大学物理实验讲义实验示波器原理和使用
- 格式:docx
- 大小:405.15 KB
- 文档页数:11
实验5 示波器原理和使用示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。
用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。
由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y 轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。
因此示波器是一种应用广泛的综合性电信号测试仪器。
示波器按用途和特点可以分为:通用示波器。
它是根据波形显示基本原理而构成的示波器。
取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。
与通用示波器相比,取样示波器具有频带极宽的优点。
记忆与存储示波器。
这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。
专用示波器。
为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。
智能示波器。
这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。
它是当前发展起来的新型示波器。
也是示波器发展的方向。
本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG—8016G型数字式函数信号发生器的使用方法。
【实验目的】1.了解示波器显示图象的原理。
2.较熟练地掌握示波器的调整和使用方法。
3.掌握函数信号发生器的使用方法。
4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。
【仪器用具】SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A 型数字合成函数信号发生器)。
【实验原理】1.示波器的基本结构和工作原理示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。
《示波器的的原理和使用》物理实验报告
实验名称: 示波器的原理和使用
实验目的: 通过实验了解示波器的原理和使用方法,掌握使用示波器进行波形显示和测量的技巧。
实验器材: 示波器、函数发生器、电缆、示波器探头。
实验原理: 示波器是一种用来显示电压信号波形的仪器,它能够将电信号转化为可视化的波形。
示波器主要由电子幕管、信号放大器、时间基准及触发电路等组成。
实验步骤:
1. 将函数发生器的输出端与示波器的输入端连接,使用电缆将二者连接起来。
2. 打开函数发生器和示波器,调节函数发生器的频率和幅度。
3. 选择适当的示波器探头,将其连接到示波器的输入端。
4. 调节示波器的触发电路,使波形稳定显示在屏幕上。
5. 调节示波器的水平和垂直缩放,使波形在屏幕上合适地显示出来。
6. 调节示波器的时间基准,选择适当的时间刻度,以观察波形的时间特性。
7. 进行测量,利用示波器测量波形的峰峰值、频率、周期等参数。
实验结果与分析: 使用示波器观察到的波形应与函数发生器输出的波形相一致。
根据示波器上的刻度,可以测量波形的峰峰值、频率和周期等参数。
正弦波的峰峰值即为波峰与波谷之间的电压差值,频率则是波形循环的次数,周期是一个完整循环所用的时间。
实验结论: 示波器是一种重要的电子测试仪器,能够将电压信号转化为可视化的波形,方便观察和测量。
通过本次实验,我学习了示波器的原理和使用方法,掌握了使用示波器进行波形显示和测量的技巧。
大学物理实验报告示波器大学物理实验报告:示波器引言在大学物理实验中,示波器是一种重要的仪器,用于测量和显示电信号的波形。
它在电子学、通信、电力等领域中发挥着重要作用。
本实验旨在通过对示波器的使用和原理的了解,掌握示波器的基本操作技能,并进一步认识电信号的特性。
一、示波器的基本原理示波器是一种电子测量仪器,能够以波形的形式显示电信号的幅度、频率、相位等特性。
它的基本原理是利用电子束在荧光屏上扫描形成图像。
示波器的主要组成部分包括电子枪、偏转系统、时间基准、触发电路和显示屏。
二、示波器的基本操作1. 示波器的开机与调节首先,将示波器与电源连接,并打开电源开关。
然后,调节亮度、对比度和聚焦度,使显示屏上的波形清晰可见。
2. 示波器的通道设置示波器通常具有多个通道,可以同时测量多个信号。
在本实验中,我们将使用单通道示波器。
首先,将信号源与示波器的输入端连接。
然后,调节示波器的通道开关,选择要测量的通道。
3. 示波器的触发设置触发电路是示波器中一个重要的功能,它用于控制示波器何时开始扫描信号。
在本实验中,我们将使用自由运行触发模式。
首先,调节触发电路的阈值,使其与输入信号的幅度相匹配。
然后,选择触发源,通常为信号源的同步输出。
4. 示波器的时间基准设置时间基准是示波器中用于确定时间轴刻度的参考信号。
在本实验中,我们将使用内部时间基准。
首先,选择合适的时间基准模式,如连续或单次。
然后,调节时间基准的时间/频率刻度,使其适应所测量的信号。
5. 示波器的测量功能示波器通常具有多种测量功能,如幅度、频率、相位等。
在本实验中,我们将主要关注信号的幅度测量。
使用示波器的测量功能,可以直接读取信号的峰值、峰峰值、平均值等参数。
三、示波器的应用示波器在科学研究、工程实践和教学中具有广泛的应用。
以下是一些常见的应用领域:1. 电子学和通信在电子学和通信领域,示波器常用于测量和分析电路中的信号波形。
它可以帮助工程师诊断和解决电路故障,优化电路设计。
大学物理实验报告示波器的使用引言示波器是一种常用于实验室、工程领域的仪器,用于观察电信号波形的仪器。
在物理实验中,示波器常常被用来测量和显示电压、电流和频率等物理量,能够直观地观察到波形的变化。
本实验将重点介绍示波器的基本原理、操作方法和使用技巧。
一、基本原理示波器主要由示波管、水平和垂直系统以及触发系统组成。
1. 示波管示波管是示波器核心部件,通过控制电子束的运动和偏转,将电信号转化为可视化的波形。
示波管属于真空管,内部有阴极、阳极和偏转板等元件。
当加上适当的电压后,阴极会发射出电子,通过偏转板的控制,电子束会在荧光屏上形成一条亮线。
2. 水平和垂直系统水平和垂直系统分别用于控制示波器的水平和垂直方向上的偏转。
水平系统负责控制时间轴的水平位置和扫描速率,而垂直系统则负责控制信号的垂直放大倍数和偏移量。
3. 触发系统触发系统用于控制示波器何时开始显示电信号。
通过触发电路的设置,可以使示波器在信号达到一定条件时进行显示,以确保波形的稳定性和重复性。
二、操作方法使用示波器需要注意以下几个关键步骤:1. 连接测试电路首先需要将待测信号的电路正确连接到示波器的输入端口。
一般示波器会有不同的通道,根据需要选择合适的通道连接测试电路。
2. 调节垂直和水平控制根据待测信号的幅值范围,调节垂直控制旋钮,使信号的波形适当放大或缩小。
同时,根据信号的频率和时间跨度,调节水平控制旋钮,使波形在示波器的屏幕上完整显示。
3. 设置触发条件根据需要,设置触发条件以确保信号的稳定显示。
可以设置触发电平、触发边沿和触发源等参数,使示波器在信号满足设定条件时开始显示。
4. 观察和分析波形将示波器的时间基准和垂直基准调整到合适的位置后,即可观察到待测信号的波形。
可以通过改变时间和垂直基准的位置,观察不同的波形细节,并对信号进行分析和测量。
三、使用技巧在实际操作示波器时,还有一些常用的技巧可以提高使用效果:1. 选择合适的探头示波器通常配备了多种类型的探头,如10:1和1:1的差分探头、高阻抗探头等。
示波器的原理及使用实验报告示波器的原理及使用实验报告引言:示波器是一种常用的电子测量仪器,广泛应用于电子工程、通信工程、医学、物理等领域。
本实验旨在通过对示波器的原理及使用进行研究,深入了解示波器的工作原理及使用方法。
一、示波器的原理示波器是一种能够显示电压随时间变化的仪器。
其原理基于电压信号的变化通过垂直放大器放大后,再通过水平放大器进行时间基准的调整,最终通过示波管将信号以波形的形式显示出来。
1. 垂直放大器:垂直放大器是示波器中的核心部分,其作用是将输入的电压信号放大到适合示波管显示的范围。
垂直放大器通常由放大器、直流耦合、交流耦合和可变增益控制等组成。
2. 水平放大器:水平放大器用于调整时间基准,控制波形在示波器屏幕上的水平位置和宽度。
水平放大器通常由时基控制、触发控制和扫描控制等组成。
3. 示波管:示波管是将放大后的电压信号以波形的形式显示在屏幕上的部分。
示波管通常由电子枪、偏转板和荧光屏等组成。
电子枪发射出的电子束经过偏转板的控制,最终在荧光屏上形成波形。
二、示波器的使用方法在实际使用示波器时,需要注意以下几个方面:1. 连接电路:首先需要将待测电路与示波器进行连接,确保电路正常工作并能够输出信号。
2. 调整垂直放大器:根据待测信号的幅度范围,适当调整垂直放大器的增益,使得波形能够在屏幕上完整显示。
3. 调整水平放大器:根据待测信号的频率范围,调整水平放大器的时间基准,使得波形在屏幕上的位置和宽度合适。
4. 设置触发源:示波器的触发功能可以使波形在屏幕上稳定显示。
根据待测信号的特点,设置合适的触发源和触发电平。
5. 观察波形:通过示波器的屏幕,可以清晰地观察到待测信号的波形。
可以通过调整示波器的控制按钮,如水平扫描控制、垂直偏移控制等,来获取更详细的波形信息。
6. 数据分析:示波器还可以通过测量功能,对波形的各种参数进行测量和分析,如频率、幅度、相位等。
结论:通过本次实验,我们深入了解了示波器的工作原理及使用方法。
一、实验目的1.了解示波器的原理和结构;2.掌握示波器的使用方法;3.学习如何通过示波器观察电路中的波形。
二、实验原理示波器是一种用于观察电信号的仪器,它可以将电信号转换成可视化的波形,以方便工程师进行测量和分析。
示波器的基本原理是利用电子束在荧光屏上扫描,从而形成波形图像。
示波器通常由以下几个部分组成:1.垂直放大器:用于放大电压信号,使其可以被荧光屏显示。
2.水平放大器:用于控制扫描线的速度和位置,以确定波形的时间基准。
3.触发器:用于控制波形的起始位置,以确保波形能够稳定地显示。
4.荧光屏:用于显示波形图像。
示波器的使用方法如下:1.连接被测试电路和示波器:将被测试电路的信号源连接到示波器的输入端口。
2.调整垂直放大器:根据信号的幅值调整垂直放大器的增益,以确保波形可以完整地显示在荧光屏上。
3.调整水平放大器:根据信号的频率调整水平放大器的时间基准,以确保波形可以在荧光屏上稳定地显示。
4.调整触发器:根据信号的特点调整触发器的阈值和延迟时间,以确保波形可以在荧光屏上稳定地显示。
5.观察波形:通过荧光屏观察电路中的波形,可以分析电路中的问题并进行调试。
三、实验过程1.连接被测试电路和示波器:将被测试电路的信号源连接到示波器的输入端口。
2.调整垂直放大器:根据信号的幅值调整垂直放大器的增益,以确保波形可以完整地显示在荧光屏上。
3.调整水平放大器:根据信号的频率调整水平放大器的时间基准,以确保波形可以在荧光屏上稳定地显示。
4.调整触发器:根据信号的特点调整触发器的阈值和延迟时间,以确保波形可以在荧光屏上稳定地显示。
5.观察波形:通过荧光屏观察电路中的波形,可以分析电路中的问题并进行调试。
四、实验结果与分析在实验过程中,我们通过示波器观察了几个电路中的波形,例如正弦波、方波、三角波等。
通过观察波形,我们可以了解电路中的信号特征,例如幅值、频率、相位等。
同时,我们还可以分析电路中的问题,例如信号失真、噪声干扰等,并进行调试。
实验5 示波器原理和使用示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。
用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。
由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。
因此示波器是一种应用广泛的综合性电信号测试仪器。
示波器按用途和特点可以分为:通用示波器。
它是根据波形显示基本原理而构成的示波器。
取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。
与通用示波器相比,取样示波器具有频带极宽的优点。
记忆与存储示波器。
这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。
专用示波器。
为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。
智能示波器。
这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。
它是当前发展起来的新型示波器。
也是示波器发展的方向。
本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG —8016G型数字式函数信号发生器的使用方法。
【实验目的】1.了解示波器显示图象的原理。
2.较熟练地掌握示波器的调整和使用方法。
3.掌握函数信号发生器的使用方法。
4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。
【仪器用具】SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。
【实验原理】1.示波器的基本结构和工作原理示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。
如图5-1所示。
(1)示波管:它包括电子枪、偏转板和荧光屏三部分。
图5-1 示波器结构方框图示波管是示波器的核心,它的构造如图5-2所示,左端为一电子枪,电子枪又包括旁热式阴极、加热阴极的灯丝、控制栅极和第一、第二阳极等,阴极经灯丝加热后发出一束电子,电子被第一和第二阳极电场加速及聚焦后,形成一束很细的高速电子流打在右端的荧光屏上,屏上的荧光物图5-2 示波管的构造发光形成一亮点。
调节第一阳极电压(即调“聚焦”旋钮)和调节第二阳极电压 ( 即调“辅助聚焦”旋钮)可达到聚焦的目的,使荧光屏上出现清晰的图象。
在电子枪和荧光屏之间装有两对相互垂直的平行板,称为偏转板。
如果板上加有电压,则电子束经过偏转板时受正电极吸引,受负电极排斥,从而使电子束在荧光屏上的亮点位置也跟着改变,所以偏转板是用来控制亮点位置的。
两对偏转板中,横方向的一对称为X 轴偏转板(或叫水平偏转板),纵方向的一对称为Y 轴偏转板(或叫垂直偏转板)。
在一定范围内,亮点的位移与偏转板上所加电压成正比,调节“X 轴移位”和“Y 轴移位”旋钮可以改变亮点的位置。
由于控制栅极的电位低于阴极,调节栅极电位可控制穿过栅极的电子数,即控制了电子流的强度。
荧光屏上亮点的亮度决定于射到屏上电子的数目和能量(由加速阳极的电压决定),从而调节栅极电位(即调“辉度”旋钮)可以改变亮点的亮度。
(2)电压放大装置(包括Y 轴放大和X 轴放大两部分)示波器的输入分为Y 轴、X 轴两个通道,输入信号电压经输入端的衰减器衰减后,送到电压放大器放大。
放大后的信号电压最终加到示波器的Y 轴偏转板或X 轴偏转板上,亮点随信号电压的变化沿左右或上下作直线运动,形成一条水平或垂直亮线。
调节“Y 轴增益”或“X 轴增益”旋钮,可以控制输入信号的放大幅度(注意只是将显示比例放大或缩小,而不能改变信号电压本身的幅值大小)。
在示波器的Y 轴和X 轴输入端还设置有衰减器,如果信号电压过大,可利用Y 轴(或X 轴)衰减器使信号电压变小,以适应电压放大器的要求。
这些都是通过“V/cm ”偏转灵敏度选择开关实现。
(3)扫描与整步装置这是示波器的关键部分。
它主要由锯齿波电压发生器(即扫描电压发生器)构成。
图5-3 锯齿波波形图如果在X 轴偏转板上加上锯齿形电压,如图5-3(a )所示,锯齿形电压的特点是:电压从负开始(0t t =)随时间成正比地增加到正(10t t t <<),然后又突然返回负(1t t =)。
再从此开始与时间成正比地增加(21t t t <<)……,如此重复,这时,荧光屏上的亮点从左(0t t =)匀速地向右运动(10t t t <<),到右端后马上回到左端(1t t =),然后再从左端匀速地向右运动(21t t t <<)……, 不断重复前述过程。
亮点只在水平方向运动,我们在荧光屏上看到的便是一条水平线,如图5-3(b )所示。
如果在Y 轴偏转板上加上正弦电压,如图5-4(a )所示,而X 轴偏转板上不加任何电压,则亮点的运动是在纵方向作正弦式振荡,在横方向不动,我们看到的是一条垂直的亮线,如图5-4(b )所示。
图5-4 正弦波波形图如果在Y 轴偏转板上加上正弦电压,在X 轴偏转板上加上锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,我们看到的将是亮点的合成位移,即正弦图形。
用示波器观察波形的原理可用图5-5来说明。
简谐振动可用一个作匀速圆周运动的质点在某方向上的投影来代表,这个圆称为简谐振动的参考圆。
在Y 轴偏转板上加上正弦电压时,可以用参考点在垂直方向投影的运动来代表。
我们假定信号电压与扫描电压的周期相同,起始点也相同,都是从零开始的,我们把这两个电压的周期分成八等份,分别用1,2,3……,8表示。
从图5-5看到,当时间从0到1时,X 轴偏转板上的锯齿形电压使亮点从原点0向右移,而Y 轴偏转板上的交流电压正好是正半周,它要亮点向上移,合成的结果电子束就打在荧光屏的“1”位置上。
当时间到达2时,亮点就打在“2”位置上……,因为两对偏转板上所加的电压是连续不断的,所以亮点的移动也是连续不断的,结果绘出如图5-5中从“0”到“8”的一条正弦曲线。
当锯齿形电压从最大突然跳回零时,亮点立即从“8” 突然跳回到“0”,这时Y 轴偏转板上的交流电压也正好回到第二个周期的零点上,因此在第二个周期中画出的曲线正好和第一个周期的完全重合。
这样不断重复,所以我们可以在荧光屏上看见一条稳定的正弦曲线。
图5-5 示波器显示波形原理图上面讨论的是在扫描电压的周期X T 与信号电压的周期Y T 相等时,荧光屏上可以稳定的显示出一个波长的信号波形。
如果扫描电压的周期X T 是信号电压的周期Y T 的两倍(即Y X T T 2=),则在荧光屏上可以看到两个波长的信号波形,同理,若Y X nT T =,则荧光屏上将显示出n 个波长的信号波形。
即Y X nT T = =n 1,2,3,…… (5-1) 由于周期和频率具有互为倒数的关系,因此上式也可以表示为X Y nf f = =n 1,2,3,…… (5-2) (5-2)式中,Y f 为加在Y 轴偏转板上的信号电压的频率,X f 为加在X 轴偏转板上的扫描电压的频率。
如上所述,为了在荧光屏上观察到稳定的波形,必须使扫描电压的周期X T 与信号电压的周期Y T 相等或成整数倍关系,否则稍有偏差,所显示的波形就会向左或向右移动。
例如,当Y T <X T <2Y T 时,第一次扫描显示的波形如图5-6中0~4所示,而第二次扫描显示的波形如图5-6中4‘~8所示。
两次扫描显示的波形不相重合,其结果是好象波形在不断地向左移动。
同理,当X T <Y T <2X T 时,显示的波形会不断向右移动。
而实际上,由于产生Y f 和X f 的振荡源是互相独立的振荡源,它们之间的频率比不会自然满足简单整数比,所以示波器中的锯齿形扫描电压的频率必须可调。
除了人工调节之外,在示波器内部还加装了自动频率跟踪的装置,称为“整步”。
在人工调节到接近满足(5-2)式的条件时,再加入“整步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。
图5-6 T 2y x y T T <<时波形向左移动 如果所加信号Y f 为三角波(或方波)电压的频率,X f 为扫描电压的频率,则可在荧光屏上观察到三角波(或方波)信号的波形。
(4)电源部分电源部分的作用是将市电220V 的交流电压转变为各个数值不等的直流电压,以满足示波器各部分电路工作的需要。
2. 示波器的基本测量方法(1) 如何测量电信号的电压幅度对于待测电信号,可测出其在荧光屏的Y 轴上的波形幅度大小,从而测出它的电压幅度。
示波器设有Y 轴灵敏度选档旋钮,Y 轴灵敏度可用U K 来表示,其单位是 V/cm 。
U K 表示在荧光屏Y 轴上,使亮点偏移1cm 距离所需输入的信号电压幅值,显然,U K 值是Y 轴上的电压分度值。
因此,对于一个被显示的信号,只要从荧光屏的刻度板上量出其双振幅PP A (即波形在Y 轴方向上的最低点到最高点的距离),则可测出其电压峰峰值PP U ,即PP U PP A K U ⋅= (5-3) 对于正弦信号,其电压有效值U 与PP U 的关系为PP U U 221=(5-4) 为了提高示波器的输入阻抗、减小输入电容,常用分压比为10:1的低电容衰减探头将信号输入至示波器的Y 通道。
由于探头对信号电压具有10倍的衰减,因此使用衰减探头时,(5-3)式应改写为PP U PP A K U ⋅=10 (5-5) (2) 如何测量电信号的周期和频率 ① 利用时基因数测量周期和频率 对于待测电信号,可测出其在荧光屏的X 轴上的波长大小,从而测出它的周期和频率。
示波器设有扫描速度选档旋钮,扫描速度可用t v 来表示,t v 表征示波器展开被测信号波形的能力,它的定义是:单位时间内亮点在荧光屏上X 轴方向移动的距离,其单位为cm/s 。
扫描速度的倒数tt v K 1=称为时基因数,它的定义是:亮点在X 轴方向移动一个单位距离所需的时间,其单位为s/cm (或为ms/cm 、μs/cm )。
虽然扫描速度和时基因数是两个不同的概念,但是在实用上常习惯地将时基因数作为示波器扫描速度的标称而不加区别。
显然,t K 是X 轴上的时间分度值。
因此,对于一个被显示的信号,只要从荧光屏的刻度板上量出其波长λ,则其周期T 为λ⋅=t K T (5-6) 该信号的频率为λ⋅==t K T f 11 (5-7)② 利用李萨如图形测量正弦信号的频率如果在示波器的Y 轴和X 轴偏转板上都加上正弦信号电压,那么荧光屏上亮点的运动将是两个互相垂直的振动的合成。