2019版高考数学(文)大一轮复习人教版第五章平面向量第3节平面向量的数量积及其应用
- 格式:doc
- 大小:387.25 KB
- 文档页数:12
第三节平面向量的数量积及应用举例A组基础题组1.已知向量a,b均为单位向量,若它们的夹角是60°,则|a-3b|=( )A.3B.2C. D.2.(2018云南第一次统一检测)在▱ABCD中,||=8,||=6,N为DC的中点,=2,则·=( )A.48B.36C.24D.123.已知平面向量a,b的夹角为,且|a|=,|b|=2,在△ABC中,=2a+2b,=2a-6b,D为BC的中点,则||等于( )A.2B.4C.6D.84.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记I1=·,I2=·,I3=·,则( )A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.设单位向量e1,e2的夹角为,a=e1+2e2,b=2e1-3e2,则b在a方向上的投影为.6.(2017山东,12,5分)已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是.7.(2017河北石家庄质量检测(一))已知与的夹角为90°,||=2,||=1,=λ+μ(λ,μ∈R),且·=0,则的值为.8.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.9.如图,已知O为坐标原点,向量=(3cos x,3sin x),=(3cos x,sin x),=(,0),x∈.(1)求证:(-)⊥;(2)若△ABC是等腰三角形,求x的值.B组提升题组1.若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量a+b与a-b的夹角为( )A. B. C. D.2.在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为.3.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a与b的夹角θ;(2)求|a+b|;(3)若=a,=b,求△ABC的面积.4.在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(cos(A-B),sin(A-B)),n=(cos B,-sin B),且m·n=-.(1)求sin A的值;(2)若a=4,b=5,求角B的大小及向量在方向上的投影.答案精解精析A组基础题组1.D (a-3b)2=|a|2-6a·b+9|b|2=1-6cos 60°+9=7,∴|a-3b|=,故选D.2.C ·=(+)·(+)=·=-=×82-×62=24,故选C.3.A 因为=(+)=(2a+2b+2a-6b)=2a-2b,所以||2=4(a-b)2=4(a2-2b·a+b2)=4×=4,则||=2.4.C 解法一:因为AB=BC,AB⊥BC,∴∠BCO=45°.过B作BE⊥AC于E,则∠EBC=45°.因为AD<DC,所以D、A在BE所在直线的同侧,从而∠DBC>45°,又∠BCO=45°,∴∠BOC为锐角.从而∠AOB为钝角,所以∠DOC为钝角.故I1<0,I3<0,I2>0.又OA<OC,OB<OD,故可设=-λ1(λ1>1),=-λ2(λ2>1),从而I3=·=λ1λ2·=λ1λ2I1,又λ1λ2>1,I1<0,∴I3<I1<0,∴I3<I1<I2.故选C.解法二:如图,建立直角坐标系,则B(0,0),A(0,2),C(2,0).设D(m,n),由AD=2和CD=3,得从而有n-m=>0,∴n>m.从而∠DBC>45°,又∠BCO=45°,∴∠BOC为锐角.从而∠AOB为钝角.故I1<0,I3<0,I2>0.又OA<OC,OB<OD,故可设=-λ1(λ1>1),=-λ2(λ2>1),从而I3=·=λ1λ2·=λ1λ2I1,又λ1λ2>1,I1<0,I3<0,∴I3<I1,∴I3<I1<I2.故选C.5.答案-解析依题意得e 1·e2=1×1×cos=-,|a|===,a·b=(e1+2e2)·(2e1-3e2)=2-6+e1·e2=-,因此b在a方向上的投影为==-.6.答案解析由题意不妨设e 1=(1,0),e2=(0,1),则e1-e2=(,-1),e1+λe2=(1,λ).根据向量的夹角公式得cos 60°===,所以-λ=,解得λ=.7.答案解析根据题意,建立如图所示的平面直角坐标系,则A(0,0),B(0,2),C(1,0),所以=(0,2),=(1,0),=(1,-2).设M(x,y),则=(x,y),所以·=(x,y)·(1,-2)=x-2y=0,所以x=2y,又=λ+μ,即(x,y)=λ(0,2)+μ(1,0)=(μ,2λ),所以x=μ,y=2λ,所以==.8.解析(1)∵m⊥n,∴m·n=0,故sin x-cos x=0,∴tan x=1.(2)∵m与n的夹角为,∴cos<m,n>===,故sin=.又x∈,∴x-∈,则x-=,即x=,故x的值为.9.解析(1)证明:∵-=(0,2sin x),∴(-)·=0×+2sin x×0=0,∴(-)⊥.(2)△ABC是等腰三角形,则AB=BC,∴(2sin x)2=(3cos x-)2+sin2x,整理得2cos2x-cos x=0,解得cos x=0或cos x=.∵x∈,∴cos x=,x=.B组提升题组1.D 由|a+b|=|a-b|可知a⊥b,设=b,=a,如图,作矩形ABCD,连接AC,BD,可知=a+b,=a-b,设AC与BD的交点为O,结合题意可知OA=OD=AD,∴∠AOD=,∴∠DOC=,又向量a+b与a-b的夹角为与的夹角,故所求夹角为,选D.2.答案解析由=2得=+,所以·=·(λ-)=λ·-+λ-·,又·=3×2×cos 60°=3,=9,=4,所以·=λ-3+λ-2=λ-5=-4,解得λ=.3.解析(1)因为(2a-3b)·(2a+b)=61,所以4|a|2-4a·b-3|b|2=61.又|a|=4,|b|=3,所以64-4a·b-27=61,所以a·b=-6,所以cos θ===-.又0≤θ≤π,所以θ=π.(2)|a+b|2=(a+b)2=|a|2+2a·b+|b|2=42+2×(-6)+32=13.所以|a+b|=.(3)因为与的夹角θ=π,所以∠ABC=π-=.又||=|a|=4,||=|b|=3,所以S△ABC=||||·sin∠ABC=×4×3×=3.4.解析(1)由m·n=-,得cos(A-B)cos B-sin(A-B)sin B=-,所以cos A=-,因为0<A<π,所以sin A===.(2)由正弦定理,得=,则sin B===,因为a>b,所以A>B,且B是△ABC一内角,则B=.由余弦定理得(4)2=52+c2-2×5c×,解得c=1,c=-7(舍去),故向量在方向上的投影为||cos B=ccos B=1×=.。
第3节 平面向量的数量积及其应用最新考纲 1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.知 识 梳 理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos_θ.规定:零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos_θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). [常用结论与微点提醒]1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去同一个向量.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (4)若a ·b =a ·c (a ≠0),则b =c .( ) 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等. 答案 (1)× (2)√ (3)√ (4)×2.(2018·云南11校跨区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2 B.2 5 C.30D.34解析 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34,选D. 答案 D3.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 解析 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 答案 74.(必修4P104例1改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.解析 由数量积的定义知,b 在a 方向上的投影为|b |cos θ=4×cos 120°=-2. 答案 -25.(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2 =12,解之得λ=33.答案 33考点一 平面向量的数量积及在平面几何中的应用【例1】 (1)(2018·河南天一联考测试)如图,在△ABC 中,AB =3,AC =5,∠BAC =60°,D ,E 分别是AB ,AC 的中点,连接CD ,BE 交于点F ,连接AF ,取CF 的中点G ,连接BG ,则AF →·BG →=________.(2)(2018·莆田三月检测)在直角梯形ABCD 中,∠A =90°,AD ∥BC ,BC =2AD ,△ABD 的面积为1,若DE →=12EC →,BE ⊥CD ,则DA →·DC →=________.解析 (1)依题意,F 是△ABC 的重心, AF →=23×12(AB →+AC →)=13(AB →+AC →), BG →=12(BF →+BC →)=12⎝ ⎛⎭⎪⎫13BA →+43BC →=12⎝ ⎛⎭⎪⎫43AC →-53AB →=23AC →-56AB →,故AF →·BG →=13(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-56AB →=9536.(2)如图,以B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴建立平面直角坐标系,设|AD |=a (a >0),则|BC |=2a ,又S △ABD =1, ∴|AB |=2a ,∴A ⎝ ⎛⎭⎪⎫0,2a ,B (0,0),C (2a ,0),D ⎝ ⎛⎭⎪⎫a ,2a .设E (x ,y ),则DE →=⎝ ⎛⎭⎪⎫x -a ,y -2a ,EC →=(2a -x ,-y ),∵DE →=12EC →,∴⎝ ⎛⎭⎪⎫x -a ,y -2a =12(2a -x ,-y )=⎝ ⎛⎭⎪⎫a -x 2,-y 2,则⎩⎪⎨⎪⎧x -a =a -x 2,y -2a =-y 2,即⎩⎪⎨⎪⎧x =43a ,y =43a ,∴E ⎝ ⎛⎭⎪⎫43a ,43a ,∴BE →=⎝ ⎛⎭⎪⎫43a ,43a ,CD →=⎝ ⎛⎭⎪⎫-a ,2a , ∵BE ⊥CD ,∴BE →·CD →=0,∴43a ·(-a )+43a ·2a =0,解得a 2=2,∴DA →·DC →=(-a ,0)·⎝ ⎛⎭⎪⎫a ,-2a =-a 2=- 2.答案 (1)9536 (2)- 2规律方法 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【训练1】 (1)(2018·武汉三调)在平行四边形ABCD 中,点M ,N 分别在边BC ,CD 上,且满足BC =3MC ,DC =4NC ,若AB =4,AD =3,则AN →·MN →=( ) A.-7B.0C.7D.7(2)(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.解析 (1)以AB →,AD →为基底,AN →=AD →+34AB →,MN →=CN →-CM →=14CD →-13CB →=-14AB →+13AD →,AN →·MN →=⎝ ⎛⎭⎪⎫AD →+34AB →·⎝ ⎛⎭⎪⎫-14AB →+13AD →=13⎝ ⎛⎭⎪⎫AD →2-916AB →2=13(9-9)=0. (2)AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=λ3×3+2λ3×4-13×9-23×3=-4⇒λ=311.答案 (1)B (2)311考点二 平面向量的夹角与垂直【例2】 (1)(2017·全国Ⅲ卷)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)(2018·洛阳一模)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( ) A.-7B.-3C.2D.3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c , 即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.答案 (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3规律方法 1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【训练2】 (1)(2018·广东省际名校联考)已知向量a ,b 满足|a |=2|b |=2,且(a +3b )⊥(a -b ),则a ,b 夹角的余弦值为________.(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)∵|a |=2|b |=2,且(a +3b )⊥(a -b ), ∴(a +3b )·(a -b )=0,即a 2+2a ·b -3b 2=0, 故有a ·b =-12,则cos 〈a ,b 〉=-14.(2)由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2. 答案 (1)-14(2)-2考点三 平面向量的模及其应用【例3】 (1)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)(2016·四川卷改编)已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.解析 (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1.设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0,代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝ ⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494. 答案 (1)23 (2)494规律方法 1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解. 【训练3】 (1)(2018·湖北七市联合调考)平面向量a ,b ,c 不共线,且两两所成的角相等,若|a |=|b |=2,|c |=1,则|a +b +c |=________.(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________.解析 (1)由|a +b +c |2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c =9+2×2×2cos 120°+2×2×1×cos 120°+2×2×1×cos 120°=9-4-2-2=1,则|a +b +c |=1.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).PA →=(2,-x ),PB →=(1,a -x ),∴PA →+3PB →=(5,3a -4x ),|PA →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|PA →+3PB →|的最小值为5. 答案 (1)1 (2)5基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·全国Ⅱ卷)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥bD.|a |>|b |解析 由|a +b |=|a -b |平方得a 2+2a·b +b 2=a 2-2a·b +b 2,即a·b =0,则a ⊥b . 答案 A2.(2018·合肥质检)设向量a ,b 满足|a +b |=4,a ·b =1,则|a -b |=( ) A.2B.2 3C.3D.2 5解析 由|a +b |=4,a ·b =1可得,a 2+b 2=16-2=14,∴|a -b |2=a 2-2a ·b +b 2=14-2×1=12,∴|a -b |=2 3. 答案 B3.(2018·华中师大高考联盟质检)已知向量a =(2,1),b =(1,m ),c =(2,4),且(2a -5b )⊥c ,则实数m =( ) A.-310B.-110C.110D.310解析 因为2a -5b =2(2,1)-5(1,m )=(-1,2-5m ),又(2a -5b )⊥c ,所以(2a -5b )·c =0,则(-1,2-5m )·(2,4)=-2+4(2-5m )=0,解得m =310. 答案 D4.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD →在AB →方向上的投影是( ) A.322B.-322C.3 5D.-3 5解析 依题意得,AB →=(2,1),CD →=(5,5),AB →·CD →=(2,1)·(5,5)=15,|AB →|=5,因此向量CD →在AB →方向上的投影是AB →·CD →|AB →|=155=3 5.答案 C5.(2018·大连测试)若向量a ,b 的夹角为π3,且|a |=2,|b |=1,则a 与a +2b 的夹角为( ) A.π6B.π3C.2π3D.5π6解析 ∵向量a ,b 的夹角为π3,且|a |=2,|b |=1,∴a ·b =2×1×cos π3=1,|a +2b |=|a |2+4a ·b +4|b |2 =22+4×1+4×12=23,∴cos 〈a ,a +2b 〉=a ·(a +2b )|a ||a +2b |=a 2+2a ·b |a ||a +2b |=22+2×12×23=32,∵〈a ,a +2b 〉∈[0,π],∴〈a ,a +2b 〉=π6. 答案 A 二、填空题6.(2018·河南百校联盟联考)已知向量a =(2,1),b =(3,-1),则|a +b |(2a +b )·(a -b )=________.解析 ∵a =(2,1),b =(3,-1),∴a +b =(5,0),2a +b =(7,1),a -b =(-1,2),∴|a +b |=5,(2a +b )·(a -b )=-5,∴|a +b |(2a +b )·(a -b )=-1.答案 -17.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.解析 由已知得AB →=OB →-OA →=(3,1), AC →=OC →-OA →=(2-m ,1-m ).若AB →∥AC →,则有3(1-m )=2-m ,解得m =12. 由题设知,BA →=(-3,-1),BC →=(-1-m ,-m ). ∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0,可得m >-34.由题意知,当m =12时,AB →∥AC →,且AB →与AC →同向. 故当∠ABC 为锐角时,实数m 的取值范围是⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞. 答案 ⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞8.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.解析 设P (cos α,sin α),∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,当且仅当cos α=1时取等号. 答案 6 三、解答题9.(2017·德州一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B , 则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →. (1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值. 解 (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0, 所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2,即△ABC 的面积的最大值为32+32.能力提升题组 (建议用时:20分钟)11.(2018·江西新高考联盟质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,向量m =⎝ ⎛⎭⎪⎫a 2,c 2,n =(cos C ,cos A ),且m ·n =b cos B ,则B 的值是( ) A.π6B.π3C.π2D.2π3解析 ∵m ·n =a 2cos C +c2cos A ,且m ·n =b cos B . ∴a 2cos C +c2cos A =b cos B , 即a cos C +c cos A =2b cos B .由正弦定理,得sin A cos C +sin C cos A =2sin B cos B , 则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B . ∵0<B <π,sin B ≠0,∴cos B =12,∴B =π3. 答案 B12.(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 由题意,不妨设b =(2,0),a =(cos θ,sin θ),则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ).令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25,(|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5.答案 4 2 513.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sinθ,t )(0≤θ≤π2).(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解 (1)由题设知AB →=(n -8,t ),∵AB →⊥a ,∴8-n +2t =0. 又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8.当t =8时,n =24;当t =-8时,n =-8,∴OB →=(24,8)或OB →=(-8,-8).(2)由题设知AC →=(k sin θ-8,t ),∵AC →与a 共线,∴t =-2k sin θ+16,t sin θ=(-2k sin θ+16)sin θ=-2k (sin θ-4k )2+32k .∵k >4,∴0<4k <1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8,此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32.。