高等代数-矩阵
- 格式:ppt
- 大小:1.52 MB
- 文档页数:94
高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。
(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。
(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。
2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。
运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。
运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。
高等代数课件(北大版)第四章矩阵第一节:矩阵的概念及基本运算矩阵是现代数学的重要基础,是线性代数理论的核心概念之一。
在数学和应用领域有着重要的应用价值。
1.1 矩阵的定义定义1.1:矩阵是一个有规律的数表,其中的每一个数称为矩阵的一个元素,通常用一个大写字母表示。
例如:$$A=\begin{pmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{pmatrix}$$其中 $a_{ij}$ 称为矩阵 $A$ 的第 $i$ 行第 $j$ 列元素。
1.2 矩阵的基本运算1.2.1 矩阵的加法定义1.2:设 $A=(a_{ij})_{m \times n},B=(b_{ij})_{m \times n}$,则其和 $C=A+B$ 定义为矩阵 $C$ 的元素为 $c_{ij}=a_{ij}+b_{ij}$。
例如:$$A=\begin{pmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9\end{pmatrix},B=\begin{pmatrix}-1 & -2 & -3 \\-4 & -5 & -6 \\-7 & -8 & -9\end{pmatrix},$$则 $C=A+B$ 得:$$C=\begin{pmatrix}0 & 0 & 0 \\0 & 0 & 0 \\0 & 0 & 0\end{pmatrix}$$1.2.2 矩阵的数乘定义1.3:设 $A=(a_{ij})_{m \times n}$,$k \in K$,则矩阵 $kA$ 定义为矩阵 $kA$ 的元素为 $ka_{ij}$。
高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。
(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。
(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。
2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。
运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。
运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。
高等代数-矩阵矩阵(matrix)是一种代数对象,它是由元素排列成矩形形式的矩阵,通常用方括号括起来。
例如,一个3×3的矩阵A可以表示为:A = [a11 a12 a13a21 a22 a23a31 a32 a33]其中,a11, a12, ..., a33是矩阵A的元素。
一个m×n的矩阵可以表示成一个m 行n列的矩形矩阵,其中第i行第j列的元素记作aij。
这样,一个矩阵可以用一个二维数组表示。
矩阵加法运算:设A和B是两个m×n的矩阵,它们的和A+B定义为一个m×n的矩阵C,其中C中每个元素都等于对应的A和B矩阵中相应元素之和,即Cij = Aij + Bij矩阵数乘运算:设A是一个m×n的矩阵,k是一个实数或复数,则kA定义为一个m×n的矩阵B,其中B中每个元素都等于对应的A中相应元素乘以k,即Bij = kAij矩阵乘法运算:设A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积AB定义为一个m×p的矩阵C,其中C中第i行第j列的元素为Cij = ∑AikBkj (k=1,2,...,n)其中,∑表示对k从1到n的求和。
矩阵的逆:设A是一个n×n的方阵,若存在另一个n×n的方阵B,使得AB=BA=I,其中I是n×n的单位矩阵,则称B是A的逆矩阵,记作B=A-1。
只有可逆矩阵才有逆矩阵,而且逆矩阵是唯一的。
矩阵的转置:设A是一个m×n的矩阵,它的转置AT是一个n×m的矩阵,其中AT中第i 行第j列的元素等于A中第j行第i列的元素,即ATij = Aji矩阵的秩:一个矩阵的秩指的是它的行向量组或列向量组张成的线性空间的维数。
即一个矩阵的秩指的是它的非零行向量或非零列向量的极大线性无关组数。
第八章 λ-矩阵本章主要介绍λ-矩阵及其性质,并用这些性质证明若当标准形的主要定理。
§1 λ-矩阵如果一个矩阵的元素是λ的多项式,即][λP 的元素,这个矩阵就称为λ-矩阵。
为了与λ-矩阵相区别,我们把以数域P 中的数为元素的矩阵称为数字矩阵。
由于数域中的数也是][λP 中的元素,所以在λ-矩阵中包括以数为元素的矩阵,即数字矩阵为λ-矩阵的一个特殊情形。
同样可以定义一个λ-矩阵的行列式,既然有行列式,也就有λ-矩阵的子式的概念。
利用这个概念。
我们有定义1 如果λ-矩阵)(λA 中有一个r )1(≥r 级子狮不为零。
而所有1+r 级子式(如果有的话)全为零,则称)(λA 的秩为r ,零矩阵的秩规定为零。
定义2 一个n n ⨯的λ-矩阵)(λA 称为可逆的,如果有一个n n ⨯的λ-矩阵)(λB 使)(λA )(λB =)(λB )(λA =E (1) 这里E 是n 级单位矩阵。
适合(1)的矩阵)(λB (它是唯一的)称为)(λA 的逆矩阵,记为)(1λ-A关于λ-矩阵可逆的条件有定理1 一个n n ⨯的λ-矩阵)(λA 是可逆的充分必要条件为行列式|)(|λA 是一个非零的数。
§2 λ-矩阵在初等变换下的标准形λ-矩阵也有初等变换。
定义3 下面的三种变换叫做λ-矩阵的初等变换:(1)矩阵的两行(列)互换位置;(2)矩阵的某一行(列)乘以非零的常数c ;(3)矩阵的某一行(列)加另一行(列)的)(λΦ倍,)(λΦ是一个多项式。
初等变换都是可逆的,并且有))(())((),,(),(111---==c i p c i p j i p j i p ,))(,())(,(1ϕφ-=-j i p j i p 。
为了写起来方便起见,我们采用以下的记号:],[j i 代表j i ,行(列)互换位置;)]([c i 代表用非零的数c 去乘i 行(列);)]([φj i +代表把j 行(列)的)(λφ倍加到i 行(列)。
第五章 矩 阵教学目的:1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。
及其基本性质,并熟练地对矩阵进行运算。
2. 了解几种特殊矩阵的性质。
教学内容:矩阵的运算1 矩阵相等我们将在一个数域上来讨论。
令F 是一个数域。
用F 的元素a ij 作成的一个m 行n 列矩阵A= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a aa aa a a a a mn m m n nΛΛΛΛΛΛΛ212222111211 叫做F 上一个矩阵。
A 也简记作(a ij )。
为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。
一个 m 行n 列矩阵简称为一个m*n 矩阵。
特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。
F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。
以下提到矩阵时,都指的是数域F 上的矩阵。
我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。
先引入前两种运算。
2 矩阵的线性运算定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij ) 定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。
注意 ,我们只能把行数相同,列数相同的两个矩阵相加。
以上两种运算的一个重要特例是数列的运算。
现在回到一般的矩阵。
我们把元素全是零的矩阵叫做零矩阵,记作0。
如果矩阵 A=(a ij ), 我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。
3 矩阵线性运输的规律A+B=B+A ;(A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0;a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ;这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。
第四章矩阵习题参考答案判断题1. 对于任意刃阶矩阵A, B,有∣A + B∣ = ∣A∣ + ∣B∣.错.2. 如果 A 2=0,则 A = 0.3.如果A + A 2=E 9则A 为可逆矩阵.正确.A +A 2 = E=> A(E + A) = E ,因 1⅛A 可逆,且 AT=A+ E ・4.设都是畀阶非零矩阵,且43 = 0,则的秩一个等于川,一个小于〃・错•由AB = O 可得r(A) + r(B)≤n.若一个秩等于则该矩阵可逆,另一个秩为零,与 两个都是非零矩阵矛盾•只可能两个秩都小于—5. A.B.C 为”阶方阵,^AB = AC.则 B = C.6. A 为 E 矩阵,若r(A) = S 9则存在加阶可逆矩阵P 及"阶可逆矩阵0 ,使PFo正确•右边为矩阵A 的等价标准形,矩阵A 等价于其标准形.1 ',B = <2 I lC= (3 2、 TH -1丿 曰-2, 错•如A =(-1 ,WAB = ACJ0B≠C. 1-1M 2=0^≡Λ≠0.7.“阶矩阵A可逆,则A*也可逆.正礪由A可逆可得IAI H O, 乂AA* = A* A=∖ A∖ E.因此A*也可逆,且(A*)~l = —Λ.IAl8.设A,B为"阶可逆矩阵,则(A5)*=B*A*.正确.(AB)(ABy =IABIE=IAIIBIE 乂(AB)(B* A*) = A(BB^ = A∖B∖ EA*=l B∖ AA^ ^AW B∖ E .因此(AB)(ABr = (AB)(B* A*). ∣⅛ A.B为“阶可逆矩阵可得AB可逆,两边同时左乘式AB的逆可得(Aθ)*=B*A*.二、选择题1.设力是"阶对称矩阵,〃是n阶反对称矩阵(B l =-B),则下列矩阵中为反对称矩阵的是(B ).(A) AB-BA (B) AB + BA (C) (AB)2(D) BAB(A)(D)为对称矩阵,(B)为反对称矩阵,(C)当A,B可交换时为对称矩阵.2.设A是任意一个"阶矩阵,那么(A)是对称矩阵.(A) A I A(B) A-A r (C) A2(D) A1 - A3.以下结论不正确的是(C).(A)如果A是上三角矩阵,则八也是上三角矩阵;(B)如果A是对称矩阵,则也是对称矩阵;(C)如果A是反对称矩阵,则也是反对称矩阵;(D)如果A是对角阵,则A也是对角阵.4.A是m×k矩阵,B是Rxf矩阵,若B的第丿•列元素全为零,则下列结论正确的是(B )(A)AB的第丿•行元素全等于零;(B) A3的第_/列元素全等于零; (C) BA的第丿•行元素全等于零;(D) 34的第丿•列元素全等于零;5.设人B为“阶方阵,E为“阶单位阵,则以下命题中正确的是(D )(A)(A + B)2 =A2 +2AB + B2 (B) A2 - B2 = (A +B)(A-B)(C) (AB)2 =A2B2(D) A2 -E2 =(A + E)(A-E)6.下列命题正确的是(B ).(A)^AB = AC,则B = C(B)^AB = AC f且∣A∣≠0,则B = C(C)若AB = AC,且 A H O,则B = C(D)若AB = AC,且B≠0,C≠0,则B = C7. A是In × H矩阵,B是n × rn矩阵,则(B).(A)当m > n时,必有行列式IABl ≠ O:(B)当m > n时,必有行歹IJ式IABl=O(C)当“ > 川时,必有行列式IABl ≠ 0;(D)当n > m时,必有行列式IABl = 0.A3 为加阶方阵,当m > n时,r(A) ≤ n,r(B) ≤n,因此r(AB) ≤ H < m ,所以IABl = 0.8.以下结论正确的是(C )(A)如果矩阵A的行列式∣A∣ = 0,则A = 0;(B)如果矩阵A满足A'=。