专题6平面解析几何-2018届浙江高三数学三轮复习补缺查漏与高效专题训练
- 格式:doc
- 大小:2.12 MB
- 文档页数:27
开篇先学“审题”——开启专题复习之旅[编者按] 开篇先学审题技法,旨在用通法引领复习,在复习中实践通法.著名数学家波利亚总结了解决数学问题的四个步骤:弄清问题、拟订计划、实现计划、代入回顾.其中“弄清问题”即审题.审题是解题的基础和关键,一切解题的思路、方法、技巧都来源于认真审题.审题是解题者对题目提供信息的发现、辨认和转译,并对信息作有序提炼,明确题目的条件、问题和相互间的关系.审题就是“让题目会说话”,其具体内容是:已知什么,隐含什么,需作什么,注意什么,等等.下面从审条件和审结论两个方面谈一下如何审题.图象等几方面有的数学题条件并不明显,而寓于概念、存于性质或含于图中,审题时,就要注意深入挖掘这些隐含条件和信息,解题时,可避免因忽视隐含条件而出现的错误.[例1] (2017·衢州模拟)已知两条直线l1:4x-3y-1=0和l2:4x-3y+4=0,圆C过点P(1,1)且与两直线都相切,则圆C的方程为____________________.[审题指导][解析] 由已知可得直线l 1与l 2平行,且直线l 1与l 2间的距离d =|-1-4|42+-2=1,又圆C 与l 1,l 2都相切,所以圆C 的半径r =12.故可设圆的标准方程为(x -a )2+(y -b )2=14,又P (1,1)在直线4x -3y -1=0上,即直线l 1与圆C 相切于点P (1,1),故⎩⎪⎨⎪⎧b -1a -1=-34,|4a -3b -1|5=|4a -3b +4|5,化简得⎩⎪⎨⎪⎧3a +4b =7,8a -6b =-3,解得a =35,b =1310.故所求圆的方程为⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -13102=14.[答案] ⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -13102=141.(2017·杭州模拟)如图,在△OMN 中,A ,B 分别是OM ,ON 的中点,若OP ―→=x OA ―→+y OB ―→(x ,y ∈R),且点P 落在四边形ABNM 内(含边界),则y +1x +y +2的取值范围是( )A.⎣⎢⎡⎦⎥⎤13,23B.⎣⎢⎡⎦⎥⎤13,34 C.⎣⎢⎡⎦⎥⎤14,34D.⎣⎢⎡⎦⎥⎤14,23 解析:选C 由题意不妨设△OMN 为等腰直角三角形,OM =ON =2,则OA =OB =1,以OA ,OB 为x ,y 轴建立直角坐标系,则x ,y 满足不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2,1≤x +y ≤2,对应的平面区域是以点B (0,1),N (0,2),M (2,0),A (1,0)为顶点的等腰梯形(含边界),当(x ,y )取点(2,0)时,y +1x +1取得最小值13;当(x ,y )取点(0,2)时,y +1x +1取得最大值3,所以13≤y +1x +1≤3,13≤x +1y +1≤3,则y +1x +y +2=1x +1y +1+1∈⎣⎢⎡⎦⎥⎤14,34,故选C.数学问题中的条件和结论,在这些问题的数式结构中,往往都隐含着某种特殊关系,认真审视数式的结构特征,对数式结构进行深入分析,加工转化,可以寻找到突破问题的方案.[例2] (2017·绍兴模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足ba +c +ca +b≥1,则角A 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3B.⎝ ⎛⎦⎥⎤0,π6C.⎣⎢⎡⎭⎪⎫π3,πD.⎣⎢⎡⎭⎪⎫π6,π [审题指导]由条件中不等式结构――→去分母化简b 2+c 2-a 2≥bc ――→联想余弦定理结构变形cos A ――→求范围得结论 [解析] 由ba +c +ca +b≥1,得b (a +b )+c (a +c )≥(a +c )(a +b ),化简得b 2+c 2-a 2≥bc ,即b 2+c 2-a 22bc ≥12,即cos A ≥12.又因为0<A <π,所以0<A ≤π3,故选A. [答案] A2.(2017·金华中学模拟)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -te |≥|a -e |,则( )A .a ⊥eB .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )解析:选C 法一:由题意,得a 2-2te ·a +t 2e 2≥a 2-2e ·a +e 2,即t 2-2e ·at +2e ·a -e 2≥0,因为该不等式对任意t ∈R 恒成立,则Δ=4(e ·a )2-8e ·a +4e 2≤0, 因而(e ·a -e 2)2≤0.于是e ·a -e 2=0. 所以e ·(a -e )=0,e ⊥(a -e ).故选C.法二:如图,OA ―→=e ,OC ―→=a ,OB ―→=te ,则|AC ―→|=|a -e |,|BC ―→|=|a -te |,由已知|AC ―→|≤|BC ―→|.因为点B 是直线OA 上的任意点,点C 与直线AB 上的点的连线中线段AC 的长度最短,故AC ⊥OB ,也就是e ⊥(a -e ).此在审题时,要善于观察图形,洞悉图形所隐含的特殊的关系、数值的特点、变化的趋势,抓住图形的特征,利用图形所提供的信息解决问题.[例3] (2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1D.3π2+3 [审题指导][解析] 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =12×13×π×12×3+13×12×2×2×3=π2+1.[答案] A3.(2017·台州模拟)如图,M (xM ,y M ),N (x N ,y N )分别是函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与两条直线l 1:y =m ,l 2:y =-m (A ≥m ≥0)的两个交点,记S =|x N -x M |,则S (m )的图象大致是( )解析:选C 由题意可得sin(ωx M +φ)=sin(-ωx N -φ),则结合图象可得|(ωx M +φ)+(-ωx N -φ)|=π,所以S (m )=|x M -x N |=πω是一个与m 无关的常数函数,故选C.结论是解题的最终目标,解决问题的思维在很多情形下都是在目标意识下启动和定向的.审视结论是要探索已知条件和结论间的联系与转化规律,可以从结论中捕捉解题信息,确定解题方向.而解题的思维过程大多都是围绕着结论这个目标进行定向思考的.有些问题的结论看似不明确或不利于解决,可以转换角度,达到解决问题的目的.盯着未知数,这是个不错的解题途径.[例4] (2017·宁波模拟)已知函数f (x )=ln x +1x.(1)求函数f (x )的极值和单调区间; (2)求证:ln n +12<12+13+14+ (1)(n ≥2,n ∈N *). [审题指导] (1)求f x →判断f x 的符号→得结论(2)lnn +12<12+13+14+…+1n ――→将不等式左边化成和式ln 32+ln 43+…+ln n +1n <12+13+…+1n ―→ 证明ln n +1n <1nn →证明ln x >1-1x,x ∈,――→与相结合利用fx 的极值证明[解] (1)因为f (x )=ln x +1x, 所以f (x )的定义域为(0,+∞), 所以f ′(x )=1x -1x 2=x -1x2.令f ′(x )=0,得x =1.所以f ′(x ),f (x )随x 的变化情况如下表:故f (x )f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)证明:由(1)知f (x )=ln x +1x在(0,1)上单调递减,在(1,+∞)上单调递增,且f (1)=1,所以对于x ∈(0,1),ln x +1x >1即ln x >1-1x.令x =nn +1(n ≥2,n ∈N *),则nn +1∈⎣⎢⎡⎭⎪⎫23,1, 所以lnnn +1>1-1n n +1=1-n +1n =-1n, 即lnn +1n <1n. 则有ln 32<12,ln 43<13,ln 54<14,…,ln n +1n <1n .将以上各式不等号两边分别相加,得ln 32+ln 43+ln 54+…+ln n +1n <12+13+14+…+1n , 即lnn +12<12+13+14+ (1)(n ≥2,n ∈N *).4.(2017·嘉兴模拟)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e|FA |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.解:(1)设F (c,0),由1|OF |+1|OA |=3e |FA |, 即1c +1a =3c aa -c,可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1.因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2),设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ),有FH ―→=(-1,y H ),BF ―→=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF ―→·FH ―→=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -,y =-1k x +9-4k212k 消去y ,解得x M =20k 2+9k 2+.在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M , 化简,得x M ≥1,即20k 2+91k 2+≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝ ⎛⎦⎥⎤-∞,-64∪⎣⎢⎡⎭⎪⎫64,+∞.一些题目从已知到结论不易证明,可采用逆向分析法,即从要证明的结论出发,逐步寻求使每一步结论成立的充分条件,直至最后,把要证明的结论归结为一个明显成立的条件或已知定理为止.[例5] (2017·温州模拟)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=6,a 3=11,且(5n -8)S n +1-(5n +2)S n =An +B ,n =1,2,3,…,其中A ,B 为常数.(1)证明:数列{a n }为等差数列;(2)证明:不等式 5a mn -a m a n >1对任何正整数m ,n 都成立. [审题指导][证明] (1)由已知,得S 1=a 1=1,S 2=a 1+a 2=7,S 3=a 1+a 2+a 3=18.由(5n -8)S n +1-(5n +2)S n =An +B ,知⎩⎪⎨⎪⎧-3S 2-7S 1=A +B ,2S 3-12S 2=2A +B ,即⎩⎪⎨⎪⎧A +B =-28,2A +B =-48,解得A =-20,B =-8.故(5n -8)S n +1-(5n +2)S n =-20n -8,① 所以(5n -3)S n +2-(5n +7)S n +1=-20n -28.②②-①,得(5n -3)S n +2-(10n -1)S n +1+(5n +2)S n =-20,③ 所以(5n +2)S n +3-(10n +9)S n +2+(5n +7)S n +1=-20.④④-③,得(5n +2)S n +3-(15n +6)S n +2+(15n +6)·S n +1-(5n +2)S n =0. 因为a n +1=S n +1-S n ,所以(5n +2)a n +3-(10n +4)a n +2+(5n +2)a n +1=0. 因为5n +2≠0,所以a n +3-2a n +2+a n +1=0. 所以a n +3-a n +2=a n +2-a n +1,n ≥1. 又因为a 3-a 2=a 2-a 1=5, 所以数列{a n }为等差数列.(2)由(1)可知,a n =1+5(n -1)=5n -4,要证 5a mn -a m a n >1, 只要证5a mn >1+a m a n +2a m a n . 因为a mn =5mn -4,a m a n =(5m -4)(5n -4)=25mn -20(m +n )+16,故只要证5(5mn -4)>1+25mn -20(m +n )+16+2a m a n , 即只要证20m +20n -37>2a m a n .因为2a m a n ≤a m +a n =5m +5n -8<5m +5n -8+(15m +15n -29)=20m +20n -37, 所以命题得证.5.(2017·宁波模拟)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .若k 1>0,k 2>0,证明:FM ―→·FN ―→<2p 2.证明:由题意知,抛物线E 的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,直线l 1的方程为y =k 1x +p2.由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1,y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p .所以点M 的坐标为⎝⎛⎭⎪⎫pk 1,pk 21+p 2,FM ―→=(pk 1,pk 21).同理可得点N 的坐标为⎝ ⎛⎭⎪⎫pk 2,pk 22+p 2,FN ―→=(pk 2,pk 22),于是FM ―→·FN ―→=p 2(k 1k 2+k 21k 22). 法一:要证FM ―→·FN ―→<2p 2, 只要证k 1k 2+k 21k 22<2, 再证-2<k 1k 2<1. 由k 1>0,k 2>0,k 1≠k 2, 即证0<k 1k 2<1.因为k 1+k 2=2>2k 1k 2,所以0<k 1k 2<1成立. 故FM ―→·FN ―→<2p 2成立.法二:因为k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2, 所以0<k 1k 2<⎝⎛⎭⎪⎫k 1+k 222=1.故FM ―→·FN ―→<p 2(1+12)=2p 2.。
【高中数学】数学《平面解析几何》复习知识要点一、选择题1.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A B .2C D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( ) A .3B 3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】 由22224(42)02y x b x b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,125x =-,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||MN = 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.4.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( )A .B .C .D .【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB 的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+,因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.5.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.6.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x yx y +=联立解得222x y ==可判断①③;由图可判断④.()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.8.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点,则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.11.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( ) A .4 B .2 C .2 D . 【答案】D 【解析】()1ln (0,0)a a f x x a b b b+=-->>,所以()'a f x bx =-,则f ′(1)=-ab为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-ab(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b+=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab , 所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2, 所以a +b ≤,即a +b 的最大值为.故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.12.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .13.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A BC D【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ ,即有2224208c a a =+,即227c a =,可得c =,即ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).14.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】 设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由b y x a =±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为b y x a=±=±. 【点睛】 本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.15.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.16.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 60k ︒==y b =+.圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与3⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.17.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线b y x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2B C .3D .【答案】A【解析】【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可.【详解】 由题意知212AF AF a -=,2192AF AF a c +=-,解得21122a c AF -=,1722a c AF -=, 直线1AF 与b y x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =.故选:A【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.18.设椭圆22221(0)x y a b a b+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,且满足AP BP <u u u v u u u v ,设O 为坐标原点,若(,)OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,29λμ=,则该椭圆的离心率为( )A .35B .1213C .35或1213D .45【答案】A【解析】 分析:根据向量共线定理及29λμ=,AP BP <u u u v u u u v ,可推出λ,μ的值,再根据过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限),可推出P ,B 两点的坐标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得a ,b ,c 三者关系,进而可得椭圆的离心率. 详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v∴1λμ+= 又∵29λμ= ∴1323λμ⎧=⎪⎪⎨⎪=⎪⎩或2313λμ⎧=⎪⎪⎨⎪=⎪⎩ ∵AP BP <u u u v u u u v∴2313λμ⎧=⎪⎪⎨⎪=⎪⎩∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限) ∴2(,)b P c a ,2(,)b B c a - ∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点∴直线1l 的方程为为1x y a b +=- ∴()(,)a c b A c a+ ∵2133OP OA OB =+u u u r u u u r u u u r ∴222()1()33b a c b b a a a+=⋅+⋅-,即2b a c =+. ∴22224()2a c a ac c -=++,即223520a c ac --=.∴25230e e +-=∵(0,1)e ∈ ∴35e =故选A. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).19.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( )AB.3 C.2 D【答案】B【解析】【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率.【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.20.已知平面向量,,a b c r r r 满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A 75-B 73-C .532-D 31- 【答案】A【解析】【分析】 根据题意,易知a r 与b r 的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得2212302x y x y +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果.【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.。
保分大题规范专练(三)1.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R),f (x )=m ·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2. (1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积.解:(1)f (x )=m ·n -12=3sin ωx cos ωx -cos 2ωx -12=32sin 2ωx -12cos 2ωx -1 =sin ⎝ ⎛⎭⎪⎫2ωx -π6-1. ∵相邻两对称轴之间的距离为π2, ∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π6-1, 由2k π-π2≤2x -π6≤2k π+π2,k ∈Z , 得k π-π6≤x ≤k π+π3,k ∈Z , ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3,k ∈Z. (2)由(1)知,f (B )=sin ⎝⎛⎭⎪⎫2B -π6-1=0, ∵0<B <π,∴-π6<2B -π6<11π6, ∴2B -π6=π2,∴B =π3, 由sin A =3sin C 及正弦定理得a =3c ,在△ABC 中,由余弦定理可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334.2.如图,已知四边形ABCD 为正方形,四边形ABEF ,四边形DCEF为菱形,且∠AFE =π3,M 为BC 的中点. (1)证明:BC ⊥平面MEF ;(2)求直线DE 与平面MEF 所成角的大小.解:(1)证明:由四边形ABEF ,四边形DCEF 为菱形得CE =EF =BE , 因为M 为BC 的中点,所以EM ⊥BC .由四边形ABCD 为正方形得BC ⊥AB ,由四边形ABEF 为菱形得AB ∥EF ,所以BC ⊥EF .因为EM ∩EF =E ,所以BC ⊥平面MEF .(2)取AD 的中点N ,连接MN ,FN ,NE ,又因为点M 为BC 的中点,所以MN ∥AB ∥EF ,所以N ,M ,E ,F 四点共面.因为AD ∥BC ,BC ⊥平面MEF ,所以AD ⊥平面MEF ,所以∠DEN 为DE 与平面MEF 所成的角.设AB =2,因为在菱形ABEF 中,∠AFE =π3,所以AE =AB =2, 因为AD ⊥NE ,N 为AD 的中点,所以DN =1,DE =AE =2,所以sin ∠DEN =DN DE =12,所以∠DEN =π6, 即DE 与平面MEF 所成的角为π6. 3.已知函数f (x )=(t +1)ln x +tx 2+3t ,t ∈R.(1)若t =0,求证:当x ≥0时,f (x +1)≥x -12x 2; (2)若f (x )≥4x 对任意x ∈[1,+∞)恒成立,求t 的取值范围. 解:(1)证明:t =0时,f (x +1)-x +12x 2=ln(x +1)+12x 2-x .令g (x )=ln(x +1)+12x 2-x , 则g ′(x )=1x +1+x -1=x 2x +1>0,从而函数g (x )在x ∈[0,+∞)上单调递增,g (x )≥g (0)=0,即x ≥0时,f (x +1)≥x -12x 2.(2)由(1)知,x ≥0时,ln(x +1)≥x -12x 2, 则x ≥1时,ln x =ln[(x -1)+1]≥(x -1)-12(x -1)2 =-12x 2+2x -32. 若t ≤-1,则当x ≥1时,(t +1)ln x +tx 2+3t <0<4x ,原不等式不成立. 若t >-1,x ≥1,则f (x )-4x =(t +1)ln x +tx 2-4x +3t≥(t +1)⎝ ⎛⎭⎪⎫-12x 2+2x -32+tx 2-4x +3t =t -12(x 2+4x +3), 从而f (x )≥4x 恒成立时,t ≥1.综上所述,t 的取值范围为[1,+∞).。
高考数学历年(2018-2022)真题按知识点分类平面解析几何(直线与方程)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021ꞏ全国ꞏ统考高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+的距离为p =( )A .1B .2C .D .44.(2020ꞏ全国ꞏ统考高考真题)点(0,﹣1)到直线()1y k x =+距离的最大值为( )A.1BC D .25.(2020ꞏ浙江ꞏ统考高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D6.(2020ꞏ山东ꞏ统考高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( ) A .32100x y --= B .32230x y --= C .2340x y +-=D .2320x y +-=7.(2020ꞏ山东ꞏ统考高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.(2018ꞏ全国ꞏ高考真题)已知双曲线22221(00)x y C a b a b -=>>:,则点(4,0)到C 的渐近线的距离为A B .2 C .2D .9.(2018ꞏ北京ꞏ高考真题)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .410.(2019ꞏ北京ꞏ高考真题)已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65二、多选题11.(2022ꞏ全国ꞏ统考高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒三、填空题12.(2022ꞏ全国ꞏ统考高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.13.(2022ꞏ全国ꞏ统考高考真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.14.(2021ꞏ全国ꞏ统考高考真题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.15.(2021ꞏ全国ꞏ统考高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 16.(2019ꞏ江苏ꞏ高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.四、解答题17.(2018ꞏ全国ꞏ高考真题)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.18.(2018ꞏ全国ꞏ高考真题)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.19.(2019ꞏ江苏ꞏ高考真题)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小..于圆..O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.五、双空题20.(2020ꞏ北京ꞏ统考高考真题)已知双曲线22:163x yC-=,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.D【要点分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【答案详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 3.B【要点分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【答案详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B. 4.B【要点分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【答案详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【名师点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题. 5.D【要点分析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【答案详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==故选:D.【名师点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题. 6.D【要点分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【答案详解】设对称的直线方程上的一点的坐标为()x y ,, 则其关于点()1,2-对称的点的坐标为(2,4)x y ---, 因为点(2,4)x y ---在直线2360x y +-=上, 所以()()223460x y --+--=即2320x y +-=. 故选:D.7.D【要点分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【答案详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D.8.D【答案详解】要点分析:由离心率计算出ba,得到渐近线方程,再由点到直线距离公式计算即可.答案详解:e c a === 1ba∴= 所以双曲线的渐近线方程为x y 0±=所以点(4,0)到渐近线的距离d== 故选D名师点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.9.C【要点分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【答案详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C.【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.10.D【要点分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可. 【答案详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.11.ACD【要点分析】由AF AM =及抛物线方程求得3(42p A ,再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得(,33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅< ,0MA MB ⋅< 求得AOB ∠,AMB∠为钝角即可判断D 选项.【答案详解】对于A ,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=, 代入抛物线可得2233242p y p p =⋅=,则3()42p A ,则直线AB的斜率为2342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为2px y =+,联立抛物线方程得220y py p -=,设11(,)B x y1p y p +=,则1y =2123p x ⎛⎫-=⋅ ⎪ ⎪⎝⎭,解得13p x =,则(,)33p B ,则2p OB OF =≠=,B 错误; 对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确; 对于D,2333(,(,0423343234p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又2225()(,)0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确. 故选:ACD.12.13,32⎡⎤⎢⎥⎣⎦【要点分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【答案详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =, 依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦13.22(1)(1)5x y -++=【要点分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【答案详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M到两点的距离相等且为半径R , ∴==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R=M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= [方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线210xy +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= 14【要点分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【答案详解】由已知,3c ==,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.15.()0,1【要点分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【答案详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e N AM B ===∈=. 故答案为:()0,1【名师点睛】关键点名师点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 16.4.【要点分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【答案详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小.由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.17.(1)AM的方程为2y x =-2y x =(2)证明见解析. 【要点分析】(1)根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为=1x ,代入椭圆方程求得点A的坐标为2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛-⎝⎭,利用两点式求得直线AM 的方程; (2)方法一:分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【答案详解】(1)由已知得()1,0F ,l 的方程为=1x .由已知可得,点A的坐标为1,2⎛ ⎝⎭或1,2⎛⎫ ⎪ ⎪⎝⎭. 所以AM的方程为2y x =+2y x =. (2)[方法一]:【通性通法】分类+常规联立 当l 与x 轴重合时,0OMA OMB ∠=∠=o .当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.[方法二]:角平分线定义的应用当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y . 由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 点A 关于x 轴的对称点()11,N x y -,则直线BN 的方程为()()()()121121y y x x y y x x +-=+-.令=0y ,()()221211212122111212122122222222mm y x x my y y y x y x y m m x x m y y y y y y m -⋅--+++++=+====-++++,则直线BN 过点M ,OMA OMB ∠=∠. [方法三]:直线参数方程的应用设直线l 的参数方程为=1+cos =sin x t y t αα⎧⎨⎩(t 为参数).(*)将(*)式代入椭圆方程2212x y +=中,整理得()221sin 2cos 10t t αα++-=.则12211sin t t α-⋅=+,1222cos 1sin t t αα+=-+. 又()()11221cos ,sin ,1cos ,sin A t t B t t αααα++,则MA MB k k +=1212sin sin 1cos 21cos 2t t t t αααα+=+-+-1212sin sin cos 1cos 1t t t t αααα+=--()(()()122112sin cos 1+sin cos=cos 1cos 1t t t t t t αα-αα-α-()()()1212122sin cos sin cos 1cos 1t t t t t t ααααα-+=--()()22122sin cos 2sin cos 1sin 1sin 0cos 1cos 1t t αααααααα-+++=--, 即MA MB k k =-.所以OMA OMB ∠=∠. [方法四]:【最优解】椭圆第二定义的应用 当直线l 与x 轴重合时,0OMA OMB ∠=∠=︒.当直线l 与x 轴不重合时,如图6,过点A ,B 分别作准线=2x 的垂线,垂足分别为C ,D ,则有AC BD x ∥∥轴.由椭圆的第二定义,有e AF AC=,||e ||BF BD =,得||||||||AF BF AC BD =,即||||||||AF AC BF BD =.由AC BD x ∥∥轴,有||||||||AF BF CM DM =,即||||||||AF CM BF DM =,于是||||||||AC CM BD DM =,且90ACM BDM ∠=∠=︒.可得AMC BMD ∠=∠,即有∠=∠AMO BMO .[方法五]:角平分线定理逆定理+极坐标方程的应用椭圆22:12x C y +=以右焦点为极点,x轴正方向为极轴,得ρ=设()()12,,,A B ρθρθπ+.22221122||12cos ,||12cos AM BM ρρθρρθ=+-=++.所以1||||AM AF ==2||||BM BF ==由角平分线定理的逆定理可知,命题得证. [方法六]:角平分线定理的逆定理的应用设点O (也可选点F )到直线,MA MB 的距离分别为12,d d ,根据角平分线定理的逆定理,要证OMA OMB ∠=∠,只需证12d d =. 当直线l 的斜率为0时,易得120d d ==.当直线l 的斜率不为0时,设直线l 的方程为:()()11221,,,,x my A x y B x y =+.由方程组22+=1,2=+1,x y x my ⎧⎪⎨⎪⎩得()222210,Δ0m y my ++-=>恒成立,12222m y y m +=-+.12212y y m =-+. 直线MA 的方程为:()1111220,y x x y y d ---==因为点A 在直线l 上,所以111x my =+,故1d =同理,2d =()()()()12121222122222112242121121y y y y my y d d m y my m y my -+-⎡⎤⎣⎦-=⎡⎤⎡⎤+-++-+⎣⎦⎣⎦.因为()121222222022m m y y my y m m +-=-+=++,所以22120d d -=,即12d d =. 综上,OMA OMB ∠=∠.[方法七]:【通性通法】分类+常规联立当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y .由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 所以()()()1212121212121220221111MA MB my y y y y y y y k k x x my my my my -++=+=+==------, 故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. [方法八]:定比点差法设()0,1AF FB λλ=≠± ,()()1122,,,A x y B x y ,所以1212+1=1++0=1+x x y y λλλλ⎧⎪⎪⎨⎪⎪⎩,由22112222222+=12+=2x y x y λλλ⎧⎪⎪⎨⎪⎪⎩作差可得,()12121212112111x x x x y y y y λλλλλλλλ+-+-⨯+⨯=+-+-,所以, ()1221x x λλ-=-,又121x x λλ+=+,所以,()121113,322x x λλ⎛⎫=-=- ⎪⎝⎭,故()1222120111221122MA MB y y y y k k x x λλλ-+=+=+=--⎛⎫-+-+ ⎪⎝⎭,MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠.当1λ=时,l 与x 轴垂直,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 故OMA OMB ∠=∠.【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;方法二:根据角平分线的定义可知,利用点A 关于x 轴的对称点N 在直线BM 上,证直线AN 过点M 即可;方法三:利用直线的参数方程证明斜率互为相反数;方法四:根据点M 是椭圆的右准线=2x 与x 轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择; 方法六:类比方法五,角平分线定理的逆定理的应用; 方法七:常规联立,同方法一,只是设直线的方程形式不一样; 方法八:定比点差法的应用.18.(1)112y x =+或112y x =--;(2)证明见解析.【要点分析】(1)根据题意可得直线l 的方程为=2x ,从而得出点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)方法一:设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立.【答案详解】(1)当l 与x 轴垂直时,l 的方程为=2x ,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--;(2)[方法一]:【通性通法】韦达定理+斜率公式 设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由2=+2=2x ty y x ⎧⎨⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠. [方法2]:【最优解】斜率公式+三点共线的坐标表示因为M ,N 在抛物线上,可设()2112,2M t t ,()2222,2N t t ,故()21122,2AM t t =- ,()22222,2AN t t =- .而A ,M ,N 共线,故AM AN ∥,即()()2221122222220t t t t -⋅--⋅=,化简得()()1221410t t t t +-=.而M ,N 是不同的点,故12t t ≠,可得1210t t +=.这样()()()()121212222212121220222211BM BN t t t t t t k k t t t t +++=+==++++.故ABM ABN ∠=∠. 【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解. 19.(1)15(百米); (2)见解析;(3)17+. 【要点分析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离.【答案详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识要点分析和解决实际问题的能力.20. ()3,0【要点分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【答案详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C.故答案为:()3,0【名师点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.。
回扣一集合与常用逻辑用语[基础知识看一看]一、牢记概念与公式四种命题的相互关系二、活用定理与结论运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[易错易混想一想]1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y =lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合.但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性.在解决有关集合的问题时,尤其要注意元素的互异性.4.遇到A∩B=∅时,你是否注意到“极端”情况:A=∅或B=∅;同样在应用条件A∪B =B⇔A∩B=A⇔A⊆B时,不要忽略A=∅的情况.5.注重数形结合在集合问题中的应用.列举法常借助Venn 图解题;描述法常借助数轴来运算,求解时要特别注意端点值.6.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否定命题p 的结论.7.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[保温训练手不凉]1.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R|-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C ={1,2,4}. 2.“α≠β”是“sin α≠sin β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 命题“若α≠β,则“sin α≠sin β”等价于命题“若sin α=sin β,则α=β”,这个命题显然是假命题,故条件是不充分的;命题“若sin α≠sin β,则α≠β”等价于命题“若α=β,则sin α=sin β”,这个命题是真命题,故条件是必要的.因此,“α≠β是sin α≠sin β”的必要而不充分条件.3.命题p :m >7,命题q :f (x )=x 2+mx +9(m ∈R)有零点,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 当m >7时,方程x 2+mx +9=0的判别式Δ=m 2-36>0,此时f (x )有两个零点;反过来,当f (x )有零点时,Δ=m 2-36≥0,即m 2≥36,不能得知m >7.因此,p 是q 的充分不必要条件.4.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是( )A .{1,2,3}B .{1,2}C .{1,0}D .{0,1,2} 解析:选B 不妨设a <b <c ,则⎩⎪⎨⎪⎧a +b =1,a +c =2,b +c =3,解得⎩⎪⎨⎪⎧ a =0,b =1,c =2,故⎩⎪⎨⎪⎧|a -b |=1,|a -c |=2,|b -c |=1.由此知所求集合为{1,2}.5.已知集合M ={x |y =1-x },N ={y |y =2x},则M ∩N =________. 解析:M ={x |x ≤1},N ={y |y >0},所以M ∩N ={x |0<x ≤1}.答案:(0,1] 6.下面四个命题:①函数y =log a (x +1)+1(a >0且a ≠1)的图象必过定点(0,1); ②“若m >0,则方程x 2+x -m =0有实根”的逆否命题;③过点(-1,2)且与直线2x -3y +4=0垂直的直线方程为3x +2y -1=0. 其中所有真命题的序号是________.解析:①中,当x =0时,y =log a 1+1=1,所以恒过定点(0,1)(也可由y =log a x 的图象恒过定点(1,0),将图象左移1个单位,然后向上平移1个单位,故图象恒过(0,1)点),所以①为真命题;②中,Δ=1+4m ,当m >0时,Δ>0,所以②为真命题,其逆否命题也为真命题;③中,直线2x -3y +4=0的斜率为23,所以和2x -3y +4=0垂直的直线斜率为-32,因为直线过点(-1,2),所以所求直线方程为y -2=-32(x +1),即3x +2y -1=0,所以③为真命题.综上真命题有①②③.答案:①②③回扣二函__数[基础知识看一看]一、牢记概念与公式1.函数的单调性、奇偶性、周期性(1)单调性是函数在其定义域或定义域某子区间I 上的性质.对任意的x 1,x 2∈I ,若x 1<x 2时都有f (x 1)<f (x 2),则称f (x )为I 上的增函数;若x 1<x 2时都有f (x 1)>f (x 2),则称f (x )为I 上的减函数.(2)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(3)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 2.指数与对数式的运算公式a m ·a n =a m +n ;(a m )n =a m n ;log a (MN )=log a M +log a N ;log a M N =log a M -log a N ;log a M n=n log a M ;a log a N =N ;log a N =log b Nlog b a(a >0且a ≠1,b >0且b ≠1,M >0,N >0).3.指数函数与对数函数的性质解析式 y =a x (a >0且a ≠1)y =log a x (a >0且a ≠1)定义域 R (0,+∞)值域(0,+∞)R图象关于直线y =x 对称奇偶性非奇非偶非奇非偶单调性 0<a <1时,在R 上是减函数;a >1时,在R 上是增函数0<a <1时,在(0,+∞)上是减函数;a >1时,在(0,+∞)上是增函数1.抽象函数的周期性与对称性 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.③若函数y =f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.2.函数图象平移变换的相关结论(1)把y =f (x )的图象沿x 轴左右平移|c |个单位(c >0时向左移,c <0时向右移)得到函数y =f (x +c )的图象(c 为常数).(2)把y =f (x )的图象沿y 轴上下平移|b |个单位(b >0时向上移,b <0时向下移)得到函数y =f (x )+b 的图象(b 为常数).3.函数图象伸缩变换的相关结论(1)把y =f (x )的图象上各点的纵坐标伸长(a >1)或缩短(0<a <1)到原来的a 倍,而横坐标不变,得到函数y =af (x )(a >0)的图象.(2)把y =f (x )的图象上各点的横坐标伸长(0<b <1)或缩短(b >1)到原来的1b倍,而纵坐标不变,得到函数y =f (bx )(b >0)的图象.4.确定函数零点的三种常用方法 (1)解方程判定法.若方程易解时用此法.(2)零点定理法.根据连续函数y =f (x )满足f (a )·f (b )<0,判断函数在区间(a ,b )内存在零点.(3)数形结合法.尤其是方程两端对应的函数类型不同时多用此法求解.[易错易混想一想]1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数.列不等式时,应列出所有的不等式,不应遗漏.2.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.3.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.4.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.5.不能准确理解基本初等函数的定义和性质.如函数y =a x(a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x>0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.[保温训练手不凉]1.下列函数中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:选A 由题意知,f (x )在(0,+∞)上是减函数,只有选项A 符合. 2.函数f (x )=11-x 1-x的最大值是( )A.45B.54C.34D.43解析:选D 首先讨论分母1-x (1-x )的取值范围:1-x (1-x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34.因此,有0<11-x 1-x≤43.所以f (x )的最大值为43. 3.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x的定义域与值域均为(0,+∞).函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D.4.函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x <0,x -1,x ≥0的所有零点的和等于( )A .-2B .-1C .0D .1解析:选C 令⎝ ⎛⎭⎪⎫12x-2=0,解得x =-1;令x -1=0,解得x =1.所以函数f (x )存在两个零点1和-1,其和为0.5.已知f (x )=⎩⎪⎨⎪⎧a xx >1,⎝ ⎛⎭⎪⎫4-a 2x +2x ≤1是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)解析:选B 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a 1≥⎝ ⎛⎭⎪⎫4-a 2+2,解得4≤a <8,故选B.6.已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( ) A .c <a <bB .b <a <cC .a <c <bD .a <b <c解析:选B a =⎝ ⎛⎭⎪⎫1223=⎝ ⎛⎭⎪⎫1413,b =2-43=⎝ ⎛⎭⎪⎫11613,c =⎝ ⎛⎭⎪⎫1213.考查幂函数y =x 13,显然该函数在(0,+∞)上是增函数,则易知c >a >b .7.若方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象是( )解析:选D 方程f (x )-2=0在(-∞,0)内有解,即函数f (x )的图象与直线y =2在(-∞,0)内有交点,在各选项中画出直线y =2,满足在(-∞,0)内有交点的只有选项D.8.如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫作“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞) B .[0, 3 ] C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,函数f x x =12x -1+32x在区间[1,3 ]上单调递减,故“缓增区间”I 为[1, 3 ]. 9.已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈-1,0],x ,x ∈0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,12B.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,12C.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,23D.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,23 解析:选A g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点就是函数y =f (x )的图象与函数y =m (x +1)的图象有两个交点,在同一直角坐标系内作出函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈-1,0],x ,x ∈0,1].和函数y=m (x +1)的图象,如图,当直线y =m (x +1)与y =1x +1-3,x ∈(-1,0]和y =x ,x ∈(0,1]都相交时0<m ≤12;当直线y =m (x +1)与y =1x +1-3,x ∈(-1,0]有两个交点时,由方程组⎩⎪⎨⎪⎧y =m x +1,y =1x +1-3消元得1x +1-3=m (x +1),即m (x +1)2+3(x +1)-1=0,化简得mx 2+(2m +3)x +m +2=0,当Δ=9+4m =0,即m =-94时,直线y =m (x +1)与y =1x +1-3相切,当直线y =m (x +1)过点(0,-2)时,m =-2,所以m ∈⎝ ⎛⎦⎥⎤-94,-2.综上,实数m 的取值范围是⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,12,选A.10.设二次函数f (x )=ax 2-4x +c (x ∈R)的值域为[0,+∞),则1c +9a的最小值为________.解析:∵二次函数f (x )=ax 2-4x +c (x ∈R)的值域为[0,+∞),∴a >0,4ac -164a =0,∴ac =4,c >0,∴1c +9a≥29ac =3,当且仅当1c =9a ,即a =6,c =23时等号成立,∴1c +9a的最小值为3.答案:311.已知奇函数f (x )=m -g x1+g x的定义域为R ,其中y =g (x )为指数函数,且其图象过点(2,9),则函数y =f (x )的解析式为________.解析:设g (x )=a x(a >0,a ≠1),则a 2=9,∴a =3或a =-3(舍去),∴g (x )=3x,∴f (x )=m -3x1+3x,又f (x )为奇函数,∴f (-x )=-f (x ),即m -3-x1+3-x=-m -3x1+3x ,整理得m (3x+1)+m (1+3-x)=3x+1+1+3-x,∴m =1(或由f (0)=0得m =1),∴f (x )=1-3x1+3x .答案:f (x )=1-3x1+3x12.设函数y =f (x )的定义域为D ,若对于任意的x 1,x 2∈D ,当x 1+x 2=2a 时,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图象的对称中心.研究函数f (x )=x 3+sinx +2的某一个对称中心,并利用对称中心的定义,可得到f (-1)+f ⎝ ⎛⎭⎪⎫-1920+…+f ⎝ ⎛⎭⎪⎫1920+f (1)=________.解析:由题意可得,对于函数f (x )=x 3+sin x +2,当x 1+x 2=0时,恒有f (x 1)+f (x 2)=4,所以f (-1)+f ⎝ ⎛⎭⎪⎫-1920+…+f ⎝ ⎛⎭⎪⎫1920+f (1)=4×20+f (0)=82. 答案:82回扣三导数及其应用[基础知识看一看]一、牢记概念与公式 1.基本导数公式: (1)c ′=0(c 为常数); (2)(x m)′=mxm -1(m ∈Q);(3)(sin x )′=cos x ; (4)(cos x )′=-sin x ; (5)(a x)′=a xln a (a >0且a ≠1); (6)(e x)′=e x; (7)(log a x )′ =1x ln a(a >0且a ≠1); (8)(ln x )′=1x.2.导数的四则运算: (1)(u ±v )′=u ′±v ′; (2)(uv )′=u ′v +uv ′; (3)⎝ ⎛⎭⎪⎫u v ′=u ′v -uv ′v 2(v ≠0). 二、活用定理与结论 1.导数的几何意义函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0).2.函数的单调性与导数的关系在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增;如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减.3.导数研究函数单调性的一般步骤①确定函数的定义域;②求导数f′(x);③若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0即可;若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.4.求函数y=f(x)在某个区间上的极值的步骤第一步:求导数f′(x);第二步:求方程f′(x)=0的根x0;第三步:检查f′(x)在x=x0左右的符号:①左正右负⇔f(x)在x=x0处取极大值;②左负右正⇔f(x)在x=x0处取极小值.5.求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤第一步:求函数y=f(x)在区间(a,b)内的极值(极大值或极小值);第二步:将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[易错易混想一想]1.如果已知f(x)为减函数求参数取值范围,那么不等式f′(x)≤0恒成立,但要验证f′(x)是否恒等于0.增函数亦如此.2.导数为零的点并不一定是极值点,例如函数f(x)=x3,有f′(0)=0,但x=0不是极值点.3.求曲线的切线方程时,要注意题目条件中的已知点是否为切点.[保温训练手不凉]1.已知函数f(x)=1xcos x,则f′(x)=( )A.cos xx2B.-sin xx2C.cos x-x sin xx2D.-cos x+x sin xx2解析:选D f′(x)=-1x2cos x-sin xx=-cos x+x sin xx2.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( ) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C 设f(x)=x3,f′(0)=0,但是f(x)是单调增函数,在x=0处不存在极值,故若p则q是一个假命题,由极值的定义可得若q则p是一个真命题.故选C.3.一直角坐标系中,函数y =ax 2-x +a2与y =a 2x 3-2ax 2+x +a (a ∈R)的图象不可能的是( )解析:选B 分两种情况讨论:当a =0时,函数为y =-x 与y =x ,图象为D ,故D 有可能;当a ≠0时,函数y =ax2-x +a 2的对称轴为x =12a,对函数y =a 2x 3-2ax 2+x +a 求导得y ′=3a 2x 2-4ax +1=(3ax-1)(ax -1),令y ′=0,则x 1=13a ,x 2=1a ,所以对称轴x =12a 介于两个极值点x 1=13a ,x 2=1a之间,A ,C 满足,B 不满足,所以B 不可能.故选B.4.x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98 C .[-6,-2]D .[-4,-3]解析:选C 当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令m =1x ,则m ∈⎝⎛⎦⎥⎤-∞,-12,a ≤-3m 3-4m 2+m ,令g (m )=-3m 3-4m 2+m ,m ∈⎝⎛⎦⎥⎤-∞,-12,则g ′(m )=-9m 2-8m +1=-(m +1)(9m -1).显然在(-∞,-1]上g ′(m )≤0,在⎝⎛⎦⎥⎤-1,-12上,g ′(m )>0,所以g (m )min =g (-1)=-2.所以a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].5.若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 解析:由题意有y ′=-e -x,设P (m ,n ),直线2x +y +1=0的斜率为-2,则由题意得-e -m=-2,解得m =-ln 2,所以n =e-(-ln 2)=2.答案:(-ln 2,2) 6.函数f 0(x )=sin xx(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.则2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=________.解析:由已知,得f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫sin x x ′=cos x x-sin x x2,于是f 2(x )=f 1′(x )=⎝ ⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1.答案:-1回扣四不_等_式[基础知识看一看]一、牢记概念与公式 1.不等式的性质 (1)a >b ,b >c ⇒a >c ;(2)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (3)a >b ⇒a +c >b +c ; (4)a >b ,c >d ⇒a +c >b +d ; (5)a >b >0,c >d >0⇒ac >bd ;(6)a >b >0,n ∈N ,n >1⇒a n>b n,n a >nb . 2.简单分式不等式的解法 (1)f xg x >0⇔f (x )g (x )>0,f x g x<0⇔f (x )g (x )<0.(2)f x g x ≥0⇔⎩⎪⎨⎪⎧f xg x ≥0,g x ≠0,f xg x ≤0⇔⎩⎪⎨⎪⎧f xg x ≤0,g x ≠0.(3)对于形如f xg x>a (≥a )的分式不等式要采取:移项—通分—化乘积的方法转化为(1)或(2)的形式求解.3.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:不等式 a >0a =0a <0|x |<a {x |-a <x <a } ∅ ∅ |x |>a{x |x >a 或x <-a }{x ∈R|x ≠0}R(2)|ax +b ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. 二、活用定理与结论 1.常用的六个重要不等式 (1)|a |≥0,a 2≥0(a ∈R). (2)a 2+b 2≥2ab (a ,b ∈R). (3)a +b2≥ab (a >0,b >0).(4)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R).(5)a 2+b 22≥a +b2≥ab (a >0,b >0).(6)||a |-|b ||≤|a +b |≤|a |+|b |. 2.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域.3.一元二次不等式的恒成立问题 (1)ax2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.4.基本不等式求最值问题 若a ,b ∈R +,则a +b2≥ab ,当且仅当“a =b ”时取等号.应用基本不等式求最值应注意“一正、二定、三相等”.[易错易混想一想]1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错. 2.解一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f xg x≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x(x <0)时应先转化为正数再求解.5.解绝对值不等式易出现解集不全或错误.对于含绝对值的不等式不论是分段去绝对值号还是利用几何意义,都要不重不漏.6.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.7.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.[保温训练手不凉]1.已知-1<a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3C .-a 3>a 2>-aD .a 2>-a >-a 3解析:选B ∵-1<a <0,∴0<-a <1,∴-a >(-a )2>-a 3,即-a >a 2>-a 3.2.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个解析:选B 直线2x +y -10=0与不等式组表示的平面区域的位置关系如图所示,故直线与此区域的公共点有1个.3.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是( ) A .20 B .150 C .75D .1510解析:选 A 依题意得,a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |×|2b |=22|ab |=2100=20(当且仅当|a |=|2b |时取等号),因此|a +2b |的最小值是20.4.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM ―→·OA ―→的最大值为( )A .3B .4C .3 2D .4 2解析:选B 画出区域D ,如图所示,而z =OM ―→·OA ―→=2x +y ,故y =-2x +z ,令l 0:y =-2x ,平移直线l 0,相应直线过点(2,2)时,截距z 有最大值,故z max =2×2+2=4.5.若对任意正实数x ,不等式1x 2+1≤ax恒成立,则实数a 的最小值为( ) A .1 B. 2 C.12D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12,故a 的最小值为12.6.(2017·北京高考)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .9解析:选 D 不等式组所表示的可行域如图中阴影部分所示,是以点A (1,1),B (3,3),C (3,-1)为顶点的三角形及其内部.设z =x +2y ,当直线z =x +2y 经过点B 时,z 取得最大值,所以z max =3+2×3=9.7.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{x |x ≥1}. 答案:{x |x ≥1}8.若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是________.解析:函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.(1)当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意;(2)当a2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16a -12-12a 2+4a -5<0,解得1<a <19.综上可知,a 的取值范围是1≤a <19. 答案:[1,19)回扣五三角函数、解三角形与平面向量 [基础知识看一看]一、牢记概念与公式 1.同角三角函数的基本关系(1)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z ;(2)平方关系:sin 2α+cos 2α=1(α∈R). 2.三角函数的诱导公式诱导公式的记忆口诀:奇变偶不变,符号看象限.其中,“奇、偶”是指“k ·π2±α(k∈Z)”中k 的奇偶性;“符号”是把任意角α看作锐角时,原函数值的符号.3.三种函数的性质 函数 y =sin x y =cos x y =tan x图象单调性在⎣⎢⎡-π2+2k π,在[-π+2k π,2k π](k ∈Z)上单调递增;在[2k π,π+在⎝ ⎛-π2+k π,⎦⎥⎤π2+2k π(k ∈Z)上单调递增;在⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π (k ∈Z)上单调递减2k π](k ∈Z)上单调递减⎭⎪⎫π2+k π(k ∈Z)上单调递增对称性对称中心:(k π,0)(k ∈Z); 对称轴:x =π2+k π(k ∈Z)对称中心:⎝ ⎛⎭⎪⎫π2+k π,0(k ∈Z);对称轴:x =k π(k ∈Z)对称中心:⎝ ⎛⎭⎪⎫k π2,0(k ∈Z)4.三角恒等变换的主要公式sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β;sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=sin 2αcos 2α=2tan α1-tan 2α. 5.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.6.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb . 两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2 ), 则|AB ―→|=x 2-x 12+y 2-y 12.(4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 二、活用定理与结论1.三角函数的两种常见变换2.正、余弦定理 (1)正弦定理①a =2R sin A ,b =2R sin B ,c =2R sin C ; ②sin A =a 2R ,sin B =b 2R ,sin C =c 2R; ③a ∶b ∶c =sin A ∶sin B ∶sin C . 注:R 是三角形的外接圆半径. (2)余弦定理①cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.②b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.三点共线的判定三个点A ,B ,C 共线⇔AB ―→,AC ―→共线;向量PA ―→,PB ―→,PC ―→中三终点A ,B ,C 共线⇔存在实数α,β使得PA ―→=αPB ―→+βPC ―→,且α+β=1.[易错易混想一想]1.注意角的集合的表示形式不是唯一的,如终边在y 轴的负半轴上的角的集合可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π+π2,k ∈Z ,也可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π+3π2,k ∈Z .2.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置决定.3.在解决三角问题时,应明确正切函数的定义域,正弦函数、余弦函数的有界性. 4.求y =A sin(ωx +φ)的单调区间时,要注意ω,A 的符号.ω<0时,应先利用诱导公式将x 的系数转化为正数后再求解;在书写单调区间时,不能弧度和角度混用,需加2k π时,不要忘掉k ∈Z ,所求区间一般为闭区间.5.对三角函数的给值求角问题,应选择该角所在范围内是单调函数,这样,由三角函数值才可以唯一确定角,若角的范围是⎝⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围是⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.6.利用正弦定理解三角形时,注意解的个数讨论,可能有一解、两解或无解.在△ABC 中,A >B ⇔sin A >sin B .7.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行;λ0=0(λ∈R),而不是等于0;0与任意向量的数量积等于0,即0·a =0;但不说0与任意非零向量垂直.8.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )·c 与a ·(b ·c )不一定相等;(a ·b )·c 与c 共线,而a ·(b·c )与a 共线.9.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价.[保温训练手不凉]1.已知cos 2α=14,则sin 2α=( )A.12 B.34C.58D.38解析:选D 由倍角公式,得sin 2α=12(1-cos 2α).又cos 2α=14,所以sin 2α=12·⎝ ⎛⎭⎪⎫1-14=38.2.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B .60° C .45°D .30°解析:选B 依题意,33=12×4×3sin C ,解得sin C =32.故角C 为60°.3.已知角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin5π6,cos 5π6,则角α的最小正值为( )A.5π6B.2π3 C.5π3D.11π6解析:选C 因为角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin5π6,cos 5π6,所以角α在第四象限,tan α=cos5π6sin5π6=-3,故α的最小正值为5π3.4.设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB ―→|=2|AP ―→|,则点P 的坐标为( ) A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个解析:选C 设P (x ,y ),由点P 在直线AB 上,且|AB ―→|=2|AP ―→|得AB ―→=2AP ―→,或AB ―→=-2AP ―→.而AB ―→=(2,2),AP ―→=(x -2,y ),由(2,2)=2(x -2,y ),解得x =3,y =1,此时点P 的坐标为(3,1);由(2,2)=-2(x -2,y ),解得x =1,y =-1,此时点P 的坐标为(1,-1).综上所述,点P 的坐标为(3,1)或(1,-1).5.若函数f (x )=1-2sin 2⎝ ⎛⎭⎪⎫x +π8+sin ⎝ ⎛⎭⎪⎫2x +π4,则f (x )图象的一个对称中心为( ) A.⎝ ⎛⎭⎪⎫π2,0B.⎝ ⎛⎭⎪⎫π3,0C.⎝ ⎛⎭⎪⎫π4,0 D.⎝ ⎛⎭⎪⎫π6,0 解析:选C f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,由题设知2x =k π+π2(k ∈Z),解得x =k π2+π4(k ∈Z),当k =0时,对称中心为⎝ ⎛⎭⎪⎫π4,0.6.已知在三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE =3EC ,若P 是BC 边上的动点,则AP ―→·AE ―→的取值范围是( )A .[-1,3]B .⎣⎢⎡⎦⎥⎤-23,3 C .⎣⎢⎡⎦⎥⎤-23,103D .⎣⎢⎡⎦⎥⎤-1,103 解析:选C 以BC 的中点D 为坐标原点,BC 所在的直线为x 轴,AD 所在的直线为y 轴建立平面直角坐标系,则B (-2,0),C (2,0),A ⎝⎛⎭⎪⎫0,23,E (1,0).设P (x,0),x ∈[-2,2],所以AP ―→·AE ―→=⎝⎛⎭⎪⎫x ,-23·⎝ ⎛⎭⎪⎫1,-23=x +43∈⎣⎢⎡⎦⎥⎤-23,103.7.若函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位后,与函数y =tan ⎝⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16B.14C.13D.12解析:选 D 函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位后,得y =tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4的图象,由题知tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4=tan ⎝ ⎛⎭⎪⎫ωx +π6,即π4-π6ω+k π=π6(k ∈Z),解得ω=6k +12(k ∈Z).又因ω>0,故ω的最小值为12. 8.为得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,可将函数y =sinx 的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则|m -n |的最小值是________.解析:由题意可知,m =π3+2k 1π,k 1为非负整数,n =-π3+2k 2π,k 2为正整数,∴|m -n |=2π3+2(k 1-k 2)π,∴当k 1=k 2时,|m -n |min =2π3. 答案:2π39.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,∴x =π2,x =2π3均不是f (x )的极值点,其极值应在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π2+π62=π3,即⎝ ⎛⎭⎪⎫π3,0应是与对称轴x =7π12相邻的对称中心,∴T =4×⎝ ⎛⎭⎪⎫7π12-π3=π.答案:π10.已知圆O 的半径为2,圆O 的一条弦AB 长为3,P 是圆O 上任意一点,点Q 满足BP ―→=12PQ ―→,则AB ―→·AQ ―→的取值范围是________.解析:AB ―→·AQ ―→=AB ―→·(AB ―→+BQ ―→)=AB ―→·(AB ―→+3BP ―→)=AB ―→·(AB ―→+3BO ―→+3OP ―→)=AB ―→2+3AB ―→·BO ―→+3AB ―→·OP ―→, 由已知得AB =3,OB =OA =OP =2. 〈AB ―→,BO ―→〉=π-∠ABO ,由余弦定理得cos ∠ABO =32+22-222×3×2=34.∴cos 〈AB ―→,BO ―→〉=-34,AB ―→·OP ―→∈[-6,6].∴AB ―→·AQ ―→=9-272+3AB ―→·OP ―→∈⎣⎢⎡⎦⎥⎤-452,272答案:⎣⎢⎡⎦⎥⎤-452,272回扣六数列与数学归纳法[基础知识看一看]一、牢记概念与公式等差数列、等比数列等差数列 等比数列概念 a n -a n -1=d ,n ≥2 a na n -1=q ,n ≥2 通项公式a n =a 1+(n -1)da n =a 1q n -1(q ≠0) 前n 项和 S n =n a 1+a n2=na 1+n n -12d(1)q ≠1,S n =a 11-q n1-q=a 1-a n q1-q(2)q =1,S n =na 11.等差、等比数列的常用性质等差数列等比数列性质 (1)若m ,n ,p ,q ∈N *,且m +n(1)若m ,n ,p ,q ∈N *,且m +n =p +q ,2.判断等差数列的常用方法 (1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列.(3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列.3.判断等比数列的三种常用方法 (1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.(3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.4.证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.[易错易混想一想]1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.易混淆几何平均数与等比中项,正数a ,b 的等比中项是±ab .3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n )与{b n }的前n 项和分别为S n 和T n ,已知S n T n =n +12n +3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q ≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论.6.对于通项公式中含有(-1)n的一类数列,在求S n 时,切莫忘记讨论n 的奇偶性;遇到已知a n +1-a n -1=d 或a n +1a n -1=q (n ≥2),求{a n }的通项公式,要注意分n 的奇偶性讨论. 7.数列相关问题中,切忌忽视公式中n 的取值范围,混淆数列的单调性与函数的单调性.如数列{a n }的通项公式a n =n +2n ,求最小值,既要考虑函数f (x )=x +2x(x >0)的单调性,又要注意n 的取值限制条件.8.求等差数列{a n }前n 项和S n 的最值,易混淆取得最大或最小值的条件. 9.数学归纳法证题的关键是第二步,证题时应注意:必须利用归纳假设作基础;解题时要搞清从n =k 到n =k +1的过程中增加了哪些项或减少了哪些项.[保温训练手不凉]1.若等差数列{a n }的前n 项和为S n ,且a 2+a 3=6,则S 4的值为( ) A .12B .11C .10D .9解析:选A 由题意得S 4=a 1+a 2+a 3+a 4=2(a 2+a 3)=12.2.设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 由题可知,若a 1<a 2<a 3,即⎩⎪⎨⎪⎧a 1<a 1q ,a 1q <a 1q 2,当a 1>0时,解得q >1,此时数列{a n }是递增数列,当a 1<0时,解得0<q <1,此时数列{a n }是递增数列;反之,若数列{a n }是递增数列,则a 1<a 2<a 3成立,所以“a 1<a 2<a 3”是“数列{a n }是递增数列”的充分必要条件.3.已知{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33 C .31D .29解析:选C 设数列{a n }的公比为q ,则由等比数列的性质知,a 2·a 3=a 1·a 4=2a 1,即a 4=2.由a 4与2a 7的等差中项为54知,a 4+2a 7=2×54,∴a 7=12⎝ ⎛⎭⎪⎫2×54-a 4=14.∴q 3=a 7a 4=18,即q =12.∴a 4=a 1q 3=a 1×18=2,∴a 1=16,∴S 5=16⎝ ⎛⎭⎪⎫1-1251-12=31. 4.数列{a n}定义如下:a 1=1,当n ≥2时,a n=⎩⎪⎨⎪⎧1+a n2,n 为偶数,1a n -1,n 为奇数,若a n =14,则n 的值为( )A .7B .8C .9D .10解析:选C 因为a 1=1,所以a 2=1+a 1=2,a 3=1a 2=12,a 4=1+a 2=3,a 5=1a 4=13,a 6=1+a 3=32,a 7=1a 6=23,a 8=1+a 4=4,a 9=1a 8=14,所以n =9.5.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =________. 解析:∵a 4+a 6=2a 5=6,∴a 5=a 1+4d =3, 又S 5=5a 1+5×42d =5a 1+10d =10,解得公差d =12. 答案:126.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0,则d 的取值范围是________.解析:由S 5S 6+15=0得(5a 1+10d )(6a 1+15d )+15=0,即30a 21+135a 1d +150d 2+15=0,即2a 21+9da 1+10d 2+1=0,由于a 1,d 为实数,故(9d )2-4×2×(10d 2+1)≥0,即d 2≥8,故d ≥22或d ≤-2 2.答案:(-∞,-2 2 ]∪[22,+∞)7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析:∵数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0.∴当n =8时,其前n 项和最大.答案:8回扣七立_体_几_何[基础知识看一看]一、牢记概念与公式1.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线长), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′,r 分别为上、下底面的半径,l 为母线长).(5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积S 球=4πR 2,V 球=43πR 3.2.“向量法”求解“空间角” (1)向量法求异面直线所成的角若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |.(2)向量法求线面所成的角求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n ·a ||n ||a |.(3)向量法求二面角求出二面角αl β的两个半平面α与β的法向量n 1,n 2,若二面角αl β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角αl β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.二、活用定理与结论 1.把握两个规则。
专题一善用数学思想高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符号来记录和描述,那么数学思想方法则是数学意识,重在领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想等.数学思想与数学基本方法常常在学习、掌握数学知识的同时获得,与此同时,它们又直接对知识的形成起到指导作用.因此,在平时的学习中,我们应对数学思想方法进行认真的梳理与总结,逐个认识它们的本质特征,逐步做到自觉地、灵活地将其运用于所需要解决的问题之中.第一讲函数与方程思想__数形结合思想一、函数与方程思想函数与方程思想的含义函数与方程思想在解题中的应用———————[典例示范]————— 应用一 解决数列、不等式问题[例1] 已知数列{a n }是各项均为正数的等差数列.(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ; (2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值.[解] (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ),(列出方程) 解得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), 所以b n =1S n +1+1S n +2+…+1S 2n=1n +1n +2+1n +2n +3+…+12n2n +1=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n+3, 令f (x )=2x +1x(x ≥1),(构造函数)则f ′(x )=2-1x2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数, 故当x =1时,f (x )min =f (1)=3, 即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.———[即时应用]—————————— 1.(1)设a >0,b >0.( ) A .若2a +2a =2b+3b ,则a >b B .若2a +2a =2b+3b ,则a <b C .若2a -2a =2b-3b ,则a >b D .若2a -2a =2b-3b ,则a <b(2)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. 解析:(1)由2a+2a =2b+3b , 整理得,(2a+2a )-(2b+2b )=b >0, 令f (x )=2x +2x ,显然f (x )是单调递增函数, 由f (a )-f (b )>0可得a >b ,选A.(2)若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x3.设g (x )=3x 2-1x 3,则g ′(x )=-2xx 4,所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减,因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x3,设g (x )=3x 2-1x3,且g (x )在区间[-1,0)上单调递增,因为g (x )min =g (-1)=4,从而a ≤4,综上a =4.答案:(1)A (2)4——————————[典例示范]————————— 应用二 解决解析几何、立体几何问题[例2] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),如图所示,设左顶点为A ,上顶点为B ,且OF ―→·FB ―→=AB ―→·BF ―→.(1)求椭圆C 的方程;(2)若过F 的直线l 交椭圆于M ,N 两点,试确定FM ―→·FN ―→的取值范围. [解] (1)由已知,A (-a,0),B (0,b ),F (1,0), 则由OF ―→·FB ―→=AB ―→·BF ―→,得b 2-a -1=0. ∵b 2=a 2-1,∴a 2-a -2=0,(列出方程) 解得a =2. ∴a 2=4,b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)①若直线l 斜率不存在,则l :x =1, 此时M ⎝ ⎛⎭⎪⎫1,32,N ⎝⎛⎭⎪⎫1,-32,FM ―→·FN ―→=-94. ②若直线l 斜率存在,设l :y =k (x -1),M (x 1,y 1),N (x 2,y 2),则由 ⎩⎪⎨⎪⎧y =k x -,x 24+y23=1消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0,(列出方程) ∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.∴FM ―→·FN ―→=(x 1-1,y 1)·(x 2-1,y 2) =(1+k 2)[x 1x 2-(x 1+x 2)+1] =-94-11+k2.(转化为函数) ∵k 2≥0,∴0<11+k2≤1,∴3≤4-11+k 2<4,∴-3≤FM ―→·FN ―→<-94.综上所述,FM ―→·FN ―→的取值范围为⎣⎢⎡⎦⎥⎤-3,-94. ——————————[即时应用]——————————2.(1)已知正四棱锥S ABCD 中,SA =23,那么当该棱锥的体积最大时,它的高为( ) A .1B. 3 C .2 D .3(2)(2016·浙江高考)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.解析:(1)设正四棱锥S ABCD 的底面边长为a (a >0),则高h = SA 2-⎝ ⎛⎭⎪⎫2a 22=12-a 22,所以体积V =13a 2h =1312a 4-12a 6.设y =12a 4-12a 6(a >0),则y ′=48a 3-3a 5.令y ′>0,得0<a <4;令y ′<0,得a >4.故函数y 在(0,4]上单调递增,在[4,+∞)上单调递减.可知当a =4时,y 取得最大值,即体积V 取得最大值,此时h =12-a 22=2,故选C.(2)在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =22+22-2×2×2×⎝ ⎛⎭⎪⎫-12=2 3.设CD =x ,则AD =23-x , ∴PD =23-x , ∴V P BCD =13S △BCD ·h≤13×12BC ·CD ·sin 30°·PD =16x (23-x )≤16⎝ ⎛⎭⎪⎫x +23-x 22 =16×⎝ ⎛⎭⎪⎫2322=12, 当且仅当x =23-x ,即x =3时取“=”, 此时PD =3,BD =1,PB =2,满足题意. 故四面体PBCD 的体积的最大值为12.答案:(1)C (2)12二、数形结合思想应用一 处理方程根、函数零点问题[例3] (1)(2017·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 12,x ≤0,log 5x ,x >0,函数g (x )是周期为2的偶函数且当x ∈[0,1]时,g (x )=2x-1,则函数y =f (x )-g (x)的零点个数是( )A .5B .6C .7D .8(2)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log12x ,则方程f (x )-1=0在(0,6)内的所有根之和为( )A .8B .10C .12D .16[解析] (1)在同一坐标系中作出y =f (x )和y =g (x )的图象如图所示,由图象可知当x >0时,有4个零点,当x ≤0时,有2个零点,所以一共有6个零点,故选B.(2)∵奇函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x )=-f (-x ),即f (x )=-f (x +2)=f (x +4),∴f (x )是周期函数,其周期T =4.当0<x ≤1时,f (x )=log 12x ,故f (x )在(0,6)上的函数图象如图所示.由图可知方程f (x )-1=0在(0,6)内的根共有4个,其和为x 1+x 2+x 3+x 4=2+10=12,故选C.[答案] (1)B (2)C———————————[即时应用]——————————3.(1)已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )至少有一个为正数,则实数m 的取值范围是( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)(2)(2018届高三·温州五校联考)已知直线(1-m )x +(3m +1)y -4=0所过定点恰好落在函数f (x )=⎩⎪⎨⎪⎧log a x ,0<x ≤3,|x -4|,x >3的图象上,若函数h (x )=f (x )-mx +2有三个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎦⎥⎤12,1 D .(1,+∞)解析:(1)m =0时结论显然不成立;当m <0时,二次函数的对称轴-b 2a =4-m2m <0,如图①,x >0时显然不成立;当0<m ≤4时,-b 2a =4-m2m >0,如图②,此时结论显然成立;当m >4时,如图③,-b 2a =4-m 2m<0时,只要Δ=4(4-m )2-8m =4(m -8)(m -2)<0即可,即4<m <8,故有0<m <8,选B.(2)由(1-m )x +(3m +1)y -4=0,得x +y -4-m (x -3y )=0,∴由⎩⎪⎨⎪⎧x +y -4=0,x -3y =0,可得直线过定点(3,1),∴log a 3=1,∴a =3.令f (x )-mx +2=0,得f (x )=mx -2,在同一坐标系上作出y 1=f (x )与y 2=mx -2的图象,易得12<m <1.答案:(1)B (2)B——————————[典例示范]———————— 应用二 求解参数的范围及最值问题[例4] (1)若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )(cos x -a )≤0恒成立,则实数m 的最大值为( )A.π4 B.π2 C.3π4D.5π4(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.[解析] (1)在同一坐标系中,作出y =sin x 和y =cos x 的图象, 当m =π4时,要使不等式恒成立,只有a =22,当m >π4时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a =22的同一侧.所以m 的最大值是3π4,选C.(2)作出y =|x -2a |和y =12x +a -1的简图,依题意及图象知应有2a ≤2-2a ,故a ≤12.[答案] (1)C (2)⎝⎛⎦⎥⎤-∞,12 ———————————[即时应用]—————————— 4.(1)对实数a和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1. 设函数f (x )=(x 2-2)⊗(x-x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞(2)已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0) (m >0).若圆C 上存在点P ,使得 ∠APB =90°,则 m 的最大值为( )A .7B .6C .5D .4解析:(1)∵f (x )=(x 2-2)⊗(x -x 2) =⎩⎪⎨⎪⎧x 2-2,-1≤x ≤32,x -x 2,x <-1或x >32.作出其图象,从图象可以看出;c ≤-2时,y =f (x )与y =c 有两个公共点,即函数y =f (x )-c 的图象与x 轴恰有两个公共点;同样的,-1<c <-34也满足要求,故选B.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O的最大距离.因为|OC |= 32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.答案:(1)B (2)B[数学思想专练(一)]一、选择题1.(2018届高三·浙江五校联考)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( )A .7B .8 C.152D.172解析:选D 设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =4,S 10=10a 1+10×92d =110,解得⎩⎪⎨⎪⎧a 1=2,d =2,所以a n =2+2(n -1)=2n ,S n =2n +n n -2×2=n 2+n ,所以S n +64a n =n 2+n +642n =n 2+32n +12≥2n 2·32n +12=172,当且仅当n 2=32n,即n =8时取等号,故选D. 2.若关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-34,0B.⎝ ⎛⎦⎥⎤-34,0C.⎝ ⎛⎭⎪⎫0,34 D.⎣⎢⎡⎭⎪⎫0,34 解析:选B 构造函数f (x )=x 2+2kx -1,∵关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,∴⎩⎪⎨⎪⎧f -,f ,f,即⎩⎪⎨⎪⎧-2k ≥0,-1<0,4k +3>0,∴-34<k ≤0.3.设函数g (x )=x 2-2(x ∈R),又函数f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B .[0,+∞)C .[-94,+∞)D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:选D 依题意知f (x )=⎩⎪⎨⎪⎧x 2-2+x +4,x <x 2-2,x 2-2-x ,x ≥x 2-2,f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.画出f (x )的图象,如图所示,从图中可以看出f (x )的值域为(2,+∞)∪⎣⎢⎡⎦⎥⎤-94,0.4.已知f (x )=e x -e -x+1,若f (a )+f (a -2)<2,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,2) C .(1,+∞)D .(2,+∞)解析:选A 设g (x )=e x-e -x,显然有f (x )=g (x )+1,且g (x )为奇函数,在R 上是增函数, 因为f (a )+f (a -2)<2,所以g (a )+g (a -2)<0,所以g (a )<-g (a -2)=g (2-a ),所以a <2-a ,所以a <1,选A.5.设函数f (x )=ax 2+bx +c (a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为( )A .-2B .-4C .-8D .不能确定解析:选B 根据二次函数性质及复合函数的性质,如示意图,设g (x )=ax 2+bx +c (a <0)的两个零点为x 1,x 2,则一定有|x 1-x 2|=f max (x ),故b 2-4aca 2= 4ac -b 24a,a 2=-4a ,a =-4,选B. 6.定义域为R 的偶函数f (x )满足对任意x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,33B.⎝ ⎛⎭⎪⎫0,22C.⎝⎛⎭⎪⎫0,55 D.⎝⎛⎭⎪⎫0,66 解析:选A ∵f (x +2)=f (x )-f (1),令x =-1,则f (1)=f (-1)-f (1), ∵f (x )是定义在R 上的偶函数,∴f (1)=f (-1),∴f (1)=0. ∴f (x )=f (x +2),即函数f (x )是定义在R 上的周期为2的偶函数, 又∵当x ∈[2,3]时,f (x )=-2x 2+12x -18,令g (x )=log a (x +1) ,则f (x )与g (x )在[0,+∞)的部分图象如图所示.y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,可化为f (x )与g (x )的图象在(0,+∞)上至少有三个交点,g (x )在(0,+∞)上单调递减,则⎩⎪⎨⎪⎧0<a <1,log a 3>-2,解得0<a <33,故选A. 二、填空题7.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,y ≤3,x -y ≤1,若z =kx +y 的最大值为5,且k 为负整数,则k =________.解析:利用线性规划的知识画出不等式组表示的可行域如图所示: 其中点A (-2,3),B (4,3),C (1,0),根据线性规划知识可得,目标函数的最优解必在交点处取得,则-2k +3=5或4k +3=5或k +0=5,又k 为负整数,所以k =-1.答案:-18.(2017·泰州模拟)在直角△ABC 中,AB =2,AC =23,斜边BC 上有异于端点的两点E ,F ,且EF =1,则AE ―→·AF ―→的取值范围是________.解析:建立如图所示的平面直角坐标系,不妨设E (x,23-3x ),Fx +12,332-3x ,其中0<x <32,所以AE ―→·AF ―→=x ⎝ ⎛⎭⎪⎫x +12+()23-3x ⎝ ⎛⎭⎪⎫332-3x =4x 2-10x +9.设f (x )=4x 2-10x +9⎝ ⎛⎭⎪⎫0<x <32,则其图象的对称轴为x =54,其值域为⎣⎢⎡⎭⎪⎫114,9,所以AE ―→·AF ―→的取值范围是⎣⎢⎡⎭⎪⎫114,9.答案:⎣⎢⎡⎭⎪⎫114,99.如图,设直线m ,n 相交于点O ,且夹角为30°,点P 是直线m 上的动点,点A ,B 是直线n 上的定点.若|OA ―→|=|AB ―→|=2,则PA ―→·PB ―→的最小值是________.解析:以OB 所在直线为x 轴,过O 且垂直于AB 的直线为y 轴,建立如图的坐标系,则A (2,0),B (4,0),设P ⎝ ⎛⎭⎪⎫a ,33a ,则PA ―→=⎝⎛⎭⎪⎫2-a ,-33a ,PB ―→=4-a ,-33a ,所以PA ―→·PB ―→=(2-a )(4-a )+13a 2=43a 2-6a +8=43⎝ ⎛⎭⎪⎫a -942+54≥54,所以PA ―→·PB ―→的最小值为54. 答案:54三、解答题10.已知函数f (x )=|4x -x 2|-a ,当函数有4个零点时,求a 的取值范围. 解:∵函数f (x )=|4x -x 2|-a 有4个零点, ∴方程|4x -x 2|=a 有4个不同的解. 令g (x )=|4x -x 2|=⎩⎪⎨⎪⎧4-x -2, 0≤x ≤4,x -2-4,x <0或x >4.作出g (x )的图象,如图所示,由图象可以看出, 当h (x )=a 与g (x )有4个交点时,0<a <4, ∴a 的取值范围为(0,4).11.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0, 解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n , 显然2n <60n +800,此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+n -2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.12.已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF=1-32. (1)求椭圆C 的方程;(2)已知直线l :y =kx +m 被圆O :x 2+y 2=4所截得的弦长为23,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.解:(1)由题意,知椭圆C 的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),由已知得e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,① 可得c =3b .②S △ABF =12|AF ||OB |=12(a -c )b =1-32.③ 联立①②③,解得b =1,a =2, 所以椭圆C 的方程为x 24+y 2=1.(2)由题意,知圆心O 到直线l 的距离d =22-32=1,即|m |1+k2=1,故有m 2=1+k 2,④由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m消去y 并整理,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0. 因为Δ=4k 2-m 2+1=3k 2>0,所以k ≠0. 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-8km4k 2+1, x 1x 2=4m 2-44k 2+1,所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=k 2-m 2+k 2+2,⑤将④代入⑤,得|x 1-x 2|2=48k 2k 2+2,故|x 1-x 2|=43|k |4k 2+1,|MN |=1+k 2|x 1-x 2|=43k 2k 2+4k 2+1,故△OMN 的面积S =12|MN |×d =23k 2k 2+4k 2+1.令t =4k 2+1>1,则S =23×t -14×⎝⎛⎭⎪⎫t -14+1t 2=32-⎝ ⎛⎭⎪⎫1t -132+49. 所以当t =3,即k =±22时,S max =32×49=1. 第二讲分类讨论、转化与化归思想 一、分类讨论思想类型一 由参数引起的分类讨论 [例1] 已知函数f (x )=x +ax(x >0).(1)若a <0,试用定义证明:f (x )在(0,+∞)上单调递增;(2)若a >0,当x ∈[1,3]时,不等式f (x )≥2恒成立,求a 的取值范围. [解] (1)证明:若a <0,设0<x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫1-a x 1x 2. 因为x 1-x 2<0,1-ax 1x 2>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 故f (x )在(0,+∞)上单调递增.(2)若a >0,则f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. ①若0<a ≤1,则f (x )在[1,3]上单调递增,f (x )min =f (1)=1+a . 所以1+a ≥2,即a ≥1,所以a =1.②若1<a <9,则f (x )在[1,a ]上单调递减,在[a ,3]上单调递增,f (x )min =f (a )=2a .所以2a ≥2,即a ≥1,所以1<a <9.③若a ≥9,则f (x )在[1,3]上单调递减,f (x )min =f (3)=3+a3.所以3+a3≥2,即a ≥-3,所以a ≥9.综合①②③得a 的取值范围为[1,+∞).——————————[即时应用]————————— 1.已知函数f (x )=sin x ,g (x )=mx -x 36(m ∈R).(1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫π4,f ⎝ ⎛⎭⎪⎫π4处的切线方程;(2)求函数g (x )的单调递减区间.解:(1)由题意得所求切线的斜率k =f ′⎝ ⎛⎭⎪⎫π4=cos π4=22,切点P ⎝ ⎛⎭⎪⎫π4,22,则切线方程为y -22=22⎝⎛⎭⎪⎫x -π4,即x -2y +1-π4=0. (2)g ′(x )=m -12x 2.①当m ≤0时,g ′(x )≤0,则g (x )的单调递减区间是(-∞,+∞); ②当m >0时,令g ′(x )<0, 解得x <-2m 或x >2m ,则g (x )的单调递减区间是(-∞,-2m ) ,(2m ,+∞). 综上所述,m ≤0时,g (x )的单调递减区间是(-∞,+∞);m >0时,g (x )的单调递减区间是(-∞,-2m ),(2m ,+∞).——————————[典例示范]———————— 类型二 由概念、法则、公式引起的分类讨论[例2] 已知数列{a n }的首项a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . [解] (1)由已知条件可得S n n=1+(n -1)×2=2n -1, ∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3, 当n =1时,a 1=1,而4×1-3=1,∴a n =4n -3. (2)由(1)可得b n =(-1)na n =(-1)n(4n -3), 当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.————————————[即时应用]—————————2.(1)若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.(2)设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…),则q 的取值范围为________. 解析:(1)若a >1,有a 2=4,a -1=m ,故a =2,m =12,此时g (x )=-x 为减函数,不合题意,若0<a <1,有a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.(2)因为{a n }是等比数列,S n >0,可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0; 当q ≠1时,S n =a 1-qn1-q>0,即1-q n1-q >0(n ∈N *),则有⎩⎪⎨⎪⎧1-q >0,1-q n>0,或⎩⎪⎨⎪⎧1-q <0,1-q n<0,即-1<q <1或q >1,故q 的取值范围是(-1,0)∪(0,+∞). 答案:(1)14(2)(-1,0)∪(0,+∞)二、转化与化归思想—————————[典例示范]———————— 类型一 形与数的转化[例3] (2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.[解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =p tx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.———————————[即时应用]———————————3.(1)(2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34(2)如图,在矩形ABCD 中,AB =2,AD =3,点E 为AD 的中点,现分别沿BE ,CE 将△ABE ,△DCE 翻折,使得点A ,D 重合于F ,此时二面角E BC F 的余弦值为________.解析:(1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0).设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=ma -ca.① 又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.②由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.故选A.(2)如图所示,取BC 的中点P ,连接EP ,FP ,由题意得BF =CF =2,∴PF ⊥BC ,又EB =EC ,∴EP ⊥BC ,∴∠EPF 为二面角E BC F 的平面角,而FP =FB 2-⎝ ⎛⎭⎪⎫12BC 2=72,在△EPF 中,cos ∠EPF =EP 2+FP 2-EF 22EP ·FP =4+74-942×2×72=74. 答案:(1)A (2)74—————————[典例示范]————————— 类型二 常量与变量的转化[例4] 设y =(log 2x )2+(t -2)log 2x -t +1,若t 在[-2,2]上变化时,y 恒取正值,求x 的取值范围.[解] 设y =f (t )=(log 2x -1)t +(log 2x )2-2log 2x +1, 当x =2时,f (t )=0,所以x ≠2, 故f (t )是一次函数,当t ∈[-2,2]时,f (t )>0恒成立,则有⎩⎪⎨⎪⎧f -,f ,即⎩⎪⎨⎪⎧2x 2-4log 2x +3>0,2x2-1>0,解得log 2x <-1或log 2x >3. ∴0<x <12或x >8,∴x 的取值范围是⎝ ⎛⎭⎪⎫0,12∪(8,+∞). ———————————[即时应用]——————————4.(1)对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________.(2)设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为________.解析:(1)设f (p )=(x -1)p +x 2-4x +3, 当x =1时,f (p )=0,所以x ≠1. 要使f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f ,f,即⎩⎪⎨⎪⎧x -x -,x 2-1>0,解得x >3或x <-1.(2)∵f (x )是R 上的增函数. ∴1-ax -x 2≤2-a ,a ∈[-1,1].即(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g -=x 2-x +2≥0,g =x 2+x ≥0,解得x ≥0或x ≤-1.即实数x 的取值范围是(-∞,-1]∪[0,+∞).答案:(1)(-∞,-1)∪(3,+∞) (2)(-∞,-1]∪[0,+∞)[数学思想专练(二)]一、选择题1.设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)解析:选B 当a >1时,则集合A ={x |x ≤1或x ≥a },则A ∪B =R ,可知a -1≤1,即a ≤2,故1<a ≤2;当a =1时,则集合A =R ,显然A ∪B =R ,故a =1; 当a <1时,则集合A ={x |x ≥1或x ≤a }, 由A ∪B =R ,可知a -1≤a ,显然成立,故a <1; 综上可知,a 的取值范围是a ≤2.故选B 项.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B ∵b cos C +c cos B =b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac =b 2+a 2-c 2+c 2+a 2-b 22a=2a22a =a =a sin A ,∴sin A =1. ∵A ∈(0,π),∴A =π2,即△ABC 是直角三角形.3.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则f (x )≤2时x 的取值范围是( )A .[0,+∞) B.⎣⎢⎡⎦⎥⎤0,12 C.⎝⎛⎦⎥⎤-∞,12D.⎣⎢⎡⎭⎪⎫12,+∞ 解析:选A 当x ≤1时,21-x≤2⇒x ≥0;当x >1时,1-log 2x ≤2⇒log 2x ≥-1=log 2 2-1⇒x ≥2-1=12.综上得,x 的取值范围为[0,+∞).4.设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32 B.23或2C.12或2 D.23或32解析:选A 不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0,若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. 5.如果正整数a 的各位数字之和等于6,那么称a 为“好数”(如:6,24,2 013等均为“好数”),将所有“好数”从小到大排成一列a 1,a 2,a 3,…,若a n =2 013,则n =( )A .50B .51C .52D .53解析:选B 本题可以把数归为“四位数”(含0 006等),因此比2 013小的“好数”为0×××,1×××,2 004,共三类数,其中第一类可分为:00××,01××,…,0 600,共7类,共有7+6+…+2+1=28个数;第二类可分为:10××,11××,…,1 500,共6类,共有6+5+4+3+2+1=21个数,第三类:2 004,2 013,…,故2 013为第51个数,故n =51,选B.6.(2017·南昌模拟)点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM ―→·PN ―→的取值范围是( )A .[0,2]B .[0,3]C .[0,4]D .[-2,2]解析:选C 由题意知内切球的半径为1,设球心为O ,则PM ―→·PN ―→=(PO ―→+OM ―→)·(PO ―→+ON ―→)=PO ―→2+PO ―→·(OM ―→+ON ―→)+OM ―→·ON ―→=|PO ―→|2-1,且1≤|OP |≤5,∴PM ―→·PN ―→∈[0,4].二、填空题7.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________.解析:如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f-,f ,即⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32,解得p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.答案:⎝⎛⎭⎪⎫-3,328.(2017·丽水模拟)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.解析:作出不等式组表示的可行域如图中阴影部分所示,因此|OM |的最小值为点O 到直线x +y -2=0的距离,所以|OM |min =|-2|2= 2.答案: 29.(2017·郑州质检)过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则p 的值是________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p(x -x 1),即y =x 1p x -x 212p.又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p,即x 21-4x 1-4p 2=0; 同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2. 由线段AB 的中点的纵坐标是6,得y 1+y 2=12,即x 21+x 222p =x 1+x 22-2x 1x 22p =12,16+8p 22p=12,解得p =1或p =2. 答案:1或2 三、解答题10.已知a ∈R ,函数f (x )=23x +12,h (x )=x ,解关于x 的方程log 4⎣⎢⎡⎦⎥⎤32fx --34=log 2h (a -x )-log 2h (4-x ).解:原方程可化为log 4⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫23x -16-34=log 2a -x -log 24-x ,即log 4(x -1)=log 2a -x -log 24-x =log 2a -x4-x, ①当1<a ≤4时,1<x <a ,则x -1=a -x4-x,即x 2-6x +a +4=0,Δ=36-4(a +4)=20-4a >0, 此时x =6±20-4a2=3±5-a , ∵1<x <a ,此时方程仅有一解x =3-5-a . ②当a >4时,1<x <4,由x -1=a -x 4-x,得x 2-6x +a +4=0,Δ=36-4(a +4)=20-4a ,若4<a <5,则Δ>0,方程有两解x =3±5-a ; 若a =5时,则Δ=0,方程有一解x =3;③由函数有意义及②知,若a ≤1或a >5,原方程无解. 综合以上讨论,当1<a ≤4时,方程仅有一解x =3-5-a ; 当4<a <5,方程有两解x =3±5-a ; 当a =5时,方程有一解x =3; 当a ≤1或a >5时,原方程无解.11.(2017·嘉兴模拟)在正项数列{a n }中,a 1=3,a 2n =a n -1+2(n ≥2,n ∈N *). (1)求a 2,a 3的值,判断a n 与2的大小关系并证明; (2)求证:|a n -2|<14|a n -1-2|(n ≥2);(3)求证:|a 1-2|+|a 2-2|+…+|a n -2|<43.解:(1)a 2=a 1+2=5,a 3=a 2+2=5+2.由题设,a 2n -4=a n -1-2,(a n -2)(a n +2)=a n -1-2. 因为a n +2>0,所以a n -2与a n -1-2同号. 又a 1-2=1>0,所以a n -2>0(n ≥2),即a n >2. (2)证明:由题设,⎪⎪⎪⎪⎪⎪a n -2a n -1-2=1a n +2,由(1)知,a n >2,所以1a n +2<14,因此⎪⎪⎪⎪⎪⎪a n -2a n -1-2<14, 即|a n -2|<14|a n -1-2|(n ≥2).(3)证明:由(2)知,|a n -2|<14|a n -1-2|,因此|a n -2|<14n -1|a 1-2|=14n -1(n ≥2).因此|a 1-2|+|a 2-2|+…+|a n -2|<1+14+142+…+14n -1=1-14n1-14=43⎝ ⎛⎭⎪⎫1-14n <43.12.已知椭圆G :x 24+y 2=1,过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.解:(1)设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧3x 21+y 21=λ,3x 22+y 22=λ,两式相减得3(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0.由题意,知x 1≠x 2,所以k AB =y 1-y 2x 1-x 2=-x 1+x 2y 1+y 2.因为N (1,3)是弦AB 的中点, 所以x 1+x 2=2,y 1+y 2=6, 所以k AB =-1.所以弦AB 所在直线的方程为y -3=-(x -1),即x +y -4=0. 又N (1,3)在椭圆内, 所以λ>3×12+32=12.所以λ的取值范围是(12,+∞).(2)因为弦CD 垂直平分弦AB ,所以弦CD 所在直线的方程为y -3=x -1,即x -y +2=0, 将其代入椭圆的方程, 整理得4x 2+4x +4-λ=0.①设C (x 3,y 3),D (x 4,y 4),弦CD 的中点为M (x 0,y 0), 则x 3,x 4是方程①的两个根.所以x 3+x 4=-1,x 0=12(x 3+x 4)=-12,y 0=x 0+2=32,即M ⎝ ⎛⎭⎪⎫-12,32. 所以点M 到直线AB 的距离d =-12+32-412+12=322.所以以弦CD 的中点M 为圆心且与直线AB 相切的圆的方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322=92.。
压轴大题抢分专练(四)1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)右焦点F (1,0)的直线与椭圆C 交于A ,B 两点,自A ,B 向直线x =5作垂线,垂足分别为A 1,B 1,且|AA 1||AF |= 5. (1)求椭圆C 的方程;(2)记△AFA 1,△FA 1B 1,△BFB 1的面积分别为S 1,S 2,S 3,证明:S 1·S 3S 22是定值,并求出该定值.解:(1)设A (x ,y ),则|AA 1|=|5-x |,|AF |=x -2+y 2,由|AA 1||AF |=5,得x 25+y24=1,而A 是椭圆C 上的任一点,∴椭圆C 的方程为x 25+y 24=1.(2)证明:由题意知,直线AB 的斜率不可以为0,而可以不存在,∴可设直线AB 的方程为x =my +1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +1,x 25+y24=1,得(4m 2+5)y 2+8my -16=0,∴y 1+y 2=-8m 4m +5,y 1y 2=-164m +5.①由题意,S 1=12|AA 1||y 1|=12|5-x 1||y 1|,S 3=12|BB 1||y 2|=12|5-x 2||y 2|, S 2=12|A 1B 1|·4=2|y 1-y 2|,∴S 1S 3S 22=116·-x 1-x 2-y 1y 2y 1-y 22=116·-my 1-my 2-y 1y 2y 1-y 22=-116·y 1y 2[16-4m y 1+y 2+m 2y 1y 2]y 1+y 22-4y 1y 2,将①代入,化简并计算可得S 1S 3S 22=14, ∴S 1·S 3S 22是定值,且该定值为14.2.设a n =x n ,b n =⎝ ⎛⎭⎪⎫1n 2,S n 为数列{a n ·b n }的前n 项和,令f n (x )=S n -1,x ∈R ,n ∈N *.(1)若x =2,求数列⎩⎨⎧⎭⎬⎫2n -1a n 的前n 项和T n ; (2)求证:对任意n ∈N *,方程f n (x )=0在x n ∈⎣⎢⎡⎦⎥⎤23,1上有且仅有一个根;(3)求证:对任意p ∈N *,由(2)中x n 构成的数列{x n }满足0<x n -x n +p <1n.解:(1)∵x =2,∴a n =2n,令c n =2n -12n , T n =c 1+c 2+…+c n =12+322+…+2n -12n , ① 12T n =122+323+…+2n -12n +1, ② ①-②得12T n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -2n -12n +1=12+2×122⎝ ⎛⎭⎪⎫1-12n -11-12-2n -12n +1=32-2n +32n +1, ∴T n =3-2n +32n .(2)证明:对任意n ∈N *,当x >0时,由函数f n (x )=-1+x +x 222+x 332+…+x n n2(x ∈R ,n ∈N *),可得f ′(x )=1+x 2+x 23+…+x n -1n>0,∴函数f (x )在(0,+∞)上是增函数.令f n (x n )=0,当n ≥2时,f n (1)=122+132+…+1n2>0,即f n (1)>0.又f n ⎝ ⎛⎭⎪⎫23=-1+23+⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫23222+⎝ ⎛⎭⎪⎫23332+⎝ ⎛⎭⎪⎫23442+…+⎝ ⎛⎭⎪⎫23n n 2≤-13+14·∑i =2n ⎝ ⎛⎭⎪⎫23i =-13+14×⎝ ⎛⎭⎪⎫232⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n -11-23=-13×⎝ ⎛⎭⎪⎫23n -1<0,根据函数的零点判定定理,可得存在唯一的x n ∈⎣⎢⎡⎦⎥⎤23,1,满足f n (x n )=0. 当n =1时,显然存在唯一的x 1=1满足f 1(x 1)=0.综上所述,对任意n ∈N *,方程f n (x )=0在x n ∈⎣⎢⎡⎦⎥⎤23,1上有且仅有一个根.(3)证明:当x >0时,∵f n +1(x )=f n (x )+x n +1n +2>f n (x ),∴f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)上单调递增, 可得x n +1<x n ,即x n -x n +1>0, 故数列{x n }为递减数列,即对任意的n ,p ∈N *,x n -x n +p >0.由于f n (x n )=-1+x n +x 2n 22+x 3n32+…+x n nn2=0,①f n +p (x n +p )=-1+x n +p +x 2n +p 2+x 3n +p3+…+x nn +p n +⎣⎢⎡⎦⎥⎤x n +1n +p n +2+x n +2n +pn +2+…+x n +p n +pn +p2=0,②用①减去②并移项,利用0<x n +p ≤1,可得x n -x n +p =∑k =2nx k n +p -x k n k 2+∑k =n +1n +px k n +pk 2 ≤∑k =n +1n +p x kn +pk 2<∑k =n +1n +p 1k 2<∑k =n +1n +p1k k-=1n -1n +p <1n. 综上可得,对于任意p ∈N *,由(2)中x n 构成的数列{x n } 满足0<x n -x n +p <1n.。
基础巩固题组(建议用时:40分钟)一、选择题1。
已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是()A.x2+y2=2B.x2+y2=错误!C.x2+y2=1 D。
x2+y2=4解析AB的中点坐标为(0,0),|AB|=错误!=2错误!,∴圆的方程为x2+y2=2.答案A2.(2017·嘉兴七校联考)圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为( )A。
(x-2)2+(y-1)2=1 B.(x+1)2+(y-2)2=1C.(x+2)2+(y-1)2=1 D。
(x-1)2+(y+2)2=1解析已知圆的圆心C(1,2)关于直线y=x对称的点为C′(2,1),∴圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为(x-2)2+(y-1)2=1,故选A。
答案A3.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则实数a的取值范围是( )A。
(-∞,-2)∪错误! B。
错误!C。
(-2,0) D.错误!解析方程为错误!错误!+(y+a)2=1-a-错误!表示圆,则1-a-错误!>0,解得-2<a<错误!.答案D4.(2017·绍兴一中检测)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1 B。
(x-2)2+(y+1)2=4 C。
(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1解析设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则错误!解得错误!因为点Q在圆x2+y2=4上,所以x错误!+y错误!=4,即(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.答案A5。
(2015·全国Ⅱ卷)已知三点A(1,0),B(0,错误!),C(2,错误!),则△ABC外接圆的圆心到原点的距离为( )A。
错误! B.错误!C.错误!D.错误!解析由点B(0,错误!),C(2,错误!),得线段BC的垂直平分线方程为x=1,①由点A(1,0),B(0,3),得线段AB的垂直平分线方程为y-32=错误!错误!,②联立①②,解得△ABC外接圆的圆心坐标为错误!,其到原点的距离为错误!=错误!。
专题6 平面解析几何-2018届浙江高三数学三轮复习补缺查漏与高效专题训练1.忽视直线斜率不存在的情况而失解讨论两条直线的位置关系时,首先要注意对斜率是否存在进行讨论,其次要注意对系数是否为零进行讨论.在求解直线方程时,有时也忽略斜率不存在的情况.研究直线与圆、直线与圆锥曲线的位置关系问题,往往易忽视直线的斜率不存在的情况而导致失解.例1.【2018届江西省八所重点中学高三下学期联考】已知曲线221:163x y C +=,曲线22:2(0)C x py p =>,且1C 与2C 的焦点之间的距离为2,且1C 与2C 在第一象限的交点为A . (1)求曲线2C 的方程和点A 的坐标;(2)若过点A 且斜率为()0k k ≠的直线l 与1C 的另一个交点为B ,过点A 与l 垂直的直线与2C 的另一个交点为C .设245AB m AC=,试求m 取值范围.【答案】(1) 24x y =, ()2,1A (2) [, )0(0⋃⎦长公式求得,AB AC 的长度,最后求得m 得取值范围. 试题解析:(2)当直线AB 的斜率不存在时,由题意可知, ()2,1A , ()2,1B ∴-, ()2,1C -则24455AB m AC==, 当直线AB 的斜率存在时,∴设直线AB 的方程为y ﹣1=k(x ﹣2),即y=kx ﹣2k+1,由,得(2k 2+1)x+4k (1﹣2k)x+2(1﹣2k )2﹣6=0则,∵x A =2,∴,又直线AC 的方程为,由,得,则,∵x A =2,∴,,同理,------9分,-即.综上所述:点评:在设直线方程时,需要考虑直线的斜率是否存在,可分两类情况分别求解.2.忽视圆锥曲线定义中的限制条件在椭圆的定义中要注意椭圆上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之和为一常数,且该常数必须大于两定点的距离”.例2.一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且1DN ON==,3MN=.当栓子D在滑槽AB内作往复运动时,带动..N绕O转动,M处的笔尖画出的椭圆记为C.以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系,求椭圆C的方程.【答案】221. 164x y+=.点评:本题利用椭圆的定义求解轨迹方程,需要注意||||||312OM MN NO≥-=-=.3.离心率范围求解错误求解离心率的范围是一个热点题型,解题的关键在于根据题设条件,借助几何性质、位置关系等途径找到不等关系,从而得到关于离心率的不等式,进而求其范围.解题时容易忽略椭圆的离心率范围()0,1和双曲线的离心率范围()1,+∞.例3.已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .1[,1)2 B .[22C .2D .[2 【答案】C点评:求解本题的关键是利用直角三角形得到sin baα=. 4.解决直线与圆锥曲线的相交问题时忽视Δ>0的条件直线与曲线相交中探求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值范围.这个范围与直线和曲线的位置关系有关时,隐含着Δ>0的条件,不能忽略.例4【2018届安徽省合肥市高三第二次教学质量检测】已知椭圆()2222:10x y E a b a b +=>>经过点12P ⎛⎫ ⎪⎝⎭,椭圆E 的一个焦点为).()1求椭圆E 的方程; ()2若直线l 过点(M 且与椭圆E 交于A , B 两点,求AB 的最大值.【答案】(1) 2214x y +=【解析】试题分析:()1与椭圆结合椭圆的定义计算可得2a =,则c = 21b ∴=,椭圆E 的方程为2214x y +=.()2分类讨论,当直线l的斜率存在时,设:l y kx = ()11,A x y , ()22,B x y .联立直线方程与椭圆方程可得AB ==换元后结合二次函数的性质可得AB ≤.当直线l 的斜率不存在时,2AB =<,故AB()2当直线l 的斜率存在时,设:l y kx = ()11,A x y , ()22,B xy .由22{ 14y kx x y =+=得()221440k x +++=.由0∆>得241k >.由12x x +=, 122414x x k =+得AB ==设2114t k =+,则102t <<,AB ∴==≤当直线l 的斜率不存在时,2AB =<,AB ∴的最大值为6. 点评:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.(3)本题建立直线与椭圆的方程得到关于x 的方程后,易忽视 “由0,∆>可得412>k ”.高效训练1.【2018届云南省昆明市高三二统】已知直线:l y m +与圆()22:36C x y +-=相交于A 、B 两点,若AB =,则实数m 的值等于( )A. -7或-1B. 1或7C. -1或7D. -7或1 【答案】C【易错点】要充分利用圆内“特征三角形”.2.【2018届重庆市巴蜀中学高三三月月考】直线l 过抛物线C : 24x y =的焦点F 且交抛物线C 于,A B 两点,则2AF BF +的最小值为( )A. 3+2+【答案】A【解析】设直线AB 的方程为1y kx =+,所以1y x k-=, 所以2222214214(2410y y y y k y y k y k -⎛⎫=∴-+=∴-++= ⎪⎝⎭) 所以21212241y y k y y +=+⋅=所以2AF BF +=()12121212333y y y y +++=++≥=+ A.【易错点】解答圆锥曲线的问题,注意一个技巧,只要涉及到曲线上的点到焦点的距离(即焦半径),马上要联想到圆锥曲线的定义解题,这不易想到.3.【2018届重庆市第一中学高三下学期第一次月考】已知直线l :240x y -+=,圆()()22:1580C x y -++=,那么圆C 上到l )个.A. 1B. 2C. 3D. 4 【答案】C【易错点】数形结合思想的应用.4.【2018届四川省德阳市高三二诊】如图,过抛物线24y x =的焦点F 作倾斜角为α的直线l , l 与抛物线及其准线从上到下依次交于A 、B 、C 点,令1AF BFλ=,2BC BFλ=,则当3πα=时, 12λλ+的值为( )A. 3B. 4C. 5D. 6 【答案】C【解析】设1122A x y B x y (,),(,),则1224162603AB x x sin =++==︒,12103x x ∴+=, 又21214p x x ==,可得1211313,3313AF x x BF λ-∴===-=,=, 同理可得21BC BFλ==, 124λλ∴+=故选B.【易错点】抛物线的定义及其几何性质的应用.5.过抛物线()2:20C y px p =>的焦点F 的直线l 与抛物线交于 M N ,两点,若4MF FN =,则直线l 的斜率为( )A .32±B .23± C.34± D .43±【答案】D【易错点】直线与抛物线位置关系6.【2018届贵州省凯里市第一中学高三下学期《黄金卷》第二套模拟】已知抛物线214y x =的焦点F 是椭22221y x a b+=(0a b >>)的一个焦点,且该抛物线的准线与椭圆相交于A 、B 两点,若FAB ∆是正三角形,则椭圆的离心率为( )11 C. 3 D. 2【答案】C 【解析】由题知线段AB 是椭圆的通径,线段AB 与y 轴的交点是椭圆的下焦点1F ,且椭圆的1c =,又60FAB ∠=, 11212tan603FF AF AF AF =====,由椭圆定义知212c AF AF a a e a +==∴====C. 【易错点】圆锥曲线的定义.7.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A 、B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S =△△,则椭圆的离心率为( )A D 【答案】A由222 c e b a c a ==-,,即有221414e e -+=,解得e =,故应选A. 【易错点】椭圆离心率的计算方法.8.【2018届云南省昆明市高三教学质量检查(二统)】已知1F , 2F 是椭圆2222:1(0)x y E a b a b+=>>的两个焦点,过原点的直线l 交E 于,A B 两点, 220AF BF ⋅=,且2234||AF BF =,则E 的离心率为( ) A.12 B. 34 C. 27 D. 57【答案】D【 方法点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解. 【易错点】椭圆离心率的计算方法.9. 【2018届北京西城14中高三上期中】已知圆()()22:341C x y -+-=和两点(),0A m -, (),0(0)B m m >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ). A. 4 B. 5 C. 6 D. 7【答案】C【解析】圆()()22:341C x y -+-=的圆心()3,4C ,半径为1, 圆心C 到()0,0O 的距离为5,故圆C 上的点到点O 的距离的最大值为6,再由90APB ∠=︒可得,以AB 为直径的圆和圆C 有交点, 可得12PO AB m ==, 所以6m ≤, 故m 的最大值为6. 故选C .【易错点】一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值.数与形的相互转化是易错点.10.【2018届四川省雅安中学高三下学期第一次月考】 已知椭圆()222210x y a b a b+=>>的离心率为34, M是椭圆上一点, 12,F F 是椭圆的左右焦点, C 为12MF F ∆的内切圆圆心,若1233mCF CF CM ++=0,则m 的值是A. 4B. 3C. 2D. 1 【答案】D【解析】取线段2MF 的中点为N ,如图所示:∴16CF CF m=∵1F FC ∆∽1F NM ∆ ∴16MF MN m=∴123MF MF m=,即223mc MF =. ∵椭圆的离心率为34∴43a c =∵122223mc MF MF a c +==+,即82233c mcc =+∴1m = 故选D.【易错点】1.椭圆的定义;2.直线与圆的位置关系.11.【2018届四川省成都市龙泉驿区第一中学校高三3月“二诊”】已知抛物线24y x =的焦点为F ,为抛物线上的两点,若3AF FB =, O 为坐标原点,则AOB ∆ 的面积【答案】D【解析】如图所示,根据抛物线的定义, AE AD BC AF BF =-=-,结合3AF FB =可知|AB|=2|AE|,所以163AB ==,而原点到直线AB 的距离为d =,所以11623AOBS=⨯=.当直线AB 的倾斜角为120°时,同理可求得AOBS =. 本题选择D 选项.点睛:(1)直线与抛物线的位置关系,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 【易错点】1.抛物线的定义;2.直线与抛物线的位置关系.12.【2018届江西省八所重点中学高三下学期联考】已知点()0,1A -是抛物线22x py =的准线上一点, F为抛物线的焦点, P 为抛物线上的点,且PF m PA =,若双曲线C 中心在原点, F 是它的一个焦点,且过P 点,当m 取最小值时,双曲线C 的离心率为( )11 【答案】C22221y x a b-=,将P 点坐标代入得22141a b -=,即222240b a a b --=,而双曲线1c =,故22221,1a b b a =+=-,所以()22221410a a a a ----=,解得1a =,故离心率为1c a ==,故选C. 【易错点】本小题主要考查直线和抛物线的位置关系,考查直线和双曲线的位置关系,考查直线和抛物线相切时的代数表示方法,考查双曲线的离心率求解方法.在有关椭圆,双曲线和抛物线等圆锥曲线有关的题目时,一定要注意焦点在哪个坐标轴上,比如本题中,抛物线的焦点在y 轴上,而双曲线的焦点也在y 轴上. 13.【2018届陕西省榆林市高三高考模拟第二次测试】已知抛物线2:4C y x =的焦点为()()1122,,,,F M x y N x y 是抛物线C 上的两个动点,若1222x x MN ++=,则MFN ∠的最大值为__________. 【答案】3π(或60°)点睛:在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。