全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)
- 格式:doc
- 大小:160.50 KB
- 文档页数:10
1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' . 2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''='A . 1个 B. 2个 C. 3个 D. 4个4.如图1,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
(注:将你认为正确的结论填上)图1图26. 如图,已知∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.BAE21F CD7.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。
BA EFCDC1.如图,CE ⊥AB ,DF ⊥AB ,垂足为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理由是( ).A .SSSB. AASC. SASD. HL2.下列说法正确的个数有( ).①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个3.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 .4.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )cm.5.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ). A .全等 B. 不一定全等 C. 不全等 D. 面积相等,但不全等6.如图,∠B=∠D=︒90,要证明△ABC 与△ADC 全等,还需要补充的条件是 .7.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:DE=AD+BE.8.如图,△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB 。
全等三角形判定练习题一、选择题1. 在三角形ABC和三角形DEF中,若AB=DE,AC=DF,BC=EF,那么这两个三角形:A. 相似B. 全等C. 不全等D. 无法确定2. 若三角形ABC的角A等于角D,且AB=DE,AC=DF,但BC不等于EF,这两个三角形:A. 相似B. 全等C. 不相似D. 不全等3. 已知三角形ABC与三角形DEF全等,根据SAS(边-角-边)判定,下列选项正确的是:A. AB=DE,BC=EF,角A=角DB. AB=DE,AC=DF,角B=角EA. AB=DE,角A=角D,角B=角ED. AB=DE,角A=角D,角C=角F二、填空题4. 如果三角形ABC与三角形DEF全等,且角A等于角D,角B等于角E,那么角C等于______。
5. 在三角形ABC中,若AB=AC,角A等于角B,根据______判定,三角形ABC是等腰三角形。
6. 如果三角形ABC的边AB等于三角形DEF的边DE,且角A等于角D,角B等于角E,但角C不等于角F,根据______判定,这两个三角形不全等。
三、解答题7. 已知三角形ABC与三角形DEF全等,且AB=DE,角B=角E,求证AC=DF。
8. 在三角形ABC中,已知AB=AC,角A=角B,求证三角形ABC是等腰三角形。
9. 根据SSS(边-边-边)判定,如果三角形ABC的边AB、AC、BC分别等于三角形DEF的边DE、DF、EF,那么这两个三角形是______。
10. 如果三角形ABC的边AB、AC等于三角形DEF的边DE、DF,但角A不等于角D,角B不等于角E,求证这两个三角形不全等。
四、证明题11. 证明:如果三角形ABC的角A等于角D,角B等于角E,且AB+AC=DE+DF,那么三角形ABC与三角形DEF全等。
12. 已知三角形ABC与三角形DEF全等,且角A等于角D,角B等于角E,证明:角C等于角F。
13. 在三角形ABC中,如果角A等于角B,且AB+BC=AC+BC,证明:三角形ABC是等腰三角形。
全等三角形的判定(六大题型)【题型01:判断三角形全等-SSS】【题型02:判断三角形全等-SAS】【题型03:判断三角形全等-ASA】【题型04:判断三角形全等-AAS】【题型05:判断三角形全等-HL】【题型06:全等三角形的综合】【题型01:判断三角形全等-SSS】1.如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=CF,求证:△ABC≌△DFC.2.如图,AC=BD,BC=AD,求证:△ABC≌△BAD.3.已知:如图,点A、D、C、B在同一直线上,AC=BD,AE=BF,CE=DF.(1)求证:△AEC≌△BFD;(2)求证:DE∥CF4.如图,已知AB=AC,AD=AE,BD=CE.(1)求证:∠BAC=∠DAE;(2)猜想∠1,∠2,∠3之间的数量关系,并证明.5.如图,已知点B,C,D,E在同一条直线上,AB=FC,AD=FE,BC=DE.求证:△ABD≌△FCE.6.已知:如图,AB=AC,DB=DC,F是AD的延长线上一点.求证:(1)∠ABD=∠ACD;(2)BF=CF.7.如图,在△ABC和△DEF中,BE=CF,AB=DE,AC=DF.(1)求证:△ABC≌△DEF.(2)若BC=11,BF=16,求CE的长.【题型02:判断三角形全等-SAS】8.如图,在△ABC和△AED中,AB=AE,∠BAE=∠CAD,AC=AD.求证:△ABC≌△AED.9.如图,已知A、B、C、D在同一直线上,AB=CD,DE∥AF,且DE=AF.试说明:(1)△AFC≌△DEB;(2)BE∥CF.10.如图,点B,F,E,C在同一条直线上,AB∥CD,AB=DC,BE=CF,求证:△ABE≌△DCF.11.如图,AD=AE,AC=AB.求证:△ACD≌△ABE.12.如图,已知AD=AB,AC=AE,∠DAB=∠CAE,连接DC,BE.(1)求证:△BAE≌△DAC;(2)若∠CAD=135°,∠D=20°,求∠E的度数.13.如图:已知AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=30°,∠2=40°,求∠3的度数.14.已知:如图,点B,E,F,C在同一条直线上,AB=DC,∠B=∠C,BE=CF.(1)求证:△ABF≌△DCE.(2)若∠AGE=80°,求∠AFE的度数.【题型03:判断三角形全等-ASA】15.如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.16.如图,AD=AE,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AC=12,CD=8,BC=10,求BC边上的高的长度.17.如图,A、E、F、B在同一条直线上,AE=BF,∠A=∠B,∠CEB=∠DFA,试说明:△AFD≌△BEC.18.如图,点A为△ABC和△ADE的公共顶点,已知∠C=∠E,AC=AE,请你添加一个条件,使得AB=AD.(不再添加其他线条和字母)(1)你添加的条件是______;(2)根据你添加的条件,写出证明过程.19.已知:如图,在Rt△ABC中,∠B=90°,BC⊥CD,DE⊥AC于点E,AB=CE.求证:△ABC≌△CED.20.如图所示,已知BC∥DE,AD=CF,∠A=∠F.(1)求证:△ABC≌△DEF;(2)判断AB和EF的位置关系并说明理由.21.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,∠ABE=∠ACD,BE、CD相交于点O.(1)求证:△ABE≌△ACD;(2)求证:BD=CE.22.如图,已知点B,E,C,F在一条直线上,∠ACB=∠DEF,AB∥DF,BE=FC.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=8,求BC的长.【题型04:判断三角形全等-AAS】23.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.24.如图,点E,C在BF上,∠ACB=∠DEF,BE=CF,∠A=∠D.试说明△ABC≌△DFE.25.如图,点C、E在BF上,BE=CF,AB∥FD,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若∠B=50°,∠BED=145°,求∠D的度数.26.如图,在△ABC与△DEF中,点B,E,C,F在一条直线上,AB∥DE,AC=DF,∠A=∠D.(1)试说明△ABC≌△DEF;(2)若BF=7,CE=3,求线段BE的长度.27.如图,△ABC中,AB=AC,D、E是边AB、AC上的点,连接CD、BE交于点F,∠ADC=∠AEB.(1)求证:CD=BE;(2)若∠A=45°,∠ACD=20°,求∠BFC的度数.【题型05:判断三角形全等-HL】28.如图,点B、E、C、F在同一直线上,∠A=∠D=90°,BE=CF,AC=DF.求证:∠B=∠DEF.29.已知:如图,∠B=∠C=90°,且AF=DE,BE=CF.(1)求证:AB=DC;(2)若∠A=55°,求∠DEF的度数.30.如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠ACB=∠DEF.31.如图,过射线EF外一点D,作DE⊥EF,点A为射线EF上一点,在AF上截取AC=DE,作MC⊥EC,点D,M位于EF的同侧,连接AD,以A为圆心,以AD的长为半径画弧,交MC于B.求证:(1)△DAE≌△ABC;(2)AD⊥AB.32.如图,在△ABC中,∠C=90°,将线段AB绕点A逆时针旋转50°得到线段AD,过点D作DE⊥AB,垂足为点E,DE=BC,求∠B的度数.33.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=15°,BF=3,求AE的长.【题型06:全等三角形的综合】34.如图,在△ABC中,∠B=80°,将AB沿射线BC的方向平移至A′B′,连接AA′,设A′B′与AC的交点为O.(1)若B′为BC的中点,求证:△AOA′≌△COB′;(2)若AC平分∠BAA′,求∠C的度数.35.如图所示,工人赵师傅用10块高度都是1.5m的相同长方体新型建筑材料,垒了两堵与地面垂直的墙ABCD和EFGH,其中AB⊥BE于点B,FE⊥BE于点E,点P在BE上,已知AP=PF,AB=PE.(1)求证:△ABP≌△PEF;(2)求BE的长.36.如图,在△ABC中,∠C=90°,点D是AB边上一点,DE⊥AB,且DE=AC,DE与AC 交于点G,过点E作FE∥BC交AB于点F,交AC于点H.(1)求证:△ABC≌△EFD;(2)若∠EFD=58°,求∠DGH的值.37.如图,A 、D 、E 三点在同一条直线上,且△ABD≌△CAE .(1)若DB =6,CE =4,求DE ;(2)若BD ∥CE ,求∠BAC .38.如图,在△ABC 中,∠ABC =∠ACB ,点D ,E 分别在边AB 和AC 上,连接BE ,CD ,交点为F ,且AD =13AB ,AE =13AC .(1)求证:CD =BE .(2)求证:DF =EF .39.如图,AB=CD,AM⊥BC于点M,DN⊥BC于点N,CM=BN,连接AN,DM.求证:(1)△ABM≌△DCN;(2)AN∥DM.40.如图,在△ABC中,点D是边BC上一点,点E是边BC延长线上一点,BD=EC,点F 为△ABC外一点,连接DF,EF,∠A=∠F,AC∥DF,(1)求证:△ABC≌△FED;(2)若点D是BC中点,且BE=12,BA=4,AC=5,求△DEF的周长.41.在四边形ABCD中,∠B=90°,E为BC边的中点,AE平分∠BAD,F分别为AD上一点,AF=AB.(1)求证:△ABE≌△AFE;(2)若∠AED=90°,请证明BC⊥CD.42.如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠CPD的度数;(2)若AE=3,CD=5,求线段AC的长.43.如图,在△ABC中,∠B=∠C,点D是边BC上一点,AB=DC,点E在边AC上.(1)若∠ADE=∠B,求证:△BAD≌△CDE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数.44.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:△BDE≌△CDF;(2)已知AC=12,BE=2,求AB的长.。
全等三角形判定专题1.边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL”定理是直角三角形所独有的,对于一般三角形不成立.【归纳】判定两个三角形全等常用的思路方法如下:HL SASSSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边— 题型归纳一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △C .BDE △≌CDE △D .以上答案都不对二、用边角边(SAS )证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB =AC ,添加下列条件,能用SAS 判断△ABE ≌△ACD 的是A .∠B =∠CB .∠AEB =∠ADCC .AE =ADD .BE =DC三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.基础练习题1.如图,PB ⊥AB 于B ,PC ⊥AC 于C ,且PB =PC ,则△APB ≌△APC 的理由是A .SASB .ASAC .HLD .AAS2.如图,若∠ABC =∠DCB ,当添加下列条件时,仍不能判断△ABC ≌△DCB 的是A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD3.如图,点C 在AOB 的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧4.下列条件中,能判定两个直角三角形全等的是 A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等5.如图,小明设计了一种测零件内径AB 的卡钳,问:在卡钳的设计中,要使DC =AB ,则AO 、BO 、CO 、DO 应满足下列的条件是A .AO =COB .AO =CO 且BO =DOC .AC =BD D .BO =DO6.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出A.2个B.4个C.6个D.8个7.如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=__________°.8.如图,D为△ABC内一点,且AD=BD,若∠ACD=∠DAB=45°,AC=5,则S△ABC=__________.9.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,试说明:△CDA≌△CEB.10.我们把两组邻边相等的四边形叫做“筝形”.如图所示四边形ABCD是一个筝形,其中AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.11.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.12.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF ≌Rt△DCE.13.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌ΔDEF;(2)若∠A=55°,∠B=88°,求∠F的度数.能力提升14.如图,D 、E 、F 分别为△ABC 边AC 、AB 、BC 上的点,∠A =∠1=∠C ,DE =DF .下面的结论一定成立的是A .AE =FCB .AE =DEC .AE +FC =ACD .AD +FC =AB15.如图:已知点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC =AE ,则有A .△ABD ≌△AFDB .△AFE ≌△ADC .△AEF ≌△DFCD .△ABC ≌△ADE16.如图,在四边形ABCD 中,AB CD =,AD CB =,OA OC =,OB OD =,则图中的全等三角形有A .2对B .3对C .4对D .5对17.如图,在ABC △和BDE △中,点C 在BD 边上,AC 边交BE 边于点F .若AC BD AB ED ==,,BC BE =,则ACB ∠等于A .EDB ∠B .BED ∠C .12AFB ∠D .2ABF ∠18.如图,在△ABC中,AC=3,中线AD=5,则边AB的取值范围是__________.19.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=__________.20.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,AF=6,求AD的长.21.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AE C.BD=CE D.BE=CD22.(2018•黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙23.(2018•南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+c C.a-b+c D.a+b-c24.(2018•临沂)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是A.32B.2 C.22D.1025.(2018•衢州)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是__________(只需写一个,不添加辅助线).26.(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.27.(2018•衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.参考答案1.C2.D3.D4.D5.B6.B7.108°8.2529.∵△ABC 、△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴CE =CD ,BC =AC ,∴∠ACB -∠ACE =∠DCE -∠ACE ,∴∠ECB =∠DCA , 学科@网在△CDA 与△CEB 中,BC AC ECB DCA EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△CDA ≌△CEB .10.∵在△ABD 和△CBD 中,AB =CB ,AD =CD ,BD =BD , ∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE =OF .11.∵∠BAC =∠DAE ,∴∠BAD =∠CAE .∵在△ABD 与△ACE 中,==BAD CAE AB AC ABD ACE ⎧⎪=⎨⎪⎩∠∠∠∠,∴△ABD≌△ACE(ASA)∴BD=CE.∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,∴∠F=∠ACB=37°.14.C15.D16.C17.C19.820.621.D22.B23.D24.B25.AB=ED26.∵DA=BE,∴DE=AB,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ), ∴∠C =∠F .27.(1)在△AEB 和△DEC 中,=AE DE AEB DEC BE EC =⎧⎪⎨⎪=⎩∠∠,∴△AEB ≌△DEC (SAS ).(2)∵△AEB ≌△DEC ,∴AB =CD , ∵AB =5,∴CD =5.。
全等三角形一、全等三角形1、定义:能够完全重合的两个三角形叫做全等三角形。
特征:形状相同、大小相等、完全重合。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
平移、翻折、旋转前后的图形全等。
2、全等三角形的表示:“全等”用“≌”表示,“∽”表示两图形的形状相同,“=”表示大小相等,读作“全等于”。
注意:记两三角形全等时,通常把表示对应顶点的字母写在对应位置上。
全等三角形的对应元素:对应顶点,对应边,对应角3、全等三角形的性质(1)全等三角形的对应边相等、对应角相等。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
4、全等三角形的判定(1)边边边:三边对应相等的两个三角形全等(可简写成“SSS”)(2)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)(3(4(551、2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意的问题(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。
FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,BE=CF .求证∠A=∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D.5.如图,AD =BC ,AB =DC ,DE =BF. 求证:BE =DF.ADCB1.如图,AC 和BD 相交于点O ,OA=OC ,OB=OD .求证DC ∥AB .2.如图,△ABC ≌△,AD ,分别是△ABC ,△的对应边上的中线,AD 与有什么A B C '''A D ''A B C '''A D ''关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。
全等三角形的性质与判定(SSS 、SAS 、ASA 、AAS )练习题1. 如图,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C=2. 如图,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=1题图 2题图 3题图 4题图 3. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO=4. 如图,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠DEF =5. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,求DE 的长.6. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,试判断AD 与EF 的关系,并证明你的结论。
7. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
8. 如图,AD=BD ,A D ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?BAB'B9. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE 的延长线上,CG=AB ,求证:A G ⊥AF10. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG.试判断AD 与AG 的关系如何?并证明之.11. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:AF ⊥CD12. 已知:∠B=∠E,且AB=AE 。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。
120°B.125°C。
127° D。
104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BAD B。
∠CAB=∠DBA C.OB=OC D。
∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论。
5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3 B。
4 C.5 D。
6CBA 2、如图2,AB=AC ,AD=A E,欲证△A BD ≌△A CE ,可补充条件( ) A 。
∠1=∠2B .∠B=∠C C.∠D=∠ED 。
∠BAE=∠C AD 3、如图3,AD=B C,要得到△AB D和△CD B全等,可以添加的条件是( )A .AB∥CD B。
AD ∥B CC .∠A=∠C D.∠ABC =∠CDA4、如图4,AB 与CD 交于点O ,O A=OC ,OD =OB ,∠A OD =________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,A D平分∠BAC ,请补充完整过程说明△A BD≌△ACD 的理由。
全等三角形的判定(ASA,AAS)1.已知:如图, ∠1=∠2 , ∠3=∠4求证:AC=AB.2. 已知:如图, FB=CE , AB∥ED , AC∥FD.F、C在直线BE上.求证:AB=DE , AC=DF.3. 已知:如图, AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.4. 已知:如图A C⊥CD于C , B D⊥CD于D , M是AB的中点, 连结CM并延长交BD于点F。
求证:AC=BF.5. 已知:如图, E、D、B、F在同一条直线上, AD∥CB , ∠BAD=∠BCD , DE=BF.求证:AE∥CF.6. 如图在△ABC和△DBC中, ∠1=∠2 , ∠3=∠4 , P是BC上任意一点.求证:PA=PD.7.已知:如图, AE=BF , AD∥BC , AD=BC.AB、CD交于O点.求证:OE=OF8.已知:如图AC∥BD , AE和BE分别平分∠CAB∠DBA ,CD过点E.求证AB=AC+BD直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等. 【典型例题】例1 如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系. 例2 已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.例3 公路上A 、B 两站(视为直线上的两点)相距26km ,C 、D 为两村庄(视为两个点),DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA=16km ,BC=10km ,现要在公路AB 上建一个土特产收购站E ,使CD 两村庄到E 站的距离相等,那么E 站应建在距A 站多远才合理?例4 如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关系.BCABDCEF【经典练习】1.在Rt△ABC和Rt△DEF中,∠ACB=∠DFE=︒90,AB=DE,AC=DF,那么Rt△ABC与Rt△DEF(填全等或不全等)2.如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC≌Rt△ABC的理由是()A.SSSB. ASAC. SASD. HL3.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么().A.SSS B. AAS C. SAS D. HL4.下列说法正确的个数有().①有一角和一边对应相等的的两个直角三角形全等;②有两边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个直角三角形全等;④有两角和一边对应相等的两个直角三角形全等.A.1个 B. 2个 C. 3个 D. 4个5.过等腰△ABC的顶点A作底面的垂线,就得到两个全等三角形,其理由是 .6.如图,△ABC中,∠C=︒90,AM平分∠CAB,CM=20cm,那么M到AB的距离是()cm.7.在△ABC和△CBA'''中,如果AB=BA'',∠B=∠B',AC=CA'',那么这两个三角形().A.全等 B. 不一定全等 C. 不全等 D. 面积相等,但不全等8.如图,∠B=∠D=︒90,要证明△ABC与△ADC全等,还需要补充的条件是 .9.如图,在△ABC中,∠ACB=︒90,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.CBAADAN。
1.如图, CE BD = , 点F 分别是BE 和 CD 的中点。
求证:CFE BFD ∆≅∆2.如图, AB DC = ,EB AC =,点F 是DE 的中点。
求证:AEB DAC ∆≅∆3.如图, DA DB = ,AC BC =。
求证:DAC DBC ∆≅∆ECC4.如图, AC AB = , ,点D 是BC 的中点。
求证:ACD ABD ∆≅∆5.如图, AC AB = ,CD BD =。
求证:ACD ABD ∆≅∆6.如图, AC BD = ,ED FC =, BF AE =。
求证:BDE ACF ∆≅∆BB7.如图, CD AB = ,CB AD =。
求证:CDB ABD ∆≅∆8.如图, AC BD = ,ED FC =, BF AE =。
求证:BDE ACF ∆≅∆9.如图, BC AD = ,BD AC =。
求证:CBD DAC ∆≅∆DA10 如图,BE AE =, CE DE = ,求证:BEC AED ∆≅∆11 如图,AC AB =, 21∠=∠ ,求证:ACD ABD ∆≅∆12. 如图,CF BE =, DC AB =, C B ∠=∠ ,求证:DCE ABF ∆≅∆AB13. 如图,AE AD =, AC AB =, 求证:AEB ADC ∆≅∆14. .如图,点C 是BD 的中点 ,EC AC =, , ECB ACD ∠=∠ ,求证:EDC ABC ∆≅∆15.如图,CF DE =, BE AF =, 21∠=∠ ,求证:BCE ADF ∆≅∆D16.如图, AB DC // ,EB AC //,点A 是DE 的中点。
求证:AEB DAC ∆≅∆17.如图, BD AC // ,CF DE //, BF AE =。
求证:BDE ACF ∆≅∆18. 如图,C B ∠=∠, AC AB =, 求证:AE AD =EC19 .如图,点C 是BD 的中点 ,BD AB ⊥, DB ED ⊥ ,ECB ACD ∠=∠ ,求证:EC AC =20.如图,CF DE =, BC AD //, 21∠=∠ ,求证:B A ∠=∠21.如图,43∠=∠, , 21∠=∠ ,求证:AD AC =DA22.如图, AB DC // ,B C ∠=∠,点F 是DE 的中点。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
全等三角形的判定〔SSS〕1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,那么∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•那么下面的结论中不正确的选项是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,AB=A1B1,BC=B1C1,那么补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS〞证明______≌_______得到结论.5、如图,AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导以下结论:⑴∠D=∠B;⑵AE∥CF.7、如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的根底上,求证:DE∥BF.D C BA 全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,那么图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD 〔 〕 6、如图6,AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,AB=AD ,假设AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,假设把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC与-.BE 的位置关系还成立吗?(注意字母的变化)全等三角形〔三〕AAS 和ASA【知识要点】1.角边角定理〔ASA 〕:有两角及其夹边对应相等的两个三角形全等. 2.角角边定理〔AAS 〕:有两角和其中一角的对边对应相等的两个三角形全等. 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.A-.例5.如图,321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠那么△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,以下条件能判断△ABC 和△C B A '''全等的个数有〔 〕 ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,MB=ND ,NDC MBA ∠=∠,以下条件不能判定是△ABM ≌△CDN 的是〔 〕A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出以下结论:ABD C EO12 3AFDOB EC①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
(注:将你认为正确的结论填上)AB C DO图2图36.如图3所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为适宜的条件).7. 如图,∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.BAE21F CD8.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。
BA EFCD9.如图,AB ,CD 相交于点O ,且AO=BO ,试添加一个条件,使△AOC ≌△BOD ,并说明添加的条件是正确的。
〔不少于两种方法〕10.如图,:BE=CD ,∠B=∠C ,求证:∠1=∠2。
A CBO11.如图,在Rt△ABC中,AB=AC,∠BAC=90º,多点A的任一直线AN,BD⊥AN于D,CE⊥AN于E,你能说说DE=BD-CE的理由吗?直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等.【典型例题】例1 如图,B、E、F、C在同一直线上,AE⊥BC,DF⊥BC,AB=DC,BE=CF,试判断AB与CD的位置关系. ABEF ┐┘-.例2 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.例3 公路上A 、B 两站〔视为直线上的两点〕相距26km ,C 、D 为两村庄〔视为两个点〕,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=16km ,BC=10km ,现要在公路AB 上建一个土特产收购站E ,使CD 两村庄到E 站的距离相等,那么E 站应建在距A 站多远才合理?例4 如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关系. 例5 如图,A 、E 、F 、B 四点共线,AC ⊥CE 、BD ⊥DF 、AE=BF 、AC=BD ,求证:△ACF ≌△BDE.【经典练习】1.在Rt △ABC 和Rt △DEF 中,∠ACB=∠DFE= 90,AB=DE ,AC=DF ,那么Rt △ABC 与Rt △DEF 〔填全等或不全等〕2.如图,点C 在∠DAB 的内部,CD ⊥AD 于D ,CB ⊥AB 于B ,CD=CB 那么Rt △ADC ≌Rt △ABC 的理由是〔 〕A .SSS B. ASA C. SASD. HL3.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理BC ABDCE F-.由是〔 〕.A .SSSB. AASC. SASD. HL4.以下说法正确的个数有〔 〕.①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个5.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 . 6.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是〔 〕cm.7.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形〔 〕.A .全等B. 不一定全等C. 不全等D. 面积相等,但不全等8.如图,∠B=∠D=︒90,要证明△ABC 与△ADC 全等,还需要补充的条件是 .9.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:DE=AD+BE.10.如图,AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,那么,CE=DF 吗?谈谈你的理由!AADAN-.11.如图,AB=AC ,AB ⊥BD ,AC ⊥CD ,AD ,BC 相交于点E ,求证:〔1〕CE=BE ;〔2〕CB ⊥AD.提高题型:1.如图,△ABC 中,D 是BC 上一点,DE⊥AB,DF⊥AC,E 、F 分别为垂足,且AE=AF ,试说明:DE=DF ,AD 平分∠BAC.2.如图,在ABC 中,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分别是E 、F ,且DE=DF ,试说明AB=AC.3.如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE ,求证:AF=CE.4.如图,△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB 。