简述磁共振成像含义和磁共振条件
- 格式:docx
- 大小:26.80 KB
- 文档页数:2
核磁共振的三个基本条件一、核磁共振简介核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种基于核自旋和磁场相互作用的物理现象。
它通过在恒定磁场中施加射频脉冲,使原子核自旋发生共振吸收或发射能量的过程来获取核磁共振信号。
核磁共振在医学、材料科学、化学等领域有重要应用,如核磁共振成像(MRI)在医学诊断中的广泛应用。
二、核磁共振的三个基本条件核磁共振的观测需要满足三个基本条件,即静态磁场条件、射频场条件和梯度磁场条件。
2.1 静态磁场条件静态磁场条件是指实验过程中需要产生一个强而稳定的静态磁场。
静态磁场的强度通常用磁场强度的单位——特斯拉(Tesla,简称T)来表示。
对于核磁共振实验,通常需要较高的磁场强度,如1.5T、3.0T、7.0T等。
2.2 射频场条件射频场条件是指实验中需要施加一定频率的射频脉冲场。
射频脉冲场的频率需要与核磁共振现象中的Larmor频率相匹配,以实现对核自旋的激发。
Larmor频率由核自旋、外磁场强度和核磁旋磁比共同决定。
2.3 梯度磁场条件梯度磁场条件是指实验中需要产生梯度磁场,用于定位和空间编码。
梯度磁场可用来控制核磁共振信号的频率和位置。
通常采用线圈产生额外的梯度磁场,使得不同位置的核磁共振频率不同,从而可以通过频率编码来获得空间位置信息。
三、核磁共振实验步骤3.1 样品制备与装填核磁共振实验需要准备样品,并将其装填到核磁共振仪的探头中。
样品通常是含有核自旋的化合物,如水、乙醇等。
3.2 施加静态磁场核磁共振实验中需要施加一个强大的静态磁场。
静态磁场的强度决定了核磁共振信号的强度和分辨率。
施加静态磁场需要一个稳定而均匀的磁场源,如超导磁体。
3.3 施加射频脉冲在静态磁场的基础上,需要施加一定频率的射频脉冲场。
射频脉冲场可以通过射频线圈产生,并与静态磁场垂直。
3.4 探测核磁共振信号在施加射频脉冲后,观察样品中的核磁共振信号。
核磁共振信号可以通过感应线圈进行接收,并通过谱仪等装置进行信号放大和处理。
核磁共振是什么-核磁共振的基本原理核磁共振是什么-核磁共振的基本原理大家知道什么是核磁共振吗?以下是PINCAI小编整理的关于核磁共振的相关内容,欢迎阅读和参考!核磁共振是什么_核磁共振的基本原理核磁共振是什么核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。
核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。
核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查:即使安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。
不能把监护仪器、抢救器材等带进核磁共振检查室。
另外,怀孕不到3个月的孕妇,最好也不要做核磁共振检查。
核磁共振的基本原理原子核的自旋核磁共振主要是由原子核的自旋运动引起的。
不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。
自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,如下表。
分类质量数原子序数自旋量子数INMR信号I偶数偶数无II偶数奇数1,2,3,…(I为整数)有III奇数奇数或偶数0.5,1.5,2.5,…(I为半整数)有I值为零的原子核可以看做是一种非自旋的`球体,I为1/2的原子核可以看做是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。
I大于1/2的原子核可以看做是一种电荷分布不均匀的自旋椭球体。
[2] 核磁共振现象原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。
μ=γP式中,P是角动量矩,γ是磁旋比,它是自旋核的磁矩和角动量矩之间的比值,因此是各种核的特征常数。
磁共振成像基本知识连云港市第一人民医院神经科何效兵磁共振成像基本原理磁共振(Magnetic Resonance)是置于磁场内的某些物质,其原子核吸收和发射出物定频率的射频能量现象,其吸收和释放射频能量的频谱决定于所观察的原子核及其化学环境。
磁(Magnet)有三种含义:1.磁共振成像必须有一个较大的磁体产生强大的静磁场(β),常说的0.3T、0.5T就是指β,β恒定不变。
2.成像必须在β上按时叠加另外小的梯度磁场与射频磁场。
3.运动的质子自旋产生自旋磁场。
共振(Resonance)是宏观世界常见的现象,在微观世界中,核子间能量传递也存在共振现象。
一、磁共振现象原子核内的质子和中子都有角动量和自旋的特性,成对的质子和中子的自旋作用可相互抵消,能够形成MR的原子核其质子和中子必须为奇数,这样才具有净负荷和角动量,由于净负荷和角动量二者的结合,原子核具有磁偶极子的特性。
人体中水的成分占60%,因此,目前临床磁共振成像实际为氢质子像。
可以把奇数的质子或中子所形成的偶极子看成是自由悬空的小磁棒,沿其磁轴快速旋转,在没有外加静磁场的作用下,人体中氢核是杂乱无章地沿着自身的轴不断自旋的,当处于静磁场中时,低能状态下的氢核沿外加磁场方向排列,产生净磁化,但自转的氢原子由于力偶的作用,其自旋轴则沿着外加静磁场方向不停地作陀螺样旋转,这一运动被称为进动(而少数高能态氢核取反向),通常把静磁场方向在扫描机内相当于人体的纵轴。
氢原子本身的自旋轴与外加磁场方向的夹角为进动角,进动频率ω与外加磁场β成正比,由Larmor频率决定,其公式为:ω=γ×β(ω——进动频率;γ——旋磁比常数;β——静磁场场强)。
ω称为Larmor频率,也是氢原子核的共振频率;γ为一个常数,氢核的旋磁比为42 . 58MHz/T,如果知道β,就可计算出ω。
如:0.5T场强ω为42. 58×0.5=21 . 29 MHz,静磁场恒定时,Larmor频率也是恒定的。
什么是磁共振相关介绍磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。
那么你对磁共振了解多少呢?以下是由店铺整理关于什么是磁共振的内容,希望大家喜欢!什么是磁共振磁共振指的是自旋磁共振(spin magnetic resonance)现象。
其意义上较广,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。
此外,人们日常生活中常说的磁共振,是指磁共振成像(Magnetic Resonance Imaging,MRI),其是利用核磁共振现象制成的一类用于医学检查的成像设备。
磁共振的基本原理磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。
磁矩M 在磁场B 中受到转矩MBsinθ(θ为M与B间夹角)的作用。
此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。
由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。
但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。
如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω =ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。
这一现象即为磁共振。
磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g为朗德因子,μ为玻尔磁子,e和me为电子的电荷和质量。
外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。
如果等于塞曼能级裂距,啚ω=gμBB=啚γB,即ω=γB(啚=h/2π,h为普朗克常数),则自旋系统将吸收这能量从低能级状态跃迁到高能级状态(激发态),这称为磁塞曼能级间的共振跃迁。
什么是磁共振成像在现代医学领域,磁共振成像(Magnetic Resonance Imaging,简称MRI)已经成为了一种极为重要的诊断工具。
它能够为医生提供人体内部结构和组织的详细信息,帮助诊断各种疾病。
那究竟什么是磁共振成像呢?简单来说,磁共振成像就是一种利用磁场和无线电波来生成人体内部图像的技术。
我们都知道,人体是由无数的原子和分子组成的,其中氢原子在人体内的含量非常丰富,尤其是在水和脂肪中。
而磁共振成像主要就是针对人体内的氢原子进行探测和成像。
当我们被放入磁共振成像的机器中时,机器会产生一个强大的磁场。
这个磁场比地球磁场要强成千上万倍。
在这样的强磁场中,人体内的氢原子核就像一个个小磁针,会按照磁场的方向排列。
然后,机器会发射特定频率的无线电波,这些无线电波会打乱氢原子核的排列。
当无线电波停止后,氢原子核会逐渐回到原来的排列状态,并释放出能量。
这些能量会被机器接收并转化为图像信号。
那么,磁共振成像有什么独特的优势呢?首先,它对软组织的分辨能力非常高。
与传统的 X 光和 CT 检查相比,MRI 能够更清晰地显示肌肉、韧带、神经、血管等软组织的结构和病变。
这对于诊断脑部疾病、脊椎疾病、关节疾病等具有重要意义。
其次,MRI 没有辐射危害。
X 光和 CT 检查都是通过 X 射线来成像的,而 X 射线具有一定的辐射性。
长期或多次接受这些检查可能会对人体造成潜在的损害。
而 MRI 则完全依靠磁场和无线电波,不会产生辐射,因此对于儿童、孕妇等特殊人群来说,是一种更为安全的检查方式。
再者,MRI 可以多方位、多层面成像。
它不仅可以像 X 光和 CT 那样进行横断面成像,还可以进行冠状面、矢状面以及任意角度的成像,从而更全面地观察病变的位置、形态和与周围组织的关系。
然而,磁共振成像也并非完美无缺。
它的检查时间相对较长,一个部位的检查可能需要十几分钟甚至更长时间,这对于一些病情危急或难以长时间保持静止的患者来说可能不太适用。
简述磁共振的成像原理1.引言1.1 概述磁共振成像(Magnetic Resonance Imaging,简称MRI),是一种利用人体组织内的核磁共振现象进行断层成像的无创检查技术。
它通过对人体放置在强磁场中的氢原子核进行激发和接收,获取人体内部组织的详细图像。
相较于传统的X射线、CT等成像技术,MRI无需使用有害的放射线,具有安全性高、分辨率高等优势,在医学领域具有重要的应用价值。
MRI成像所依据的基本原理是核磁共振现象。
原子核中的质子具有自旋,当处于强磁场中时,这些自旋会在一定条件下发生预cession(进动)的运动,这种运动会产生所谓的Larmor频率。
在医学上常用的是具有单个质子的氢原子核,因此所讨论的核磁共振主要是指质子磁共振。
在磁共振成像过程中,首先需要将被检查者放置在强磁场中,使得人体内的质子保持一定的方向性。
接着,根据需要的成像部位,利用用于激发核磁共振现象的射频脉冲对人体进行激发,使得部分质子的自旋状态发生改变。
然后,通过梯度磁场的作用,调整不同的共振频率,逐步激发和接收不同部位的信号。
最后,利用收集到的信号数据通过计算机进行处理,生成高质量的图像,并由医生进行解读和诊断。
磁共振成像技术已经广泛应用于医学领域,如神经学、骨科、心脏学等。
其高分辨率、无创伤的特点使得医生能够更加准确地观察和诊断人体组织的病变情况,为疾病的早期发现和治疗提供了重要的参考依据。
综上所述,磁共振成像的概述部分主要介绍了该技术的基本原理和应用价值。
在接下来的文章中,我们将详细阐述磁共振成像的原理和步骤,并探讨其在医学领域的前景和应用。
1.2 文章结构文章结构部分的内容如下:文章结构部分旨在给读者提供本文的组织结构和主要内容,并引导读者对磁共振成像的原理有一个初步的了解。
本文将分为三个主要部分进行阐述:引言、正文和结论。
在引言部分,我们将简要概述磁共振成像的背景和基本概念,并介绍本文的结构和目的。
首先,我们将提供磁共振成像的概述,包括其在医学和科学研究领域中的重要性和应用。
磁共振成像原理及功能磁共振磁共振成像(Magnetic Resonance Imaging, MRI)是一种非侵入性、无辐射的医学影像技术,是通过核磁共振原理对人体进行断层扫描成像的一种方法。
磁共振成像利用人体组织中的氢原子核作为成像的信号源,通过对核磁共振现象进行检测和分析来得到人体内部的高质量图像。
磁共振成像的原理是基于核磁共振的物理原理。
人体组织中存在大量的氢原子核,它们具有自旋(旋转)的特性。
当人体暴露在强磁场中时,氢原子核的自旋会同向或反向翻转,这种翻转是有规律的。
当外加一个特定频率的无线电波时,如果其频率与翻转的氢原子核的共振频率相对应,那么氢原子核就会吸收能量并发出辐射,这种辐射就是磁共振信号。
通过控制外部的磁场强度和不同方向上的磁场梯度,磁共振成像可以对氢原子核所在的位置进行精确定位。
通过改变不同位置上的磁场梯度,并根据不同位置上氢原子核的共振频率,可以逐层扫描患者的人体结构。
利用计算机对扫描的数据进行处理和重建,就可以生成人体的影像。
磁共振成像有很多功能。
首先,磁共振成像可以对人体内部器官、组织、血管、神经等多种结构进行无创性、高分辨率的成像。
它可以提供非常详细的解剖信息,并且对于软组织的显示效果非常好,使得医生可以更准确地诊断疾病。
其次,磁共振成像还可以提供功能性信息。
功能磁共振(Functional Magnetic Resonance Imaging, fMRI)是一种利用磁共振成像技术来研究大脑功能的方法。
它可以通过测量血氧水平的变化来推断大脑中的神经活动。
在fMRI研究中,会让被试执行特定的任务,通过观察其大脑激活区域的变化来研究不同的认知、感知和运动功能。
此外,磁共振成像还可以进行血管造影。
通过注射对比剂,可以更清晰地显示血管系统的情况,包括动脉、静脉和微血管等。
这对于检测血管狭窄、异常和血管瘤等疾病非常有帮助。
总的来说,磁共振成像具有很高的分辨率和对比度,可以提供丰富的结构和功能信息。
磁共振成像概述磁共振成像( Magnetic Resonance Imaging )是利用人体内氢原子核在强磁场内共振产生影像的一种医学检查和诊断的方法。
•MRI是什么?–——无线电波成像•MRI的特点?–——是软组织分辨率最高的影像检查手段•MRI的适应症?–——可适用全身检查•功能MRI是什么?–——可提供活体的结构、代谢信息磁共振信号=无线电波依据质子拉莫尔频率,其波长位于短波或超短波。
如:0.5T 拉莫尔频率为21.3MHz, 波长为14.08m(短波)1.5T 拉莫尔频率为63.9MHz, 波长为4.69m(超短波)磁共振成像的定义:磁共振成像(magnetic resonance imaging,MRI)是利用射频(radio frequency,RF)电磁波对置于磁场中的含有自旋不为零的原子核的物质进行激发,发生核磁共振(nuclear magnetic resonance,NMR),用感应线圈采集磁共振信号,按一定数学方法进行处理而建立的一种数字图像。
核磁共振的含义:核—磁共振现象涉及原子核(特别是氢原子核)磁—磁共振过程发生在强大静磁场的巨大磁体内在静磁场上叠加射频场按时做激励诱发共振叠加梯度磁场进行空间标记并控制成像共振—借助宏观世界自然现象解释微观世界的物理学原理(如音叉振动),核子间能量吸收与释放可产生共振(磁场中)共振现象的三个基本条件(1) 必须有一个主动振动的频率(2)主动振动频率与被动振动的物体固有频率必须相同(3) 主动振动物体具有一定强度并与被振动物体保持一定距离磁共振具备三种磁场才能完成:即静磁场,梯度磁场,射频脉冲磁场。
磁共振现象:处于恒定磁场中的氢原子核,在特定频率(拉摩尔Larmor )的射频脉冲( RF ) 影响下交替吸收、释放能量的过程。
什么是核磁共振现象?位于静磁场中的人体组织受到射频场的作用产生磁共振信号并利用梯度场进行空间编码实现对信号的定位,通过计算机的重建处理,从而得到图像。
磁共振成像技术复习题一、名词解释I.磁共振成像是利用处在静磁场中人体内的原子核磁化后,在外加射频磁场作用下发生共振而产生影像的一种成像技术。
2■弛豫当停止射频脉冲后,被激发的氢原子核把吸收的能量逐步释放出来,其相位和能级都恢复到激发前的平衡状态。
3■横向弛豫驰豫期间,横向磁化矢量逐渐减小直至消失的过程。
4■纵向弛豫驰豫期间,纵向磁化矢量开始恢复的过程。
5.T1WIT i加权,图像对比度主要来自组织间的T i差异。
6.T2IWT2加权,图像对比度主要来自组织间的T2差异。
7■质子密度加权像图像主要反应不同组织间氢质子在含量上的差异。
&重复时间TR脉冲序列执行一次所需要的时间,也就是从第一个RF激励脉冲出现到下一周期同一脉冲再次出现所经历的时间。
9.回波时间TERF激励脉冲的中心点到回波信号中心点的时间间隔。
10.对比度噪声比:contrance nose ratio CNR图像中相邻组织、结构间信号强度差值的绝对值与背景噪声的比值。
II.K空间空间频率K所对应的频率空间,是一个抽象的频率空间。
12.自旋回波以90°脉冲激励开始,后续以180°相位重聚焦脉冲并获得回波信号的脉冲序列。
13.化学位移在外磁场不变的情况下,相同的原子核再不同分子中具有不同的共振频率。
14.信噪比图像中感兴趣区域的平均信号强度与背景平均噪声强度的比值,是衡量图像质量最重要的指标。
二、填空题1. MR成像仪主要由以下五部分构成:磁体系统、梯度系统、射频系统、控制系统和运行保障系统。
2•受激励后核自旋与周围物质交换能量主要有两种形式,一是纵向弛豫过程;二是横向弛豫过程。
3.MRA是在MR的临床应用中较为普遍的技术,常用的技术有三种:时间飞越法、相位对比法______ 及对比增强MRA。
4.磁共振K空间的常用填充方式有循序对称填充、K空间中央优先采集技术、K空间放射状采集技术、迂回轨迹采集技术。
5.MRI患者相关的伪影有运动伪影、 _______ 金属伪影_________ 、______ 磁敏感性伪影_________ 。
磁共振成像理论磁共振成像(Magnetic Resonance Imaging, MRI)是一种先进的医学成像技术,通过利用原子核的磁共振现象来获取人体或其他物体的内部结构信息。
该技术在医学诊断、科学研究和生命科学领域中具有广泛的应用。
一、原理和基本概念磁共振成像依托于核磁共振现象,即原子核在特定条件下受外加磁场的作用下发生共振现象。
当被测物体置于强磁场中,并受到一定频率的无线电波激励后,原子核会产生共振吸收信号。
通过检测这些信号的强度和频率,可以推导出物体内部的结构信息。
二、核磁共振成像过程及关键技术核磁共振成像主要包括以下步骤:1.建立磁场:通过使用超导磁体或永磁体,在被测物体周围形成强磁场,通常为1.5T至3.0T。
2.激励原子核:通过发射无线电波的线圈,激励原子核进入共振状态。
激励的频率通常为几百兆赫兹到几十兆赫兹。
3.信号接收:使用感应线圈来接收原子核发生共振后的信号。
感应线圈一般固定在成像设备中,或者放置在被测物体附近。
4.数据采集和处理:通过接收到的信号,利用数学算法和图像重建技术,将信号转化为图像并显示出来。
常用的图像重建算法包括傅里叶变换和滤波器处理等。
三、磁共振成像的优势和应用磁共振成像具有以下优势:1.无辐射:相比X射线和CT扫描,磁共振成像不使用任何辐射,减少了对患者的伤害。
2.高对比度:磁共振成像对不同组织具有较高的对比度,可以清晰地显示软组织和血管结构。
3.多参数成像:通过改变扫描序列和参数设置,可以获取不同的图像信息,如T1加权图像、T2加权图像、弥散加权图像等。
4.功能成像:磁共振成像还可以进行功能性研究,如脑功能成像、心脏功能成像等。
磁共振成像在医学领域有广泛应用,如:1.诊断:磁共振成像可用于检测和评估各种病理状态,如肿瘤、脑卒中、骨关节疾病等。
2.导航手术:磁共振成像可以提供高分辨率的内部结构图像,用于导航手术过程中的定位和操作指导。
3.疾病研究:磁共振成像可以用于研究疾病的发展机制、脑功能和结构的变化等。
简述磁共振成像含义和磁共振条件
引言
磁共振成像(Ma gn et i cR es on an ce Im agi n g,MR I)是一种通过检测原
子核在磁场中的共振信号来获取人体内部结构信息的影像技术。
磁共振成像在医学诊断、神经科学研究等领域具有广泛应用。
本文将简要介绍磁共振成像的含义以及实现磁共振成像所需的条件。
一、磁共振成像的含义
磁共振成像利用原子核在强磁场中产生的共振信号,通过对这些信号
进行检测和分析,得到体内各种组织和器官的高分辨率影像。
磁共振成像的原理基于核磁共振现象,即原子核在外加磁场的作用下,能够吸收或放出电磁波。
通过对原子核吸收和放出的电磁波信号进行探测和处理,可以得到体内结构的详细信息。
二、磁共振成像的条件
要实现磁共振成像,需要满足以下条件:
1.高强度稳定磁场
磁共振成像需要一个高强度且稳定的静态磁场。
通常使用超导磁体来
提供高强度稳定的磁场,以确保成像的准确性和可重复性。
2.梯度磁场
除了静态磁场,磁共振成像还需要梯度磁场。
梯度磁场可以在空间上
对磁共振信号进行编码,以获得不同位置的信号。
通过改变梯度磁场的强度和方向,可以获取不同方向上的解剖结构信息。
3.高频脉冲场
高频脉冲场用于激发原子核共振。
通过向体内施加一个频率与待成像
核素共振频率相匹配的全幅高频脉冲场,能够使部分原子核进入共振状态,产生弱的共振信号。
4.接收线圈
为了接收磁共振信号,需要在待成像区域周围放置接收线圈。
接收线圈能够将原子核发出的共振信号转换为电信号,并传输给图像采集系统进行处理。
结论
磁共振成像通过对原子核在磁场中的共振信号进行检测和分析,获得体内组织和器官的高分辨率影像。
要实现磁共振成像,需要满足高强度稳定磁场、梯度磁场、高频脉冲场和接收线圈等条件。
这些条件的满足确保了磁共振成像的可靠性和精准性,为医学诊断和科研研究提供了强有力的工具。
这篇文库文档简要介绍了磁共振成像的含义以及实现磁共振成像所需的条件,希望能够帮助读者对磁共振成像有一个初步的了解。