习目标】1、学会用倒推法解题;2、激发学生的创新思维,培养学生学习的主动性。
【知识梳理】1、倒过来思考问题的方法,就是还原法;2、用还原法解题,关键是从最后一步结果出发,依照题意顺次逐步向前推理,每一步运算都变成原来的逆运算。
【典例精析】【例1】某数乘以5,加上3,再除以7,减去4,结果是5,这个数是12.5+4=9 9×7=63 63-3=60 60÷5=12【趁热打铁-1】将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.那么这个数是77.100×4=400 400+20=420 420-112=308 308÷4=77【例2】村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?(2+2)×2=8(个)(8+2)×2=20(个)(20+2)×2=44(个)答:这篮鸡蛋有44个.【趁热打铁-2】艾迪、薇儿和大宽分练习册,艾迪得到了总数的一半,薇儿得到了余下的一半少1本,大宽得到了9本,这些练习册共有32本.(9-1)×2=16(本)16×2=32(本)【例3】两棵树上一共有25只鸟,先是左边树上的鸟有一半儿飞到了右边树上,然后右边树上的8只鸟又飞到了左边树上,这时左边树上的鸟比右边树上多3只.请问最开始左边树上有几只鸟?后左:(25+3)÷2=14(只)后右:(25-3)÷2=11(只)原左:(14-8)×2=12(只)答:最开始左边树上有12只鸟.【趁热打铁-3】王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片送给王亮,这时两人各有24张。
王亮和李强原来各有画片多少张?24÷2=12(张)24+12=36(张)原来李强:36÷2=18(张)原来王亮:12+18=30(张)答:王亮原来有30张画片,李强有18张画片。
(三年级)备课教员:* * *第四讲错中求解(二)一、教学目标:知识目标在进行计算时,能够利用倒推法,从错误的计算结果中求出正确的结果。
能力目标1. 提高自主分析能力。
2. 锻炼逆向思维能力。
情感目标1.自主探索解决实际问题,并有勇于探索的精神。
2.培养做事认真仔细、严谨的态度。
3. 感悟数学在生活中的应用,以及倒推法的应用。
二、教学重点:1. 在乘法算式中,乘数的扩大(缩小)都直接影响到积的扩大(缩小)。
一个乘数增加几,积就增加另一个乘数的几倍;一个乘数减少几,积就减少另一个乘数的几倍。
2.在除法算式中,被除数扩大(缩小),商也会随着扩大(缩小);而除数扩大(缩小),商反而缩小(扩大)。
除数和余数都相同时,商增加几,被除数就增加除数的几倍;商减少几,被除数就减少除数的几倍。
三、教学难点:1. 理解应用倒推法。
2. 乘法、除法错中求解时的不同。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:复习第二讲的旧知识,回顾逆运算的含义,用倒推法从错误的解中得到正确的解,为接下来的新授环节做铺垫。
】师:你们还记得上次我们学的加、减运算时的错中求解吗?生:记得。
师:那大家看一下这两个小题目,看看大家能不能自己做出来。
(PPT出示)1.一个加数个位上的8被看成了3,得到的和是235,正确的和是多少?2.被减数十位上的6被看成了9,得到的差是145,正确的差是多少?生:……师:大家都这么快就做出来了,说明大家对之前的知识掌握的很牢,那加、减法的错中求解主要是用了什么方法?生:逆运算和倒推法。
师:既然学了加、减法的错中求解,你们觉得我们今天会学什么内容呢?生:乘、除法的错中求解。
师:没错,我们今天就来学习一下乘、除法的错中求解,看看逆运算还能不能解决这类问题。
师:你们准备好了吗?生:准备好了!师:那就一起进入我们的课堂吧!【探究新知,引入新课:之前我们学习了加、减法的错中求解,学生对于逆运算有了一定的理解。
倒推法解题【专题简析】:有些应用题按照一般的方法顺着题目条件一步一步的列式出来解 答过程会比较繁琐,所以有些题我们从后面往前面推会很好的简化题,使题变得 很简单,很容易理解也便于解答?例1、建筑队修一条路,第一天修了全长的51多100米,第二次修了余下的72,还剩下500米,求公路的全长。
练习1、乙队煤上午运走72,下午运走的比余下的31还多6吨,最后还剩下14吨没有运走,这堆煤原有多少吨?例2、某果地里有一些桃树结了一些桃子,有一群调皮猴子每天都去摘果园里的桃子吃,第一天摘下桃子总数的101,第二天摘了剩下总数的91,第三天摘了第二天摘后剩下总数的81……,第八天摘了第七天摘后剩下总数的31,第九天摘了第八天摘后剩下总数的21,这时树上还剩下10个桃子,果园里原来有多少个桃子?练习2、将一根绳子从中间剪开,再取其中的一端再从中间剪开,这样剪了四次,正好剩下一米,这根绳子原来有多长?例3、有甲乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲,这时两桶正好各有24千克,原来甲乙两桶各有多少千克油?练习3、甲乙两人个有钱若干,甲拿出自己钱总数的51给乙,乙从自己现在所有的钱中拿出41给甲,这时两人各有12元钱,原来两人个有多少钱?综合练习:1、一个数减去1,乘以3,再加上2,最后除以4,结果是5,这个数是多少?2、猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?3、兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。
小白兔和小黑兔各运走多少个萝卜?4、一条小虫由幼虫长到成虫,每天长大1倍(即第二天是第一天的2倍,第三天是第二天的2倍,……)。
30天能长到20厘米,那么长到2.5厘米时用了多少天?5、有120个队伍进行单循环淘汰赛比赛,最后要决出一个冠军队,问:需要多少场比赛才能决出冠军队?6.一种荷叶每天长大1倍,第100天把整个池塘铺满了,求盖满池塘的一半需要多少天?盖满池塘的四分之一需要多少天?。
三年级奥数解析:用倒推法解应用题综述:有些应用题解法的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着分析推理。
追根究底,逐步靠拢所求,直到解决问题。
这种思考问题的方法,通常我们把它叫做倒推法。
故事为铺垫例题:张二痞平时好吃懒做,还一心想发财,一天,他依在一棵大槐树上正幻想着如何发财,突然来了一位白发苍的老人,看透了他的心事,笑了笑对他说:“小伙子,我知道你在想什么,想发财,我可以帮助。
”张二痞高兴得跳起来:“真的!你帮我发了才,一定感谢你。
”老人说:“我知道你身上有钱,但不多,这样吧,把你身上的钱往身后树洞里一放,我吹一口气,你的钱就会增加一倍,然后你给我32元作为报酬。
”小伙子照样办了,钱果然增长了一倍,他恳求老人再来一次,钱一放,吹口气,又增加一倍,付给老人32元………经过四次之后,张二痞从树洞里取出32元,付给了老人,他变得两手空空的了。
十分沮丧。
老人把钱还给张二痞说:“小伙子,要发财,还得靠自己勤劳。
”说完老人不见。
这是怎么一回事?张二痞原来有多少钱?我们用“○”表示小伙子原来的钱数,按照上面说的,就会得到下面的图示:从上图就会发现,如果顺着算是很是很难算出原来的钱数,如果我们从最后的结果,倒推回去,就很容易算出原来的钱数,如果给老人32元,最后一次从树洞里取出的钱就是32元,第4次放进去的钱就是32÷2=16元了,照这样倒推回去,就得到下面的图示:2-32 ×2-32(4) (3)(2) (1)这样倒着推算的结果是张二痞原来只有30元。
有些问题,从已知条件出发,向所求的问题顺着推算得到答案是很困难的,如果从应用题所叙述的叙述的最后结果出发,倒着向前一步一步分析推算,直到解决问题,解起来就容易得多,这种利用已知条件,按照题目叙述的过程向相反的方向倒着推理思考、解答问题的方法,通常叫做“倒推法”。
例1 小聪问小明:“你今年几岁?”小明回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4。
第八讲倒推法解题
【思维规律】
有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步的推算,这种思考问题的方法叫做倒推法。
【重点点拨】
例1、一本文艺书,小明第一天看了全书的1
3
,第二天看了余下的
3
5
,还剩下48
页,这本书共有多少页?
例2、筑路队修一段路,第一天修了全长的1
5
又100米,第二天修了余下的
2
7
,
还剩下500米,这段公路全长多少米?
例3、有甲、乙两桶油,从甲桶中倒出1
3
给乙桶后,又从乙桶中倒出
1
5
给甲桶,
这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?。
倒推法解题一、考点、热点回顾用逆向方法解决问题就是根据问题的叙述过程,从最终结果开始,用逆向方法逐步找到问题的答案。
使用反向法求解问题时,原始加法用于减法,原始减法用于加法,原始乘法用于除法,原始除法用于乘法。
二、典型例题例1:一位农妇有一篮鸡蛋。
她第一次卖一半,第二次卖一半,第三次卖一半。
篮子里还有一个鸡蛋。
问:篮子里有多少个鸡蛋?例2、一瓶酒精,第一次倒出1/3,然后又倒回瓶中40克,第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有多少克酒精?例3:一只猴子偷着吃桃子。
第一天,他偷着吃树上1/10的桃子。
在接下来的8天里,他偷吃了1/9,1/8,1/7,。
,每天有1/2的桃子在树上。
此时,树上还剩下10个桃子。
问:树上有多少桃子?例4、甲、乙二人分16个苹果,分完后,甲将自己所得苹果数的1/3分给了乙,乙又将自己苹果数的1/3还给甲,最后甲又将自己现有苹果数的1/3分给了乙,这时两人苹果数恰好相等,问:最初甲分得多少个苹果?三、课堂练习1、有一堆桃子,第一只猴子拿走了这堆桃子的一半多半个,第二只猴子又拿走了剩下桃子的一半多半个,第三只猴子也拿走了剩下桃子的一半多半个,桃子正好被拿完,问:这堆桃子原来有几个?2.工地上有一堆沙子。
第一次,一半以上的砂用于0.5吨以上,第二次,一半以上的剩余砂用于0.5吨以上,第三次,一半以上的剩余砂用于0.5吨以上。
此时,施工现场仍有20吨沙子。
工地上有多少吨沙子?3、小明的存钱盒中有一些钱,小明每次用去盒中钱数的一半多1元,这样一共用了5次,盒中还剩下4元钱,小明的存钱盒中原来有多少元?4.第一次倒出一瓶橙汁,然后再倒回50克,第二次倒出剩余橙汁的2/5,第三次倒出150克。
此时,瓶子里剩下120克。
瓶子里有多少克橙汁?5、修一段公路,第一次修了全长的1/2多2千米,第二天修了余下的1/2少1千米,这时还剩下20千米没有修,这段公路长多少千米?6.一堆西瓜,第一次售出总数的1/4和6,第二次售出剩余的1/3和4,第三次售出剩余的1/2和3。
三年级奥数系列4——逆推问题
例1、有一个数把它加上13以后,得到的和再乘以8,所得积减去28,再将差除以4,最后得43.问这个数是多少?
练习1、一个数加上29以后,得到的和再乘以6,所得积减去44,再将差除以4,最后得82,问这个数是多少?
练习2、一段花布,第一次用去3米,第二次用去剩下的一般后还剩6米。
问:这段花布原来长多少米?
练习3、小乌龟看小山羊胡子一大把,问小山羊:“你今年多大岁数了?”小山羊摸摸胡子,笑着说:“把我的年龄加上100,再乘以100,再减去100,再除以100,结果比100多1.”小乌龟吃惊地说:“原来你比我还小3岁”问:小乌龟今年多少岁?
练习4、小芳去超市购物,她先用去所带钱的一半多8元,又用去剩下钱的一半少8元,这时还剩20元。
问:小芳去超市到了多少钱?
练习5、登登看一本卡通连环画故事书,第一天看了全书的一半还多8页,第二天看了剩下的一半,还有13页没看,问:这本书共有多少页?
练习6、美美、登登、悠悠三人共有画片156张,美美给了登登8张,登登给了悠悠12张,悠悠给了美美9张,这时三人的画片一样多。
问:三人原来各有画片多少张?
练习7、王婆婆卖西瓜,第一次卖出西瓜的一半又半个,第二天又卖去了剩下西瓜的一半又半个,此时还有3个西瓜,问王婆婆原有多少个西瓜?。
第六讲倒推与图示本讲的例1~例5 是还原问题,例6~例8 是列方程解应用题。
方程工具我们会在本学期第10 讲系统学习。
本讲列方程解应用题只需体会一下即可。
(一)还原问题还原问题侧重对孩子们逆向思考能力的培养,高年级的杯赛中有时也会出现还原问题。
还原问题:已知步骤和结果,要求判断最初的状态。
方法思路:倒推(每一步都是逆运算)展现形式:图示单个变量的还原问题:1、画线段图2、画框多个变量的还原问题:列表一、单个变量的还原问题主要是复习画图和画框两大方法例1 有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝。
这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒增加一倍,然后喝下去8 两酒。
这天他共遇到3 家酒店,在最后一家酒店喝完酒,葫芦里的酒刚好喝完。
问:原来有多少酒?分析与答:复习画框法(明确流程时常用此方法)顺序画好框图,逆着往回填,每一步都是逆运算。
例1 巩固练习一捆电线,第一天用去全长的一半多5 米,第二天用去余下的一半少8 米,第三天用去14 米,最后还剩10 米,求这捆电线原长。
分析与答:复习画线段图的方法(和一半比较时常用此方法)多5 米第一天用去全长的一半多5 米第一天余下少8 米第二天用去余下的一半少8 米第二天余下第 3 天用去14 米还剩10 米列式:图三:14+10=24(米)图二:(24-8)×2=32(米)图一:(32+5)×2=74(米)顺序画图,倒序列式。
另外用此法时建议不在一个图上画,以免过于凌乱看不清楚,可以把不变量对齐在下方另画。
本题也可用画框法,但注意多 5 米,及少8 米的符号。
二、多个变量的还原问题(1)基本型两个量:例2 甲乙两个油桶各装了15 千克油,售货员卖了14 千克,后来,⑴售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶油增加一倍;然后⑵又从乙桶倒一部分给甲桶,使甲桶也增加一倍,这时甲桶油恰好是乙桶油的 3 倍,问:售货员从两个桶里各卖了多少千克油?分析与答:最终共有油15×2‐14=16(千克)甲是乙的3 倍,则乙有16÷(3+1)=4(千克),甲有12 千克。
24欢迎下载学习好资料 ---------------------------------三年级奥数解析:用倒推法解应用题有些应用题解法的思考,是从应用题所叙述事情的最后结果出发,利综述:用已知条件一步一步倒着分析推理。
追根究底, 逐步靠拢所求,直到解决问题。
这种思考问题的方法,通常我们把它叫做倒推 法。
:张二痞平时好吃懒做,还一心想发财,一天,他依在一棵故事为铺垫例题 笑突然来了一位白发苍的 老人,看透了他的心事,大槐树上正幻想着如何发财, 了笑对他说:“小伙子,我知道你在想什么,想发财,我可以帮助。
”张二痞高兴 得跳起来:“真的!你帮我发了才,一定感谢你。
”老人说:“我知道你身上有钱, 但不多,这样吧,把你身上的钱往身后树洞里一放,我吹一口气,你的钱元作为 报酬。
”小伙子照样办了,钱果然增长了就会增加一倍,然后你给我32元 ......付给老人32 一倍,他恳求老人再来一次,钱一放,吹口气,又增加一倍,他变 得两手空空的了。
元,付给了老人,经过四次之后,张二痞从树洞里取出32 “小 伙子,要发财,还得靠自己勤劳。
”说十分沮丧。
老人把钱还给张二痞说:完老 人不见。
这是怎么一回事?张二痞原来有多少钱?我们用“O”表示小伙子 原来的钱数,按照上面说的,就会得到下面的图示:32X 2 - 32 X 2-32 X 2-[ I II 6 I |I |3)( ) (1 2() ) (4如果我们从最后的结如果顺着算是很是很难算出原来的钱数,从上图就会发现,元,最后一次从树洞 32果,倒推回去,就很容易算出原来的 钱数,如果给老人次放进去的钱就是 32十2 =元,里取出的钱就是32第416元 了,照这样倒推回去,就得到下面的图示:-X 232 -X 232学习好资料X 2 - 32欢迎下载 --------------------------------- 32□□ 4 口口一口28 243) ( (1) (2) 4)(元。
三年级奥数之典型问题倒推法Prepared on 22 November 2020三年级奥数之典型问题:倒推法【铺垫】猪八戒看到唐僧的篮子里有孙悟空化斋得来的果子,它偷偷的吃了其中的一半,还是觉得饿,又吃了剩下的一半,过了一会又吃了一半,最后偷偷的再吃了2个,他发现最后篮子里还剩下4个果子,他决定不吃了,那么猪八戒到底吃了多少果子呢【分析】这种题型的奥数题目或者应用题,在以后的4、5年级乃至初中都非常常见,我们常用线段法分析此类为题,线段分法是行程等问题的杀手锏!但是此道题目因为出现在小学三年级中,难度上不会太大,所以如果采用倒推法比较简单!解法一、线段直观的展示出当中的数量数量关系,所以:第三次之后剩下:4+2=6第二次之后剩下:6×2=12第一次之后剩下:12×2=24最初的果子数目:24×2=48所以猪八戒吃了:48-4=44解法二、利用倒推法或者我们常说的还原法:所以很快就可以得到最初的果子数目:(4+2)×2×2×2=48(个)所以猪八戒吃了:48-4=44(个)【拓展】一群蚂蚁搬家,原存一堆食物,第一天运出总数的一半少12克,第二天运出剩下的一半少12克,结果窝里还剩下43克,问蚂蚁原有食物_____克【分析】利用倒推法很快就有眉目了,但是请注意分析题意,关键是“运出总数的一半少12克”这句话怎么理解,有同学在这个问题上也许理解了,但是在进行倒推的时候又犯错了,该句话的意思是“还差12克到一半”,所以我们可以先运出一半然后再加上12克,理解了吗那么我们可以看到以下关系图:按照逆运算法则,原来乘法倒推过去就是除法,原来是加法倒推过去就是减法。
【提高】小亮拿着一包糖果,遇见好朋友A,把糖果分给了A一半少3块,过了一会又遇见好朋友B,把剩下的糖果的一半分给了他,后来遇到好朋友C,把这时手中所剩的糖果的一半多5块分给了C,这时小亮手中只有一块了,问在没有分给A之前,小亮那包糖总共多少块【分析】倒推法你会了吗关键是“糖果的一半多5块分给了C”这句话怎么理解,该句话的意思是“糖果的一半不够又拿出5块给C”,所以小亮的糖果剩下为原来一半然后再减去5。
三年级除法竖式倒推题(最新版)目录1.题目背景和要求2.解题思路和方法3.倒推法的具体步骤4.解题过程中的注意事项5.结论和总结正文一、题目背景和要求这是一道针对三年级学生的除法竖式倒推题。
题目要求学生通过已知的被除数和除数,求出商。
与常规的除法运算不同,这道题目要求学生采用倒推法,即从被除数开始,逐步向前推导,直至得到商。
二、解题思路和方法1.首先,学生需要了解除法竖式的基本结构,包括被除数、除数、商和余数等部分。
2.其次,学生要熟悉倒推法的解题思路,即从被除数开始,逐步向前推导,直至得到商。
3.在具体解题过程中,学生需要遵循以下步骤:a.将被除数写在竖式的上方,除数写在竖式的下方。
b.根据除数,从被除数的最高位开始,看能够除以除数的几位数,将商写在对应的位数上。
c.将商乘以除数,从被除数的最高位开始,将被除数减去得到的积。
d.将减去的积下一位的数字带下来,与剩下的被除数合并,重复步骤 b 和 c,直至被除数的最低位。
e.如果最后剩下的被除数小于除数,则将商的位数减 1,余数为剩下的被除数。
三、倒推法的具体步骤以一道具体的题目为例,如:255 ÷ 7 =?1.首先,将 255 写在竖式的上方,7 写在竖式的下方。
2.从 255 的最高位开始,可以看出 2 可以除以 7,商为 0,将 0 写在百位上。
3.将 0 乘以 7,从 255 的最高位开始,将被除数减去得到的积,得到 255 - 0 = 255。
4.由于 255 大于除数 7,所以将下一位 5 带下来,得到 25。
5.从 25 的最高位开始,可以看出 3 可以除以 7,商为 0,将 0 写在十位上。
6.将 0 乘以 7,从 25 的最高位开始,将被除数减去得到的积,得到 25 - 0 = 25。
7.由于 25 大于除数 7,所以将下一位 5 带下来,得到 5。
8.从 5 的最高位开始,可以看出 0 可以除以 7,商为 0,将 0 写在个位上。
第四讲用倒推法解题
【例1】牛老师带着37名同学到野外春游。
休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去8后,再除以2,加上9,结果恰好是我们今天参加活动的总人数。
”聪明的你知道牛老师今年多少岁吗?
【例2】一群蚂蚁搬家,原存一堆食物。
第一天运出总数的一半少12克。
第二天运出剩下的一半少12克,结果窝里还剩下43克。
问蚂蚁家原有食物多少克?
【例3】小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?
【例4】三棵树上停着24只鸟,如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树上飞5只鸟到第三棵树上去,那么三棵树上小鸟的只数都相等.第二棵树上原来停着多少只鸟?
【例5】小红、小芳、小明三人分苹果,小红得的比总数的一半多1个,小芳得的比剩下的一半多1个,小明得8个。
问原来共有苹果多少个?
变式练习:
1.阿瓜做了这样一个题目:一个数减16加上24,再除以7得36,求这个数?
2.太上老君把他今年的年龄加上16,用5除,再减去10,最后乘l0,恰巧100岁,你知道太上老君今年多少岁吗?
3.芳芳、宁宁和玲玲三人分铅笔,芳芳得的比总数的一半多1支,宁宁得的比剩下的一半多1支,玲玲得6支。
问原来共有铅笔多少支?
4.淘气在做一道减法时,把减数个位上的9看成了3,把十位上的4看成了7,得到的结果是164,请你帮淘气算算正确的答案应该是多少呢?
5.山顶上有棵桃数,一只猴子偷吃桃子,第一天偷吃了总数的一半多2个,第二天又偷吃了剩下的一半多2个,这时还剩1个,问:树上原来有多少个桃子?。
三年级奥数题及答案-倒推法
导语:适当的学习奥数可以锻炼思维,是大有好处的,一般来说学,小学生从小学三年级开始比较合适,四、五年级入手也不算太晚。
这是小编今天为同学们带来的题,要认真做哦!
一次数学考试后,李军问于昆数学考试得多少分.于昆说:"用我得的分数减去8加上10,再除以7,最后乘以4,得56."小朋友,你知道于昆得多少分吗?
答案与解析:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.
如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56.
如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.
解:{[(□-8)+10]÷7}×4=56
[(□-8)+10〕÷7=56÷4
答:于昆这次数学考试成绩是96分.
通过以上例题说明,用倒推法解题时要注意:
①从结果出发,逐步向前一步一步推理.
②在向前推理的过程中,每一步运算都是原来运算的逆运算.
③列式时注意运算顺序,正确使用括号.。
课题倒推法解题
教学目标再掌握画图和列表的策略解决问题的基础上,用“倒过来推想”的策略解决相关实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤,从而有效地解决问题。
重点学会运用“倒过来推想”的策略解决实际问题
难点
根据具体问题确定合理的解题步骤
引入:
一个数+/-/÷变成18,这个数是多少?
通货膨胀猪肉价格翻了一倍一斤28元,问原来价格多少?
例1:
小军说:用我的年龄减去9,再乘7,加上6,然后除以5,正好等于4.你知道小军现在多少岁吗
练一练1:
李大伯说:我得年纪加上8,除以4,减去15,用10乘,恰好是20,请问李大伯多少岁
例2:
练一练2:
小东做一道加法题,将其中一个加数“个位上的4看成8”,把另一个加数“十位的7看成1”,结果是152,求这道题的正确答案是多少
练一练3(1)
(2)
例4:
练一练4:
例5:
练一练5:
你学会了吗1
2 3.
4.
作业1
2
3。