、不规则三角网生成的算法
- 格式:ppt
- 大小:2.99 MB
- 文档页数:28
不规则三角网数字模型(Triangulated Irregular Network,TIN)是用一组连续而不重复的三角形逼近地形表面,是数字地面模型中的一种主要表示方法。
数字地面模型(Digital Terrain Model,DTM)是地表二维地理空间位置和其相关的地表属性信息的数字化表现,是地理信息系统(Geographic Information System,GIS)的重要组成部分,是数字地球的基础。
本文在前人研究的基础上,探讨和研究了国内外的不规则三角网生成算法,通过理论和实验选择了Tsung-pao fang和Les.piegl提出的Delaunay三角网生成算法作为数字地面模型的核心算法,并对该算法进行了改进和优化。
从地球化学工作中的实际需要出发,建立了适用于地球化学的不规则三角网数字模型,并在模型的基础上进行了地球化学数据的处理分析应用。
本文主要在以下几方面作了深入的研究工作: 1 对不规则三角网生成算法进行了系统的对比分析,特别是对Delauny三角网生成算法进行了较深入的分析研究...快速不规则三角网生成方法【摘要】:本发明快速不规则三角网生成方法属于计算机图形学领域中的一项支柱性技术,可以广泛应用于地理信息系统、地质勘探等多种领域。
具体包括数据点自动分块方法、局部三角网生成方法、局部三角网融合方法、考虑相邻点最大距离阈值的最小角最大化原则优化方法四个部分以及利用本方法的软件。
本方法避免了其他不规则三角网生成方法中交点测试等耗时操作,缩短不规则三角网的构建时间,提高不规则三角网的构建速度,还可以通过相邻点最大距离阈值参数控制最终生成的三角网形态。
【主权项】:1、一种由任意数据点生成不规则三角网的方法,其特征在于方法具体如下:首先将数据点根据输入的参数划分成数据块;其次,对于各个数据块中数据按照行扫描方式进行排序,并按照排序后的顺序生成局部三角网;然后,先对同行的数据块中的相邻局部三角网进行融合,形成行局部三角网,在对相邻行三角网进行融合,形成整体初始三角网;最后,对于整体三角网采用考虑相邻点最大距离阈值的最小角最大化原则进行优化,形成最终的符合Delaunay法则的不规则三角网(TIN)。
DEM重点整理第一章概述1. 模型:指用来表现其他事物的一个对象或概念,是按比例缩减并转变到我们能够理解的形式的事物本体。
2. 数字地面模型含义的扩展:测绘学家心目中的数字地面模型是新一代的地形图,地貌和地物不再用直观的等高线和图例符号在纸上表达,而且通过储存在磁性介质中的大量密集的地面点的空间坐标和地形属性编码,以数字的形式描述。
3. 数字高程模型的概念:数字高程模型简称DEM。
它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型的一个分支,其它各种地形特征值均可由此派生。
4. 数字高程模型的含义:DEM是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数字表达。
5. 数字地面模型的特点:(1)易以多种形式显示地形信息;(2)精度不会损失;(3)容易实现自动化、实时化;(4)具有多比例尺特性。
6. 数字高程模型的应用范畴:见课本10页作为国家地理信息的基础数据土木工程、景观建筑与矿山工程的规划与设计为军事目的‘军事模拟等)而进行的地表三维显示景观设计与城市规划流水线分析、可视性分析关交通路线的规划与大坝的选址不同地表的统计分析与比较生成坡度图、坡向图、剖面图,辅助地貌分析,估计侵蚀和经流等作为背景叠加各种专题信息如土壤、土地利用及植被搜盖数据等,以进行显示与分析为遥感、环境规划中的处理提供数据辅助影像解译、遥感分类将I}If}概念扩充到表示与地表相关的各种属性,如人口、交通、旅行时间等与GI5联合进行空间分析虚拟地理环境第二章数字高程模型的采样理论1.采样的理论背景:推而广之,采样定理同样适用于决定相邻剖面之间的采样间隔,从而得以获取由DEM所表示的地形表面的足够信息。
反之,如果地形剖面的采样间隔是Dx,那么波长小于2Dx的地形信息将完全损失。
2.数据采样策略:(1)沿等高线采样(2)规则格网采样(3)剖面法(4)渐进采样(5)选择性采样(6)混合采样3. 数字高程模型源数据的三大属性:数据的分布、数据密度、数据精度。
等值线生成方法发展历程等值线是地理信息系统(GIS)、气象学、地质学等领域中常用的一种图形表达方式,它能够直观地展示出空间数据的分布特征。
随着计算机技术的飞速发展,等值线生成方法也在不断演进。
本文将为您详细介绍等值线生成方法的发展历程。
一、手工绘制阶段在计算机技术尚未普及之前,人们主要依靠手工方法绘制等值线。
这一阶段的主要方法有:1.费马原理法:通过在数据点上画切线,找出曲率半径最小的点,连接相邻的切线交点,从而生成等值线。
2.插值法:在已知数据点之间进行插值,得到未知点的数值,然后根据这些数值绘制等值线。
3.方格网法:将研究区域划分为方格网,计算每个方格内的平均值,然后根据方格网的等值线绘制等值线图。
二、计算机辅助绘制阶段随着计算机技术的发展,人们开始利用计算机辅助绘制等值线。
这一阶段的主要方法有:1.直接法:将离散数据点输入计算机,通过插值方法生成等值线。
2.间接法:首先生成一系列规则网格点,然后在这些点上进行插值,最后生成等值线。
3.等高线追踪法:在已知数据点之间进行等高线追踪,生成等值线。
三、基于网格的等值线生成方法随着GIS技术的普及,基于网格的等值线生成方法逐渐成为主流。
这一阶段的主要方法有:1.网格插值法:对规则网格点进行插值,得到等值线。
2.等值线追踪法:在网格点上直接进行等值线追踪。
3.Marching Squares算法:通过对网格单元的编码,查找等值线经过的网格单元,从而生成等值线。
4.虚拟等值线法:在网格点上进行虚拟等值线追踪,生成等值线。
四、基于不规则三角网的等值线生成方法针对复杂地形,基于不规则三角网的等值线生成方法应运而生。
这一阶段的主要方法有:1.Delaunay三角网:首先生成不规则三角网,然后在三角网上进行等值线追踪。
2.Alpha Shapes算法:通过对三角网进行Alpha剪裁,生成等值线。
3.三角网插值法:在三角网内进行插值,得到等值线。
五、基于图形硬件加速的等值线生成方法近年来,随着图形硬件性能的提升,基于图形硬件加速的等值线生成方法逐渐受到关注。
不规则三角网(TIN)生成的算法第五章不规则三角网(TIN)生成的算法在第四章,基于三角网和格网的建模方法使用较多,被认为是两种基本的建模方法。
三角网被视为最基本的一种网络,它既可适应规则分布数据,也可适应不规则分布数据,即可通过对三角网的内插生成规则格网网络,也可根据三角网直接建立连续或光滑表面模型。
在第四章中同时也介绍了Delaunay 三角网的基本概念及其产生原理,并将三角网构网算法归纳为两大类:即静态三角网和动态三角网。
由于增量式动态构网方法在形成Delaunay 三角网的同时具有很高的计算效率而被普遍采用。
本章主要介绍静态方法中典型的三角网生长算法和动态方法中的数据点逐点插入算法;同时,还将给出考虑地形特征线和其他约束线段的插入算法。
而其他非Delaunay 三角网算法如辐射扫描法Radial Sweep Algorigthm(Mirante & Weingarten, 1982)等本文将不再介绍。
5.1 三角网生长法5.1.1 递归生长法递归生长算法的基本过程为如图 5.1.1 所示:3 213 21(a)形成第一个三角形(b) 扩展生成第二个和第三个三角形图5.1.1 递归生长法构建 Delaunay 三角网(1)在所有数据中取任意一点1(一般从几何中心附近开始),查找1距离此点最近的点 2,相连后作为初始基线 1-2;(2)在初始基线右边应用 Delaunay 法则搜寻第三点 3,形成第一个Delaunay 三角形;(3)并以此三角形的两条新边(2-3,3-1)作为新的初始基线;(4)重复步骤(2)和(3)直至所有数据点处理完毕。
该算法主要的工作是在大量数据点中搜寻给定基线符合要求的邻域点。
一种比较简单的搜索方法是通过计算三角形外接圆的圆心和半径来完成对邻域点的搜索。
为减少搜索时间,还可以预先将数据按 X 或 Y 坐标分块并进行排序。
使用外接圆的搜索方法限定了基线的待选邻域点,因而降低了用于搜寻Delaunay 三角网的计算时间。
约束条件下不规则delaunay三角网构建方法
不规则Delaunay三角网构建是一种在约束条件下构建三角网的方法,它可以有效地构建出满足约束条件的三角网。
首先,需要确定约束条件,即确定三角网中的节点和边的位置。
然后,根据约束条件,使用Delaunay三角剖分算法构建三角网。
Delaunay三角剖分算法是一种基于三角形的空间划分算法,它可以将空间划分为一系列的三角形,使得每个三角形的外接圆内没有其他节点。
这样,就可以构建出满足约束条件的三角网。
最后,需要对构建的三角网进行优化,以满足约束条件。
优化的方法有很多,比如调整节点位置、添加新的节点、删除多余的节点等。
这些优化操作可以使得构建的三角网更加符合约束条件,从而提高三角网的质量。
总之,不规则Delaunay三角网构建是一种在约束条件下构建三角网的有效方法,它可以有效地构建出满足约束条件的三角网,并且可以通过优化操作来提高三角网的质量。
创新论坛217一种简单的不规则三角网生成算法研究◆吴双江 海丽 巢琥不规则三角网(TIN )是专为产生DEM 数据而设计的一种DEM 数据模型。
本文介绍了一种简单的生成TIN 的算法,并通过编程实现了TIN 的构建。
引言不规则三角网(Triangulated Irregular Networks ,TIN )是专为产生DEM 数据而设计的一种DEM 数据模型。
TIN 的优点是高效率的存储,数据结构简单,易于更新,它克服了高程矩阵中冗余数据的问题,而且能更加有效地用于各类以DEM 为基础的空间分析和计算。
本文介绍一种简单的生成TIN 的算法,并通过C++语言编程实现TIN 的构建。
1 TIN的特性和三角化准则最常用的TIN 构网方法是Delaunay 三角剖分法,构成的D-三角网具有以下特性:满足最小角最大化的最佳三角形条件;任意三个离散点构成的Delaunay 三角形的外接圆中不包括其他离散点;由于D-三角网与V-图具有对偶性,一旦离散点集的平面坐标固定不变,所连接的三角网具有唯一性,不随起始点的不同而变化。
根据TIN 的特性,便产生了以下4种常用的TIN 三角化准则:1.1空外接圆准则:在TIN 中,每个三角形的外接圆均不包含点集的其余任何点。
1.2张角最大准则:一点到基边的张角为最大。
1.3面积比准则:三角形内切圆面积与三角形面积或三角形面积与周长平方之比最小。
1.4对角线准则:两个三角形组成的凸四边形的两条对角线之比,比值限定值须给定,即当计算值超过限定值才进行优化。
一般而言,应尽量保持三角网的唯一性,即在同一准则下由不同的位置开始建立三角形网络,其最终的形状应是相同的,在这一点上,空外接圆准则、张角最大准则可以做到。
对角线准则含有主观因素,使用得不多。
2 TIN生成算法研究2.1 三角网生长算法分析TIN 的生成算法有多种,其中三角网生长算法是比较容易实现的。
三角网生长算法的基本步骤是:(1)以任一点为起始点;(2)找出与起始点最近的数据点相互连接形成D-三角形的一条边作为基线,按D-三角网的判别法则,找出与基线构成D-三角形的第三点;(3)基线的两个端点与第三点相连,成为新的基线;(4)迭代以上两步直至所有基线都被处理。
不规则三角网的原理和应用1. 引言不规则三角网是一种在地理信息系统(GIS)和计算机图形学中常用的数据结构,用于表示地形、地貌和其他空间数据。
本文将介绍不规则三角网的原理和应用。
2. 不规则三角网的原理不规则三角网是由一组不重叠的三角形组成的网络,其中每个三角形的边都共享一条边。
它可以用于将二维或三维空间上的数据进行离散化表示。
以下是建立不规则三角网的基本原理:•节点选择:首先需要选择一组合适的节点来构建三角网。
节点可以是地理位置、数据采集点或其他感兴趣的位置。
这些节点将成为三角网的顶点。
•三角剖分:根据节点的位置,在节点之间进行三角形的剖分。
通常使用Delaunay三角剖分方法,保证所有三角形的内接圆不包含其他节点,这样可以避免形成过于细长或扭曲的三角形。
•节点连接:将每个三角形的顶点连接起来形成三角网。
每个三角形的边都共享一条边,这样可以保证三角网的连续性。
3. 不规则三角网的应用不规则三角网在地理信息系统和计算机图形学中有广泛的应用。
以下是几个常见的应用场景:3.1 地形分析不规则三角网可以用于对地形进行离散化表示和分析。
通过节点的高程信息,可以计算每个三角形的面积、坡度和曲率等地形属性。
这对于地质学、测绘学和环境科学等领域的地形分析非常重要。
3.2 地理可视化不规则三角网可以用于地理可视化,将地理数据以更直观的方式呈现出来。
通过对三角形进行插值,可以根据节点上的数据对整个区域进行表面重建,从而生成地形模型或地图。
这对于城市规划、区域分析和地理导航等应用非常有用。
3.3 网格生成在计算机图形学中,不规则三角网可以用于网格生成。
根据给定的节点,可以通过插值方法生成一系列网格点,用于绘制曲线、表面或其他图形。
这对于计算机辅助设计、虚拟现实和游戏开发等领域非常重要。
3.4 数据插值不规则三角网可以用于数据插值,将离散的数据点进行填充。
通过插值方法,可以根据已知节点的属性估计其他位置的属性。
这对于气象学、地质学和农业等领域的数据分析非常有用。