北京邮电大学信通院2010级模电综合实验——晶体管放大倍数β检测电路的设计与实现实验报告(非常全)
- 格式:docx
- 大小:792.72 KB
- 文档页数:30
晶体管放大倍数β检测电路的设计与实现实验报告姓名:学院: 电子工程学院班级: 2013211207学号:班内序号: 11【课题名称】晶体管放大倍数β检测电路的设计与实现【摘要】晶体管是工程上常见的一种元器件,放大倍数为其基本参数。
为了检测出不同晶体管的放大倍数的粗略值,本实验利用集成运放电压比较器原理和发光二极管进行显示,将晶体管的放大倍数分成若干个档位进行测量。
利用本实验的电路,可以成功实现对晶体管类型的判断,对档位的手动调节,对晶体管放大倍数的档位测量,并在当所测三极管的β值超出测量范围时(β>250),能够进行报警提示。
【关键词】晶体管类型晶体管β值档位判断发光二极管显示过大报警【实验目的】1、通过晶体三极管β值检测电路的设计与制作,加深对晶体管β值意义的理解;2、了解并掌握电压比较器的实际使用电路和发光二极管的使用;3、理解电子电路综合设计、安装和调试的基本方法;4、加深对所学过的电子电路知识的理解和综合运用能力。
【设计任务和要求】【基本要求】1、电路能够检测出NPN、PNP三极管的类型;2、在电路中可以手动调节四个档位值的具体大小;3、电路能够将NPN型三极管放大倍数β分为大于250、200~250、150~200和小于150四个档位进行判断;4、固定电路元件参数,用发光二极管来指示被测三极管的放大倍数β值属于哪一个档位,当β超出250时二极管能够产生人眼可识别闪烁报警信号;【提高要求】1、电路能够将PNP型三极管放大倍数β分为大于250、200~250、150~200和小于150四个档位进行判断,并且能手动调节四个档位值的具体大小。
2、NPN型、PNP型三极管β档位的判断可以通过手动切换或自动切换。
【设计思路、总体结构框图】简易晶体三极管放大倍数β检测电路的设计总体框图如下所示:电路由五部份组成:三极管类型判别电路、三极管放大倍数β档位判断电路、显示电路、报警电路和电源电路。
1、三极管类型判别电路的功能是利用NPN型和PNP型三极管电流流向相反,加正向电压时导通,发光二极管点亮,加反向电压时截止,发光二极管熄灭的特性,判别三极管的类型是NPN型还是PNP型。
1 电路设计1.1 电路构成本次课程设计采用固定输入,由所取三极管放大倍数不同而导致电路输出响应的不同,从而判断电路中所安装的三极管的β值。
所以在整个电路中,电路模块分为了输入模块、比较模块和响应模块,其输入模块主要为输入电压源、三极管插槽、所测三极管的放大电路等;由于在电路设计中要求实现在四个段上出现显示结果,所以我们设计了四个比较电路,因为电路中输入由直流源固定,故可根据所测三极管的β值来确定输出幅值,再设定四个比较电路的初始值,使得其值在80倍、120倍、160倍三极管放大输出值,从而进行比较;在响应电路中,按照要求我们采用LED灯响应,另外在响应电路要加上一限流电阻,以免因电流过大而导致LED烧毁,其限流电阻阻值的大小还要根据电路中LED灯的参数进行设定,在最后一个,根据课设任务书要求,当β值小于80时报警,故还要外并一个蜂鸣器。
当电路中β值小于80时,蜂鸣器要进行报警。
1.2 电路元件参数设定本次电源采用9.96V直流电源,而在正常家用电中为220V交流电压,故我们需要设计一个直流电压源,其大致电路如图1-1所示:图1-1 电源设计样图在上图1-1中,IN为220交流电压输入,通过调节变压输出幅值来设定OUT处的电压输出,在完成电路图制作后,可对输出进行调试,以达到目标电压,即为9.96V。
从左到右依次为电路中的整流、滤波、稳压电路。
总体三极管β值测量电路设计中,在输入模块偏置电压,外加一稳压控制,Vbe 为0.7V ,Rb 设置为574K ,故 BBE CC B R V V I -==8.9A μ C B CC o R I V V ⨯-=β=β61040309.896.9-⨯⨯-当β值为在80倍时,电路中输出响应为Vo1=7.09V当β值为在120倍时,电路中输出响应为Vo2=5.66V当β值为在160倍时,电路中输出响应为Vo3=4.23V再由 212R R R V V CC O +⨯=来确定电路中的电阻比值。
电子电路基础实验报告——晶体管β值检测电路的设计2012211117班2012210482号信通院17班01号张仁宇一、摘要:晶体管β值测量电路的功能是利用晶体管的电流分配特性,将放大倍数β值的测量转化为对晶体管电流的测量,同时实现用发光二极管显示出被测晶体管的放大倍数β值。
该电路主要由晶体管类型判别电路、β-V转换电路、晶体管放大倍数档位判断电路、显示电路、报警电路及电源电路六个基本部分组成。
首先通过LED发光二极管的亮灭实现判断三极管类型,并将β值的变化转化为电压的变化从而利用电压比较器及LED管实现β值档位(<150、150~200、200~250、>250)的判断与显示、并在β>250时通过LED管闪烁报警。
二、关键字:β值;晶体管;档位判断;闪烁报警三、实验目的1、加深对晶体管β值意义的理解2、了解掌握电压比较器的实际使用3、了解发光二极管的使用4、提高电子电路综合设计能力四、设计任务要求1、基本要求设计一个简易的晶体管放大倍数β值检测电路,该电路能够实现对放大倍数β值大小的初步测定1)电路能够测出NPN,PNP三极管的类型2)电路能将NPN晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断3)用发光二极管指示被测三极管的放大倍数β值在哪一个档位4)在电路中可以用手动调节四个档位值得具体大小5)当β值大于250时可以光闪报警2、扩展要求1)电路能将PNP晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断在电路中可以用手动调节四个档位值得具体大小。
2)NPN,PNP三极管β值的档位的判断可以通过手动或自动切换3)用PROTEL软件绘制该电路及其电源电路的印制电路版图。
五、设计思路与总体结构框图晶体管类型判别电路β-V转换电路放大倍数档位判断电路显示电路报警电路电源电路三极管类型判别电路的功能是利用NPN 型和PNP 型三极管的电流流向相反的特性判别晶体管的类型。
晶体管β值数显测量电路实验报告宁波大学科技学院理工分院课题五晶体管β值数显测量电路一、实验目的1、设计任务设计一个低频小功率NPN型硅三极管共射极电流放大倍数β值测量电路。
2、基本要求(1)β值的测量范围为50 ~ 250。
(2)接入晶体管后自动显示被测晶体管的β值,当没有接入晶体管时数码管显示为零。
(3)当接入晶体管的β值不在测量范围时,用发光二极管指示。
(4)测量精度为±5%。
(5)测量响应时间t<1S。
3、扩展要求(1)分档指示功能,当β值为50~100,100~180,180~250时,分别用发光二极管指示。
(2)能测量PNP管的β值。
二、实验原理由设计要求可知只要将被测晶体管的β值转换为对应的电压值,对β值的测量转变为对电压的测量。
将此电压进行比例调整后,进行A/D转换,然后进行译码显示即可。
其原理框图如图2-5-1所示。
三、单元电路设计参考1、β/V转换电路基本思路为:对被测晶体管输入一固定值的基极电流,则其集电极电流Ic=βIb,然后将集电极电流转换为电压即可。
基极电流的设置可以采用如下两种方式。
其一、如图2-5-2所示,选择恰当的基极偏置电阻Rb实现基极电流设置。
其二,利用恒流源实现基极电流的设置,如图2-5-3所示。
这种方式的优点是可以对锗管设置基极电流而不需要改变电路结构或元件参数。
由于要提供很小的基极电流,恒流源可以用如图2-5-4所示的微电流源实现。
微电流源的参考电流与输出电流之间的函数关系为:2、 比例调整电路比例调整电路的主要作用是将β/V 转换电路的输出电压作适当的调整提供给A/D 转换电路,以期得到一个适当的二进制数值,便于译码器显示对应的β值。
常用的比例电路有反相比例电路,同相比例电路,差动放大电路等。
在此介绍一下常用的三运放差动放大电路,电压如图2-5-6所示。
CSC S C b C R I U I I I I ===β10AR I U CC C μβ*==))(21(1220I I PU U R RU -+=6.19)21(255512510)21()21(28322=+=-==⨯+=+-PP C P R R LSB R R U R R 得:由:LM324N芯片引脚图3、A/D转换电路A/D转换电路将模拟量转换为数字量。
实验三共射放大电路计算、仿真、测试分析报告(请在本文件中录入结果并进行各类分析,实验结束后,提交电子文档报告)实验目的:掌握共射电路静态工作点的计算、仿真、测试方法;掌握电路主要参数的计算、中频时输入、输出波形的相位关系、失真的类型及产生的原因;掌握获得波特图的测试、仿真方法;掌握负反馈对增益、上下限截频的影响,了解输入输出间的电容对上限截频的影响等。
实验设备及器件:笔记本电脑(预装所需软件环境)AD2口袋仪器电容:100pF、0.01μF、10μF、100μF电阻:51Ω*2、300Ω、1kΩ、2kΩ、10kΩ*2、24kΩ面包板、晶体管、2N5551、连接线等实验内容:电路如图3-1所示(搭建电路时应注意电容的极性)。
图3-1实验电路1.静态工作点(1)用万用表的β测试功能,获取晶体管的β值,并设晶体管的V BEQ=0.64V,r bb’=10Ω(源于Multisim模型中的参数)。
准确计算晶体管的静态工作点(I BQ、I EQ、V CEQ,并填入表3-1)(静态工作点的仿真及测量工作在C4为100pF完成);主要计算公式及结果:晶体管为2N5551C,用万用表测试放大倍数β(不同的晶体管放大倍数不同,计算时使用实测数据,并调用和修改Multisim中2N5551模型相关参数,计算静态工作点时,V BEQ=0.64V)。
静态工作点计算:为获取静态工作点,需通过直流通路进行分析,如下为直流通路电路图:(2)通过Multisim仿真获取静态工作点(依据获取的β值,修改仿真元件中晶体管模型的参数,修改方法见附录。
使用修改后的模型参数仿真I BQ、I EQ、V CEQ,并填入表3-1);下图为仿真电路图和仿真结果图(直流工作点分析):(3)搭建电路测试获取工作点(测试发射极对地电源之差获得I EQ,测试集电极与发射极电压差获取V CEQ,通过β计算I BQ,并填入表3-1);主要测试数据:图一:V EQ值(用于计算I EQ)图二:V CEQ值(用于计算I BQ)4(4)对比分析计算、仿真、测试结果之间的差异。
课题名称晶体管放大倍数β检测电路的设计与实现一、摘要本实验是简单的三极管放大倍数β检测电路的设计与实现。
主要由三极管类型判别电路、三极管放大倍数档位判断电路、显示电路、报警电路及电源电路五个部分组成。
首先通过普通LED 发光二极管的亮灭实现判断三极管类型,并将β值的变化转化为电压的变化从而利用电压比较器及LED管实现β值档位 (<150、150~200、200~250、>250)的判断与显示、并在β>250时通过LED管闪烁报警。
关键词:三极管、β、LED、电压比较器、报警二、设计任务要求基本要求:设计一个简易晶体管放大倍数β检测电路,该电路能够实现对三极管β值大小的初步判断。
系统电源DC=10V1.通过该电路板块一能够检测出NPN、PNP三极管的类型。
2.电路能够将NPN型三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断。
3.用发光二极管来指示被测三极管的β值属于哪一个档位4.在电路中可以手动调节四个档位值的具体大小。
5.当β超出250时能够闪烁报警。
提高要求1.电路能够将PNP型三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断,并且能够手动调节四个档位值的具体大小。
2. NPN、PNP三极管β档位的判断可以通过手动或自动切换三、设计思路和总体结构框图本实验关键之处系如何将三极管放大倍数β的变化用一个便于测量的物理量的变化来表示。
实验室最易测量的量即是电压,并且三极管CE极间电压便可反应集电极电流I c的变化,故不妨用某种手段固定I b值,通过检测CE极间电压的变化间接检测β的变化。
而将电压值分为几个档位很容易想到用电压比较器实现并通过输出电流驱动LED显示出来。
最后,报警电路可利用LED闪烁报警,可由555定时器实现。
四、分块电路、总体电路的设计(电路图)现将实验电路可为“4+1”个板块。
“4”指的是三极管类型判别电路、三极管放大倍数β档位判断电路和显示电路、报警电路和电源电路;“1”指的是从NPN型管β检测到PNP型管β检测的转换电路。
晶体管β值数显测量电路基本工作原理C S C S C b C R I U I I I I ===β)(100101mv A R I R I R I U C c C b C C C βμβββ=Ω**====))(21(1220I I P U U R R U -+=6.19)21(255512510)21()21(28322=+=-==⨯+=+-PP C P R R LSB R R U R R 得:由:电路图实习心得通过本次实习,将书本上学到的知识应用于实践,学会了一些电子电路仿真设计能力,虽然过程中遇到了一些困难,但是在解决这些问题的过程无疑也是对自己自身专业素质的一种提高与肯定。
我发现做任何事情都要注意每个小的细节,任何一个小的细节都可能导致整个实验做不成功,所以我们必须做好一步,调试一步,这样出错的概率才会减小到最低。
如果你先一次性全做好了,到时候不成功再去检查就困难了,因此我们做每一步都要考虑清楚,这就是我们这个专业的特点。
此次设计不仅增强了自己在专业设计方面的信心,鼓舞了自己,更是一次兴趣的培养。
电子实习,是以学生自己动手动脑,并亲手设计、制作、组装与调试为特色的。
它将基本技能训练,基本工艺知识和创新启蒙有机结合,培养我们的实践能力和创新精神,。
作为信息时代的大学生,仅会书本理论是不够的,基本的动手能力是一切工作和创造的基础和必要条件。
通过一个星期的学习,使我对电子工艺的理论有了更深的了解。
了解到了焊普通元件与电路元件的技巧、印制电路板图的设计制作等。
这些知识不仅在课堂上有效,在日常生活中更是有着现实意义,也对自己的动手能力是个很大的锻炼。
在实习中,我锻炼了自己动手能力,提高了自己解决问题的能力。
通过本次实习培养了我理论联系实际的能力,提高了我分析问题和解决问题的能力,增强了独立工作的能力。
最主要的是收获颇丰,具体如下:1. 基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接。
实验报告实验课题:晶体管β值数显测量电路一、实验目的:设计一个低频小功率NPN 型硅三极管共射极电流放大倍数β值的测量电路。
二、实验要求:(1)β值的测量范围:50~250(2)接入晶体管后自动显示被测晶体管的β值,当没有接入晶体管时数码管显示为零。
(3)当接入晶体管的β值不在测量范围内时,用发光二极管显示。
(4)测量精度为±5% ( 5 ) 测量响应时间t<5s 三、实验原理:由设计要求可知只要将被测晶体管的β值转换为对应的电压值,对β值的测量转变为对电压的测量。
将此电压进行比例调整后,进行 A/D 转换,然后进行译码显示即可。
主要原理步骤如下:1) 工作点设置2) Β/V 转换电路: 基本思路为:对被测晶体管输入一固定值的基极电流,则其集电极电流 Ic=βIb ,然后将集电极电流转换为电压即可。
3) 电压调整电路: 比例调整电路的主要作用是将 β/V 转换电路的输出电压作适当的调整提供给 A/D 转换电路,以期得到一个合适的二进制数值,便于译码显示出对应的 β 值。
本实验使用三运放差动放大电路。
该电路具有高输入阻抗、高共模抑制比的特点。
4) A/D 转换: A/D 转换电路将模拟量转换为数字量。
本实验选用芯片ADC0809。
其中,时钟信号的产生通过以CD4060为核心的方波发生电路实现。
5) 二进制—BCD 码转换 6) 译码显示四、实验具体步骤:(1).工作点设置和β/v 转换电路按下图连接电路,并且设置参数如下,CCC C C C BCC B be CC b bCR UI R I U R V R U V I I I ==-=-==7.0β若取V CC =5V,I R =1mA,I c1=10μA若取Rc =100Ω, 并且通过微电流源设定Ic1=10μA ,则(2)电压调整电路按设计好的原理图连接电路, 则 集成放大选择了芯片LM324,参数设置如下:在本组实验中,我们取R2=10K ,则:RP ≈1.07K ,这样β为50~250时,对应的UC ~(0.05~0.25)V;U0~(0.98~4.88)V(3)A/D 转换:本组在这个环节选用了ADC0809来实现A/D 转换,将模拟量转换为数字量。
广东石油化工学院课程设计说明书课程名称:模拟电子技术课程设计题目:晶体管电流放大系数β自动检测分选仪设计晶体管电流放大系数β自动检测分选仪设计一、设计任务与要求选用低频小功率NPN 管,测量直流电流放大系数;1.β值的分档要求:80~50,120~80,180~120,270~180,400~270,对应的分档号分别用1、2、3、4、5表示,并用数码管显示; 2.对应的色标分别是绿、蓝、紫、灰、白;3.β值不在上述范围内的三极管,由数码管显示0来表示;二、方案设计与论证三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号。
其中有个重要参数就是电流放大系数β。
当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是输入电流β倍的电流,即集电极电流Ic 。
集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化。
根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流Ic 与基极电流Ib 的比值,用β表示。
要测量三极管的电流放大倍数β,必须给三极管以合适的静态偏置,如果三极管工作在线性放大区,若Ib 一定,则Ic 正比与β,即有Ic=β*Ib .要将三极管按β值进行分档,可将三极管集电极电流Ic 转化成相应的电压VO 输出,VO 大小正比与β值,然后将VO 信号同时加到具有不同基准电压的比较器的输入端进行比较,对某一定VO 值,则与VO 相比相对低基准电压比较器输出为低电平,与VO 相应相对高基准电压比较器输出为高电平。
例如分成六档,则需要六个电压比较器,六个比较器的输出便形成了6位二进制代码,将6位二进制代码进行分段式译码,便可驱动数码管显示出相应的档次代号并点亮相对应的LED 指示灯。
图1.1总原理图方案一、偏置电路可以用直接输出集电极的电压在输入到电压比较器,如图,可是那样计算和麻烦,此时的电压表达式为:V0=VCC-β*(VCC-Ube)*Rc/Rb,所以找另一个方案。