第5章 陶瓷材料
- 格式:doc
- 大小:30.50 KB
- 文档页数:1
清华大学《工程材料》第5版教材简介《工程材料》第5版教材由清华大学材料学院朱张校教授、姚可夫教授主编,清华大学出版社出版。
《工程材料》第5版教材目录如下:绪论0.1中华民族对材料发展的重大贡献0.2材料的结合键0.3工程材料的分类第1章材料的结构与性能特点1.1金属材料的结构与组织1.2金属材料的性能特点1.3高分子材料的结构与性能特点1.4陶瓷材料的结构与性能特点第2章金属材料组织和性能的控制2.1纯金属的结晶2.2合金的结晶2.3金属的塑性加工2.4钢的热处理2.5钢的合金化2.6表面技术第3章金属材料3.1碳钢3.2合金钢3.3铸钢与铸铁3.4有色金属及其合金第4章高分子材料4.1工程塑料4.2合成纤维4.3合成橡胶第5章陶瓷材料5.1普通陶瓷5.2特种陶瓷第6章复合材料6.1复合材料的复合原则6.2复合材料的性能特点6.3非金属基复合材料6.4金属基复合材料第7章功能材料及新材料7.1电功能材料7.2磁功能材料7.3热功能材料7.4光功能材料7.5隐形材料及智能材料7.6纳米材料第8章零件失效分析与选材原则8.1机械零件的失效8.2机械零件失效分析8.3机械零件选材原则第9章典型工件的选材及工艺路线设计9.1齿轮选材9.2轴类零件选材9.3弹簧选材9.4刃具选材第10章工程材料的应用10.1汽车用材10.2机床用材10.3仪器仪表用材10.4热能设备用材10.5化工设备用材10.6航空航天器用材附录1金属材料室温拉伸试验方法新、旧国家标准性能名称和符号对照表附录2金属热处理工艺的分类及代号(摘自GB/T 12603—2005) 附录3常用钢的临界点附录4钢铁及合金牌号统一数字代号体系(摘自GB/T 17616—1998)附录5国内外常用钢号对照表附录6常用铝及铝合金状态代号与说明(摘编自GB/T 16475—2008)附录7若干物理量单位换算表附录8工程材料常用词汇中英文对照表参考文献本教材有以下特点:(1)体系科学合理,内容丰富新颖,实例丰富。
第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
一、绪论及陶瓷原料1、传统陶瓷和特陶的相同和不同之处?2、陶瓷的分类依据?陶瓷的分类?3、陶瓷发展史的四个阶段和三大飞跃?4、宋代五大名窑及其代表产品?5、在按陶瓷的基本物理性能分类法中,陶器、炻器和瓷器的吸水率和相对密度有何区别?6、陶瓷工艺学的内容是什么?7、陶瓷生产基本工艺过程包括哪些工序?8、列举建筑卫生陶瓷产品中属于陶器、炻器和瓷器的产品?9、陶瓷原料分哪几类?10、粘土的定义?评价粘土工艺性能的指标有哪些?11、粘土是如何形成的?高岭土的由来和化学组成;12、粘土按成因和耐火度可分为哪几类?13、粘土的化学组成和矿物组成是怎样的?14、什么是粘土的可塑性、塑性指数和塑性指标?15、粘土在陶瓷生产中有何作用?16、膨润土的特点;17、高铝质原料的特点和在高级耐火材料中的作用;18、简述石英的晶型转化在陶瓷生产中有何意义?19、石英在陶瓷生产中的作用是什么?20、各种石英类原料的共性和区别,指出它们不同的应用领域;21、长石类原料分为哪几类?在陶瓷生产中有何意义?22、钾长石和钠长石的性能比较;23、硅灰石、透辉石、叶腊石(比较说明)作为陶瓷快速烧成原料的特点;24、滑石原料的特点,为什么在使用前需要煅烧?25、氧化铝有哪些晶型?为什么要对工业氧化铝进行预烧?26、氧化锆有哪些晶型?各种晶型之间的相互转变有何特征?27、简述碳化硅原料的晶型及物理性28、简述氮化硅原料的晶型及物理性能。
二、粉体的制备与合成1、解释什么是粉体颗粒、一次颗粒、二次颗粒、团聚?并解释团聚的原因。
2、粉体颗粒粒度的表示方法有哪些?并加以说明。
3、粉体颗粒粒度分布的表示方法有哪些?并加以说明。
4、粉体颗粒粒度测定分析的方法有哪些?并说明原理。
5、粉体颗粒的化学表征方法有哪些?6、粉碎的定义及分类,并加以说明。
7、常用的粉碎方法有哪些?画出三种粉碎流程图。
8、机械法制粉的主要方法有哪些?并说明原理。
9、影响球磨机粉碎效率的主要因素有哪些?10、化学法合成粉体的主要方法有哪些?并说明原理。
陶瓷材料通常分为玻璃、玻璃陶瓷和工程陶瓷(也叫烧结陶瓷)三大类。
工程陶瓷的生产过程如下:(1)原料制备(2)坯料成形(3)烧成与烧结
衡量陶瓷的质量指标有原料的纯度和细度、坯料混合均匀性、成形密度及均匀性、烧成或烧结温度、炉内气氛、升降温速度。
5.1 普通陶瓷(坚硬而脆性较大,绝缘性和耐蚀性极好)
5.1.1 普通日用陶瓷:具有良好的光泽度、透明度,热稳定性和机械强度较高。
有长石质瓷、绢云母质瓷、骨质瓷、滑石质瓷、高石英质日用瓷。
5.1.2 普通工业陶瓷:一、建筑卫生瓷;二、化学化工瓷;三、电工瓷。
改善工业陶瓷性能的方法:加入MgO、ZnO、BaO、Cr2O3等或增加莫来石晶体相,提高机械强度和耐碱抗力;加入Al2O3、ZrO2等提高强度和热稳定性;加入滑石或镁砂降低热膨胀系数;加入SiC提高导热性和强度。
5.2 特种陶瓷☆老师提示:重点内容
包括特种结构陶瓷和功能陶瓷两大类,如压电陶瓷、磁性陶瓷、电容器陶瓷、高温陶瓷等。
5.2.1 氧化物陶瓷:一、氧化铝(刚玉)陶瓷;二、氧化铍陶瓷;三、氧化锆陶瓷
5.2.2 碳化物陶瓷:有很高的熔点、硬度(近于金刚石)和耐磨性(特别是在浸蚀性介质中),缺点是耐高温氧化能力差(约900 ℃~1000 ℃)、脆性极大。
一、碳化硅陶瓷;二、碳化硼陶瓷;三、其它碳化物陶瓷(碳化钼、碳化铌、碳化钽)
5.2.3 硼化物陶瓷:有硼化铬、硼化钼、硼化钛、硼化钨和硼化锆等,具有高硬度, 同时具有较好的耐化学浸蚀能力。
5.2.4 氮化物陶瓷:一、氮化硅陶瓷;二、氮化硼陶瓷;三、氮化钛陶瓷;
第5章小结
1.陶瓷材料是各种无机非金属材料的通称。
通常分为玻璃、玻璃陶瓷和工程陶瓷三大类。
工程陶瓷又分为普通陶瓷和特种陶瓷两大类,而金属陶瓷通常被视为金属与陶瓷的复合材料。
2.工程陶瓷的生产过程是原料制备、坯料成形和制品烧成或烧结。
3.普通陶瓷的组分构成原料为粘土、石英和长石。
其特点是坚硬而脆性较大,绝缘性和耐蚀性极好;制造工艺简单、成本低廉,用量大。
普通日用陶瓷作日用器皿和瓷器,良好光泽度、透明度,热稳定性和机械强度较高。
普通工业陶瓷有建筑卫生瓷(装饰板、卫生间装置及器具等)、电工瓷(电器绝缘用瓷,也叫高压陶瓷)、化学化工瓷(化工、制药、食品等工业及实验室中的管道设备、耐蚀容器及实验器皿)等。
4.特种陶瓷有压电陶瓷、磁性陶瓷、电容器陶瓷、高温陶瓷等。
氧化物陶瓷熔点大多2000℃以上, 强度随温度的升高而降低,在1000℃以下时一直保持较高强度,随温度变化不大。
氧化铝制造耐火砖、高压器皿、坩埚、电炉炉管、热电偶套管等。
氧化锆制造冶炼坩埚和1800℃以上的发热体及炉子、反应堆绝热材料等。
碳化物陶瓷具有很高的熔点、很高的硬度和耐磨性,缺点是耐高温氧化能力差(约900℃~1000℃)、脆性极大。
主要用途是作耐火材料(碳化硅)、磨料,有时用于超硬质工具材料(碳化硼)。
硼化物陶瓷具有高硬度, 较好的耐化学浸蚀能力,熔点1800℃~2500℃,使用温度1400℃,用于高温轴承、内燃机喷嘴,各种高温器件、处理熔融非铁金属的器件等。
氮化硅陶瓷是键能高而稳定的共价键晶体,硬度高而摩擦系数低,有自润滑作用,是优良的耐磨减摩材料;氮化硅的耐热温度比氧化铝低,而抗氧化温度高于碳化物和硼化物,1200℃以下具有较高的机械性能和化学稳定性,且热膨胀系数小、抗热冲击,可做优良的高温结构材料,耐各种无机酸(氢氟酸除外)和碱溶液浸蚀,是优良的耐腐蚀材料。