4.ARM汇编语言程序设计 - part2
- 格式:pptx
- 大小:237.42 KB
- 文档页数:41
实验二 ARM汇编语言程序设计一、实验目的1.了解ARM汇编语言的基本框架,学会使用ARM的汇编语言编程2.掌握ARM汇编指令二、实验设备1. EL-ARM-830教学实验箱,PentiumII以上的PC机,仿真器电缆。
2. PC操作系统WIN98或WIN2000或WINXP, ADS1.2集成开发环境,仿真器驱动程序。
三、汇编语言简介1.ARM汇编的一些简要的书写规范ARM汇编中,所有标号必须在一行的顶格书写,其后面不要添加“:”,而所有指令均不能顶格书写。
ARM汇编对标识符的大小写敏感,书写标号及指令时字母大小写要一致。
在ARM汇编中,ARM指令、伪指令、寄存器名等可以全部大写或者全部小写,但不要大小写混合使用。
注释使用“;”号,注释的内容由“;”号起到此行结束,注释可以在一行的顶格书写。
详细的汇编语句及规范请参照ARM汇编的相关书籍、文档。
2. ARM汇编语言程序的基本结构在ARM汇编语言程序中,是以程序段为单位来组织代码。
段是相对独立的指令或数据序列,具有特定的名称。
段可以分为代码段的和数据段,代码段的内容为执行代码,数据段存放代码运行时所需的数据。
一个汇编程序至少应该有一个代码段,当程序较长时,可以分割为多个代码段和数据段,多个段在程序编译链接时最终形成一个可执行文件。
可执行映像文件通常由以下几部分构成:◆一个或多个代码段,代码段为只读属性。
◆零个或多个包含初始化数据的数据段,数据段的属性为可读写。
◆零个或多个不包含初始化数据的数据段,数据段的属性为可读写。
链接器根据系统默认或用户设定的规则,将各个段安排在存储器中的相应位置。
源程序中段之间的相邻关系与执行的映象文件中的段之间的相邻关系不一定相同。
3. 简单的小例子下面是一个代码段的小例子AREA Init,CODE,READONLYENTRYLDR R0, =0x3FF5000LDR R1, 0x0fSTR R1, [R0]LDR R0, =0x3F50008LDR R1, 0x1STR R1, [R0]……END在汇编程序中,用AREA指令定义一个段,并说明定义段的相关属性,本例中定义了一个名为Init的代码段,属性为只读。
实验二ARM汇编语言程序设计实验目的1、了解ARM汇编语言程序的结构特点2、了解ARM汇编语言程序的编写方法3、掌握用ARM汇编语言设计简单程序实验仪器设备及软件ARM实验箱,计算机,ADS程序开发软件实验原理1、存储空间的格式ARM920将存储空间视为从0开始由字节组成的线性集合,字节0-3中保存了第一个字,字节4-7中保存了第二个字,依此类推。
字节还可以按小端格式或大端格式排列。
ARM实验箱中存储器的配置见附录C。
2、ARM的寄存器ARM状态下任何时刻都可以看到16个通过寄存器(r0-r15),1或2个状态寄存器(CPSR,SPSR),在特权模式下会切换到具体模下的寄存器组。
每个寄存器都是32位的,并且每个通用寄存器都可以作为数据处理的源数据或目标数据寄存器。
因此可以编写出更精简的程序。
3、ARM指令的条件执行状态寄存器中的N,Z,C,V是数据处理指令影响的标志。
几乎每条ARM指令可以根据状态位或状态位的逻辑运算有条件执行。
条件执行的指令后缀参考教材。
4、桶形移器ARM的桶形移位器,使ARM指令的中第二个操作数非常录活。
利用移位器,一条ARM 指令可以完成更多功能。
移位操作有:LSL 逻辑左移LSR 逻辑右移ASL 算术左移ASR 算术右移ROR 循环右移RRX 带扩展循环右称实验内容1、把内存中ramaddr开始的ramword个字清零(1)用后变址法ramaddr equ 0x31000000ramword equ 64clrrammov r0,#0mov r1,#ramwordldr r2,=ramaddrclrram1str r0,[r2],#4subs r1,r1,#1bne clrram1mov pc,lrLTORG(2)用前变址法clrrambakmov r0,#0mov r1,#ramwordldr r2,=ramaddr-4clrram2str r0,[r2,#4]!subs r1,r1,#1bne clrram2mov pc,lrLTORG2、把寄存器中,r0-r12的32位无符号32位数进行求和,和的低32位保存在r1中,高32位保存在r0中。
ARM汇编语言程序设计1.ARM汇编语言概述2.ARM寄存器3.ARM指令ARM指令包括数据处理指令、传输指令、分支指令和其他特殊指令。
(1)数据处理指令:包括算术运算、逻辑运算、移位和旋转、比较和测试等。
(2)传输指令:用于数据的加载和存储,包括复制、分配和堆栈操作等。
(3)分支指令:用于控制程序流,包括无条件跳转、条件跳转和中断处理等。
4.ARM程序设计(1)初始化:程序开始时需要进行系统和寄存器的初始化。
可以将堆栈指针初始化,设置另外的寄存器和内存变量等。
(2)输入输出:程序可能需要从外部设备读取数据或向外部设备写入数据。
可以使用传输指令实现数据的输入和输出。
(3)运算处理:根据程序的需求,进行各种运算处理。
可以使用数据处理指令实现数据的加减乘除、逻辑运算等。
(4)循环和条件控制:根据需要,使用分支指令控制程序的流程。
可以使用无条件跳转、条件跳转和循环指令实现程序的循环和条件控制。
(5)结束:在程序执行完毕后,可以进行清理工作,例如释放内存、关闭设备等。
5.ARM程序设计实例下面是一个简单的ARM汇编程序示例,实现从数组中找到最大值并输出:.global _start.section .dataarray: .word 1, 3, 5, 2, 4max: .word 0.section .text_start:loop:next:在上述示例中,程序首先将数组的地址和最大值的地址加载到寄存器中。
然后使用循环和条件控制指令依次比较数组元素,找到最大值并将其存储在max变量中。
最后将最大值输出,并结束程序。
第六章1、ARM处理器的特点是什么?答:ARM处理器立足于嵌入式市场,其设计思想并不单纯地追求处理器速度,而是着眼于系统的整体性能。
具体来讲,主要包括以下几个方面。
首先,低功耗是一个主要的考虑方面。
其次,高代码密度是嵌入式系统的又一个重要需求。
另外,嵌入式系统通常都是价格敏感的。
还有一个影响嵌入式系统性能的因素就是处理器内核管芯(die)的面积,对于一个单片方案,处理器内核所占的面积越小,留给外设电路的空间就越大,这可以减少最终产品的外围芯片数目,从而降低设计和制造成本。
在体系结构方面,ARM处理器采用精简指令系统计算机(RISC)结构,但ARM处理器又不是纯粹的RISC。
为了能够更好地满足嵌入式应用的需求,ARM处理器还增加了以下特点:●一些特定指令的周期数可变,即并不是所有的ARM指令都是单周期的。
●内嵌桶形移位器产生了更为复杂的指令。
●Thumb 16位指令集。
●条件执行。
这个特性可以减少分支指令的数目,从而改善性能,提高代码密度。
2、ARM处理器系列主要包括几大类?各自的特性是什么?3、ARM处理器有哪些处理器模式?各自如何切换?答:ARM处理器有7种处理器模式,它们分别是:用户模式,快速中断模式,外部中断模式,管理模式,中止模式,未定义模式和系统模式。
各模式之间的切换,可以通过软件控制来实现,也可以由外部中断或异常而引起。
处理器复位之后,首先进入管理模式,操作系统内核通常处于这种模式。
当运行用户程序时,进入用户模式。
在用户模式下,应用程序不能访问一些受操作系统保护的系统资源,应用程序也不能直接进行处理器模式的切换,只允许对CPSR(当前程序状态寄存器)的控制域进行读操作,但允许对CPSR条件标志的读/写访问,用户模式下执行软中断指令(SWI)时也进入管理模式。
系统模式是一种特殊的用户模式,它使用和用户模式完全相同的寄存器,但允许对CPSR的完全访问,当操作系统任务需要访问系统资源但又想避免访问与异常模式相关的寄存器时进入该模式。
arm汇编语言程序设计ARM汇编语言程序设计一、引言ARM汇编语言是一种低级语言,用于编写底层程序,如操作系统、嵌入式系统等。
它具有高效、灵活、可移植等特点,被广泛应用于各种嵌入式设备中。
本文将介绍ARM汇编语言程序设计的基本概念、语法规则以及常用指令,以帮助读者快速入门和理解该领域的知识。
二、基本概念1. 寄存器:ARM处理器具有16个通用寄存器,分别用R0~R15表示。
这些寄存器用于存储数据、地址和中间结果,并且在程序执行过程中可以被读取和写入。
2. 指令:ARM汇编语言的指令包括数据处理指令、分支指令、加载存储指令等。
这些指令用于执行各种操作,如算术运算、逻辑运算、条件判断等。
3. 标志位:ARM处理器的标志位用于记录执行过程中的状态信息,如进位标志、溢出标志等。
这些标志位对于程序的正确执行非常重要。
三、语法规则1. 指令格式:ARM汇编指令由操作码和操作数组成,其中操作码表示指令的类型,操作数表示指令的操作对象。
指令格式一般为“操作码操作数1, 操作数2, ...”。
2. 注释:注释以分号开头,用于对指令进行解释和说明。
注释对于程序的可读性和维护性非常重要,应当充分利用。
3. 标签:标签用于标识程序中的某个位置或标记某个指令,以便在其他地方进行引用。
标签一般以英文字母开头,后面可以跟随数字或下划线等字符。
4. 伪指令:伪指令是一种特殊指令,用于约定程序的起始地址、存储空间的分配等。
伪指令一般以句点开头,如“.data”表示数据段,“.text”表示代码段。
四、常用指令1. 数据处理指令:数据处理指令用于进行算术运算、逻辑运算等操作。
例如,“ADD”指令用于将两个操作数相加,并将结果存放在目标寄存器中。
2. 分支指令:分支指令用于实现程序的跳转和循环等控制流程。
例如,“B”指令用于无条件跳转到指定标签处执行。
3. 加载存储指令:加载存储指令用于实现数据的读取和写入。
例如,“LDR”指令用于将指定地址处的数据加载到寄存器中。