不规则三角网(TIN)的建立分析
- 格式:ppt
- 大小:1.22 MB
- 文档页数:28
不规则三角网(TIN)Ⅰ 数字高程模型(DEM)地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。
于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已被普遍广泛采用。
数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。
DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。
格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。
不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。
不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。
Ⅱ TIN的基本知识在TIN中,满足最佳三角形的条件为:尽可能的保证三角形的三个角都是锐角,三角形的三条边近似相等,最小角最大化。
TIN 是基于矢量的数字地理数据的一种形式,通过将一系列折点(点)组成三角形来构建。
形成这些三角形的插值方法有很多种,例如Delaunay 三角测量法或距离排序法。
ArcGIS 支持Delaunay 三角测量方法。
TIN 的单位是英尺或米等长度单位,而不是度分秒。
当使用地理坐标系的角度坐标进行构建时,Delaunay 三角测量无效。
创建TIN 时,应使用投影坐标系(PCS)。
TIN 模型的适用范围不及栅格表面模型那么广泛,且构建和处理所需的开销更大。
获得优良源数据的成本可能会很高,并且,由于数据结构非常复杂,处理TIN 的效率要比处理栅格数据低。
不规则三角网(TIN)Ⅰ数字高程模型(DEM)地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。
于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已被普遍广泛采用。
数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。
DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。
格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。
不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。
不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。
Ⅱ TIN的基本知识在TIN中,满足最佳三角形的条件为:尽可能的保证三角形的三个角都是锐角,三角形的三条边近似相等,最小角最大化。
TIN 是基于矢量的数字地理数据的一种形式,通过将一系列折点(点)组成三角形来构建。
形成这些三角形的插值方法有很多种,例如 Delaunay 三角测量法或距离排序法。
ArcGIS 支持 Delaunay 三角测量方法。
TIN 的单位是英尺或米等长度单位,而不是度分秒。
当使用地理坐标系的角度坐标进行构建时,Delaunay 三角测量无效。
创建TIN 时,应使用投影坐标系(PCS)。
TIN 模型的适用范围不及栅格表面模型那么广泛,且构建和处理所需的开销更大。
不规则三角网(TIN)生成的算法第五章不规则三角网(TIN)生成的算法在第四章,基于三角网和格网的建模方法使用较多,被认为是两种基本的建模方法。
三角网被视为最基本的一种网络,它既可适应规则分布数据,也可适应不规则分布数据,即可通过对三角网的内插生成规则格网网络,也可根据三角网直接建立连续或光滑表面模型。
在第四章中同时也介绍了Delaunay 三角网的基本概念及其产生原理,并将三角网构网算法归纳为两大类:即静态三角网和动态三角网。
由于增量式动态构网方法在形成Delaunay 三角网的同时具有很高的计算效率而被普遍采用。
本章主要介绍静态方法中典型的三角网生长算法和动态方法中的数据点逐点插入算法;同时,还将给出考虑地形特征线和其他约束线段的插入算法。
而其他非Delaunay 三角网算法如辐射扫描法Radial Sweep Algorigthm(Mirante & Weingarten, 1982)等本文将不再介绍。
5.1 三角网生长法5.1.1 递归生长法递归生长算法的基本过程为如图 5.1.1 所示:3 213 21(a)形成第一个三角形(b) 扩展生成第二个和第三个三角形图5.1.1 递归生长法构建 Delaunay 三角网(1)在所有数据中取任意一点1(一般从几何中心附近开始),查找1距离此点最近的点 2,相连后作为初始基线 1-2;(2)在初始基线右边应用 Delaunay 法则搜寻第三点 3,形成第一个Delaunay 三角形;(3)并以此三角形的两条新边(2-3,3-1)作为新的初始基线;(4)重复步骤(2)和(3)直至所有数据点处理完毕。
该算法主要的工作是在大量数据点中搜寻给定基线符合要求的邻域点。
一种比较简单的搜索方法是通过计算三角形外接圆的圆心和半径来完成对邻域点的搜索。
为减少搜索时间,还可以预先将数据按 X 或 Y 坐标分块并进行排序。
使用外接圆的搜索方法限定了基线的待选邻域点,因而降低了用于搜寻Delaunay 三角网的计算时间。
2。
1数字高程模型建模数字高程模型有两种模式[4],一种是不规则三角网模型TIN,另一种是规则格网模型Grid。
两种模型可以相互转换,但一般大规模的地形都采用规则格网模型。
格网数字高程模型的建模方法可以有多种,最常用的方法是数字摄影测量方法,通过影像匹配自动生成数字高程模型。
当得不到立体影像,仅有地形图时,通常采用对现有地图进行扫描,获得矢量化等高线,再由等高线内插成数字高程模型。
当然,我们也可以通过外业测量的方法,获得大量高程点三维坐标,再内插成数字高程模型。
地面纹理影像可以从现有航空影像或航天遥感影像获得,也可根据地面物体的特征,人工赋予相应的纹理影像。
但不管用哪种方法,都要先将原始影像处理成数字正射影像,它有一致的比例尺,消除了投影误差,坐标与数字高程模型一致。
这样经过处理的数字正射影像才能与数字高程模型匹配,形成真实的景观模型。
由原始影像处理成数字正射影像可以有多种方法,通常有数字摄影测量方法和单片微分纠正方法。
不论哪种方法都是消除像片倾斜和投影差的过程,都要进行绝对定位使之归化比例尺和地面坐标。
2。
3三维建筑结构数据的获取与处理三维建筑结构是指房屋建筑、路桥、油罐、电视塔等各种三维实体,获得这些三维目标的框架数据主要有两种方法。
一种是用数字摄影测量方法,在立体模型上采集建筑物的框架坐标,然后通过建模软件将它们构造成体对象。
另一种方法是采用三维设计软件,如3Dmaxs,Multigen,Microstation等软件。
将设计好的三维实体导入并定位于地形景观模型中。
无论哪一种方法,都要对数据进行检核,使它们的连线正确,以利于粘贴侧面纹理。
三维实体数据检核的过程如下:(1)拓扑结构检查。
通过对每一地物的三维模型与航测像对中的立体影像的比对,检查三维模型的拓扑结构是否正确。
(2)建筑物顶部同高检查。
在现实中建筑物顶面绝大部分表现为同高的情况,而这就需要对三维建筑物模型的顶面进行同高检查,从而使点与平面符合。
第一章绪论1.1研究背景地球是人类生活和活动的承载体。
多年以来,我们为了更充分的认识自然客体和改造自然,总在不懈的努力尝试用不同的方式方法来描述、表达人所处的环境,其中地形图就是一个有代表性的测绘表述变迁的缩影。
从最开始的象形符号抽象的雏形到后来的在二维介质上对三维表面进行地形写景图,地貌写景图等描述是一个进步,但写景方式不具备可量测性,所以还是很局限的。
随着测绘技术发展,地形的表达也由写景式的定性表达过渡到了以等高线为主的矢量化表达。
航空摄影测量,遥感技术提供的影响都在对三维现实世界的模拟。
但是有一个矛盾体,那就是对于地形表面形态而言,一方面我们尽可能的从几何角度去理解和描述以解决实际应用中的可量测性;另外一个方面它本身是一种三维景观现象,对于其表述要考虑生理视觉感受,我们总是希望能够尽可能的直观形象逼真。
从20世纪四十年代开始的计算机图形学、计算机辅助制图等相关学科和理论的发展,使得在测绘领域,在图形表达表述方面发生了从模拟表达时代走向了数字表达时代,有了质的飞跃。
其中地理信息系统(GIS )及数字高程模型(DEM )学科或技术显得尤为重要。
地理信息系统,简称GIS (Geographical Information System ),它源于20世纪60年代初期加拿大测量学家Tomlinson 的“把地图变成数字形式的地图,以便计算机进行处理与分析”的观点,但是在技术工具处理中,则是利用计算机存贮、处理地理信息,并且在计算机软、硬件支持下,把各种资源信息和环境参数按空间分布或地理坐标,以一定的格式或者分类输入、处理、存贮、输出,用以满足其应用需要的人机交互系统。
因此GIS 的本质是在二维地理空间基础上实现对地下、地表和空中诸地理信息的数字化表达和管理。
当然地理信息系统技术发展到当前,功能不再是当初的局限于查询、检索和制图,而是丰富到空间分析、建模、决策等诸多方面,在数据管理上则从简单的栅格数据、矢量数据管理转向多元数据融合,在现实生活中应用的很活跃,也很充分。
不规则三角网(TIN )生成算法一、三角剖分的标准:空外接圆法:任意四点不能共圆最大最小角法:三角网内的最小角尽可能的大最短距离和准则:形成的三角形三边之和应满足最优解——三边之和最短张角最大准则:面积比准则: 三角形的内切圆面积/三角形面积或三角形面积/三角形周长的平方的值最小对角线法则:但插入另一个点时,寻找四边形对角线最短的那条边作为新的三角网二、Delaunay 符合的标准:三、递归生长算法的基本思路:四、凸闭包收缩法:先找到包含数据区域的最小凸多边形,并从该多边形开始从外向里逐层形成三角形网络五、逐点插入法生成TIN 的思路:首先提取整个数据区域的最小外边界矩形范围,以此作为最简单的凸闭包->按一定法则将数据区域的矩形范围进行格网划分,限定每个格网单元平均拥有的数据点数->根据数据点的(x,y )坐标建立分块索引的线性链表->剖分数据区域的凸闭包形成两个超多边形->按照3建立的顺序链表顺序往4的三角形中插入数据点:先找到包含数据点的三角形,进而连接该点与三角形的三个顶点,简单剖分该三角形为三个新的三角形->分别调整新生成的三个三角形及其相邻的三角形,交换公共边->重复5~6,直到所有数据点都被插入到三角网中六、三角网TIN数据类型:无约束数据域——无约束TIN 约束数据域:内部约束及外部约束七delaunay法则:当三角形外接圆内不包含任意其他点,且其三个顶点相互通视时形成的三角网为一个带约束条件的delaunay法三角形八、带约束条件的delaunay Lawson LOP交换:在带约束的delaunay法则满足的条件下,由两相邻三角形组成的凸四边形的局部最佳对角线才被选取九、在TIN生成中如何考虑地形特征线三角剖分时要求TIN三角网中得三角形满足形态最优和无地形线穿越三角形的要求,主要有:三角形初始剖分->判断剖分三角形是否满足三角形形态比最大原则->判断特征线是否穿越剖分三角形->剖分点选择。
创新论坛217一种简单的不规则三角网生成算法研究◆吴双江 海丽 巢琥不规则三角网(TIN )是专为产生DEM 数据而设计的一种DEM 数据模型。
本文介绍了一种简单的生成TIN 的算法,并通过编程实现了TIN 的构建。
引言不规则三角网(Triangulated Irregular Networks ,TIN )是专为产生DEM 数据而设计的一种DEM 数据模型。
TIN 的优点是高效率的存储,数据结构简单,易于更新,它克服了高程矩阵中冗余数据的问题,而且能更加有效地用于各类以DEM 为基础的空间分析和计算。
本文介绍一种简单的生成TIN 的算法,并通过C++语言编程实现TIN 的构建。
1 TIN的特性和三角化准则最常用的TIN 构网方法是Delaunay 三角剖分法,构成的D-三角网具有以下特性:满足最小角最大化的最佳三角形条件;任意三个离散点构成的Delaunay 三角形的外接圆中不包括其他离散点;由于D-三角网与V-图具有对偶性,一旦离散点集的平面坐标固定不变,所连接的三角网具有唯一性,不随起始点的不同而变化。
根据TIN 的特性,便产生了以下4种常用的TIN 三角化准则:1.1空外接圆准则:在TIN 中,每个三角形的外接圆均不包含点集的其余任何点。
1.2张角最大准则:一点到基边的张角为最大。
1.3面积比准则:三角形内切圆面积与三角形面积或三角形面积与周长平方之比最小。
1.4对角线准则:两个三角形组成的凸四边形的两条对角线之比,比值限定值须给定,即当计算值超过限定值才进行优化。
一般而言,应尽量保持三角网的唯一性,即在同一准则下由不同的位置开始建立三角形网络,其最终的形状应是相同的,在这一点上,空外接圆准则、张角最大准则可以做到。
对角线准则含有主观因素,使用得不多。
2 TIN生成算法研究2.1 三角网生长算法分析TIN 的生成算法有多种,其中三角网生长算法是比较容易实现的。
三角网生长算法的基本步骤是:(1)以任一点为起始点;(2)找出与起始点最近的数据点相互连接形成D-三角形的一条边作为基线,按D-三角网的判别法则,找出与基线构成D-三角形的第三点;(3)基线的两个端点与第三点相连,成为新的基线;(4)迭代以上两步直至所有基线都被处理。