对应分析方法与对应图解读方法 (2)
- 格式:doc
- 大小:562.50 KB
- 文档页数:11
对应分析方法与对应图解读方法——七种分析角度对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:概念发展(Concept Development)新产品开发 (New Product Development)市场细分 (Market Segmentation)竞争分析 (Competitive Analysis)广告研究 (Advertisement Research)主要回答以下问题:谁是我的用户?还有谁是我的用户?谁是我竞争对手的用户?相对于我的竞争对手的产品,我的产品的定位如何?与竞争对手有何差异?我还应该开发哪些新产品?对于我的新产品,我应该将目标指向哪些消费者?数据的格式要求对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
首先选取了数据如下:欲分析该省这么多年各种产业生产总值的特征以及该省每一年的人口数与每一年各产业生产总值之间的关系。
一、对应分析对应分析又称为相应分析,是一种多元相依变量统计分析技术。
通过分析由属性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种技术,还可以揭示同一变量的各个类别之间的差异及不同变量各个类别之间的对应关系。
而且变量划分的类别越多,这种方法就越明显。
对应分析的过程由两部分组成:表格和关联图。
对应分析中的表格是一个二维表格,由行和列构成。
每一行代表事物的一个属性,依次排开。
列则代表不同的事物本身,它由样本集合构成,排列顺序没有特别要求。
在关联图上,各个样品都浓缩为一个点集合,而样品的属性变量在图上同样也是以点集合的形式显示出来。
对应分析的基本思想就是利用降维的思想,通过分析原始数据结构,对一个列联表中的行与列同时进行处理。
它的最大特点就是可以在同一张图上同时表示出两类属性变量的各种状态,以直观、明了的方式揭示属性变量之间及属性变量各种状态之间的相互关系。
另外,对应分析还省去了公因子的选取和因子旋转等复杂的数学运算及中间过程,可以从因子载荷图上对事物进行分类,而且能够揭示分类的主要参数及依据。
具体实验步骤:(1)数据录入:打开SPSS文件,按顺序:文件——新建——数据打开一个空白数据文件,首先进行变量的编辑,点击在SPSS变量视图中建立变量“人口数”、“产业”、“数值”分别表示“全省户籍人口”、“生产总值情况”和“数据的权重”。
“人口数”为数值变量,分别将每年该省的户籍人口数赋值为“1”、“2”、“3”、“4”.....“24”。
“生产总值情况”为名义变量,分别将“农业生产总值”、“工业生产总值”、“建筑业生产总值”、“第三产业生产总值”赋值为“1”、“2”、“3”、“4”。
如图所示:在SPSS活动数据文件的数据视图中,把相关数据输入到各个变量中。
(2)打开数据文件,进入SPSS Statistics 数据编辑器窗口,在菜单栏中选择“数据——加权个案”命令,将变量“数值”选入加权个案,单击“确定”按钮。
对应分析数据一、概述对应分析数据是一种数据分析方法,用于研究两个或多个变量之间的关系。
通过对数据进行对应分析,可以揭示变量之间的相关性,并帮助我们理解数据背后的模式和趋势。
本文将介绍对应分析数据的基本概念、步骤和应用场景。
二、基本概念1. 对应分析对应分析是一种多元数据分析方法,它通过将多个变量映射到一个低维空间中,从而揭示变量之间的关系。
对应分析可以帮助我们发现数据中的结构和模式,进而进行更深入的分析。
2. 对应图对应图是对应分析结果的可视化表示。
对应图通常是一个二维平面图,其中每个数据点表示一个观测值,不同的颜色或符号表示不同的组别或类别。
通过观察对应图,我们可以看到数据点之间的关系和趋势。
三、步骤对应分析数据的步骤如下:1. 数据准备首先,需要准备要进行对应分析的数据。
数据可以是任何类型的,可以是定量数据(如数值)或定性数据(如类别)。
确保数据的质量和完整性非常重要。
2. 数据标准化对应分析需要对数据进行标准化,以消除不同变量之间的量纲差异。
常用的标准化方法包括Z-score标准化和归一化等。
3. 计算对应分析利用对应分析的算法,对标准化后的数据进行计算,得到对应分析的结果。
对应分析的算法有多种,常用的包括主成分分析(PCA)和多维尺度分析(MDS)等。
4. 绘制对应图将对应分析的结果绘制成对应图,以便更直观地观察数据之间的关系和趋势。
对应图可以通过各种数据可视化工具来实现,如散点图、气泡图等。
5. 解读对应图通过观察对应图,我们可以解读数据之间的关系和趋势。
可以观察数据点的分布情况、类别之间的距离和相对位置等。
根据对应图的结果,可以进一步进行数据分析和决策。
四、应用场景对应分析数据在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 市场调研对应分析数据可以帮助市场调研人员了解不同产品或品牌之间的关系和竞争状况。
通过对应分析,可以发现市场中的潜在细分市场和目标客户群体。
2. 用户行为分析对应分析数据可以帮助企业了解用户的行为模式和偏好。
对应分析问题1:分析列联表中属性之间的相关关系。
对应分析是列联表的一类加权主分量分析,用于寻求列联表的行于列之间的低维图形表示法。
看一个例子:我们从生物学中的一个“梯度分析”问题谈起。
设我们需要了解若干地区的干湿度和若干草类的喜湿性。
现对某n个地区是否生长p种不同草类的情况作了调查,得到一个列联表K,希望通过这一调查表对着各个地区的干湿度和各草类的喜湿性作一估计。
设列联表为其中j i j i k ij 不生长草类在地区生长草类在地区⎩⎨⎧=01经典的梯度分析方法是:先对p 种草类喜湿性作出估计p r r r ,,,21 ,然后用加权平均的方法得到关于各个地区干湿度的估计n i k r k s pj i j ij i ,,2,1,1 =∝∑=⋅反之,如果先对各个地区的干湿度作出估计n s s s ,,,21 ,然后用同样的方法得到关于各种草类喜湿性的估计p j k s k r ni j i ij j ,,2,1,1 =∝∑=⋅但是,如何先对草类的喜湿性或先对地区的干湿性进行估计就是一个难题,除非根据其他资料,否则无法仅从这个列联表出发,无论先估计那一个都会带有主观性,这就是经典梯度分析存在的一个问题。
是否有一个办法,从这张列联表出发能客观地同时把两者估计出来?应该是可能的,因为各个地区的干湿度是由各种喜湿性草类是否在该地区生长反映出来,而且草的喜湿性又是通过它在什么样的干湿度的地区生长反应出来,两者相互依赖,应从两者相互依赖中求解出各种量的估计。
为此我们来注意上述两式及它们之间的联系。
先引进一些矩阵的记号:)()(ij p n k K =⨯,{}⋅⋅=n n k k diag D ,,1 ,{}p p k k diag D ⋅⋅=,,1又记向量)',,(1n s s s =,)',,(1p r r r =,则前面的两式可表示为Kr D s n1-∝, s K D r p'1-∝其中∝表示“成比例于”。
对应分析方法与对应图解读方法——七种分析角度
对应分析就是一种多元统计分析技术,主要分析定性数据Category Data方法,也就是强有力的数据图示化技术,当然也就是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表与卡方的独立性检验,如何解释对应图,当然大家也可以瞧到如何用SPSS操作对应分析与对数据格式的要求!
对应分析就是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:
概念发展(Concept Development)
新产品开发(New Product Development)
市场细分(Market Segmentation)
竞争分析(Competitive Analysis)
广告研究(Advertisement Research)
主要回答以下问题:
谁就是我的用户?
还有谁就是我的用户?
谁就是我竞争对手的用户?
相对于我的竞争对手的产品,我的产品的定位如何?
与竞争对手有何差异?
我还应该开发哪些新产品?
对于我的新产品,我应该将目标指向哪些消费者?
数据的格式要求
对应分析数据的典型格式就是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析
上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别与年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)
当然,我们拿到的最初原始数据可能就是SPSS数据格式记录表,
其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
要回答的问题就是:
1-不同性别的人在选择自杀方式上有什么差别?
2-不同年龄的人在选择自杀方式上有什么差别?
3-不同性别年龄的人在选择自杀方式上有什么差别?
我们首先,把性别字段乘上10加上年龄字段生成新字段sexage,取值就是11-15,21-25,然后分别用M/F与年龄组中值代表Sexage字段的变量值标,这样我们就可以进行简单对应分析了!
现在问大家,如果您瞧到上面的6×10的矩阵-列联表,您能瞧出什么差异?
现在我们采用SPSS软件进行对应分析!
(我现在用的就是SPSS17、0多语言版本,前两天听博易智讯的人说,现在SPSS已经有18、0版本了,不过从对应分析方法角度我还就是希望用11、5版本,因为可以自己拆分重新组合修改图形,现在的版本就是图片了,不能随心所欲的修改,不爽!)
分别定义好行列变量以及它们的取值范围!
对应分析中,6×10的列联表(交互表)可以得到行列维度最小值减1的维度,我们瞧到第一维度Dim1解释了列联表的60、4%,第二维度Dim2解释了列联表的33、0%,说明在两个维度上已经能够说明数据的93、4%,这就是比较理想的,当然我们也可以瞧卡方检验等!
下面我们主要解释如何解读对应图(小蚊子的博客中也有非常相似的解释,我非常欣赏她的博客)
首先对SPSS分析得到的对应图进行修饰与编辑,在零点增加两条中线!
解读方法:
1-总体观察:
我们从图上左右可以瞧出,左边全部就是M*,男性,右边F*全部就是女性,说明男女有显著差异;同时瞧横轴中线上方都就是年龄大的,下面都就是年龄小的,说明年龄有差异;这样就一目了然瞧出与回答了前两个问题;
2-观察邻近区域
我们从图上可以瞧出,老的男性比较喜欢HANG,GAS与GUN就是年轻男性的偏好;老的女性比较喜欢DAWN,年轻的女性比较偏好POISON;
3-向量分析——偏好排序
我们可以从中心向任意点连线-向量,例如从中心向GUN做向量,然后让所有的人往这条向量及延长线上作垂线,垂点越靠近向量正向的表示越偏好这种方法。
记住:就是垂点到GUN正向排名,从图中我们可以瞧出,希望GUN方法的人依次就是M15、M30、M45、M60、M80、F15等等;依次类推,我们还可以从中心向任意一种方法作垂线,都可以排出每种方法选择人群的偏好次序;当然,您也可以从中心往所有的人作向量,得到每一类人在选择六种方法上的偏好排名!
您就是否可以瞧出,F15年轻的女性对六个“品牌”的偏好不?
4-向量的夹角——余弦定理
接着,我们可以从向量夹角的角度瞧不同方法或不同人之间的相似情况,从余弦定理的角度瞧相似性!
从图上我们可以瞧出,当我们从中心向任意两个点(相同类别)做向量的时候,夹角就是锐角的话表示两个方法具有相似性,锐角越小越相似;也就就是说,GUN与GAS就是相似品牌,当如也就是竞争品牌,也具有替代性,如果这次开枪没有自杀成功,下次她一定选择毒气啦;我们也瞧出F15与F30的人比较相似,但F15与M80就有非常大的差异了,因为如果作向量她们就是钝角,几乎就是平角了!
5-从距离中的位置瞧:
越靠近中心,越没有特征,越远离中心,说明特征越明显
从这张对应图中我们瞧到,有些点远离中心,有些点靠近中心,这说明什么呢?从几何空间的角度,如果我对每一人都一样的好,在规范图上我就应该站在大家的重心,也就就是中心;这说明越靠近中心的点,越没有差异,(记住:没有差异并不代表不重要,只就是没有差异,因为统计的技术就是研究差异的技术,差异越大往往重要性就大!),越远离中心特征越明显,也就就是说,如果听到一个M80的人自杀了,估计您就会想到就是不就是HANG啦!
从品牌角度思考,说明越远离中的的品牌,消费者很容易识别,说明品牌特征(特色、特点)明显,越靠近中心的品牌,消费者不易识别,也说明您的品牌定位没有显著可识别的特征,没有差异认知!
6-坐标轴定义与象限分析
我们还没有定义坐标轴呢?从第一点的分析,其实我们很快就可以定义坐标轴的含义了!(当然有时候对应图的座位就是非常难定义的)
因此,落在第四象限的就是年轻的女性所喜欢的品牌!
7-产品定位:理想点与反理想点模型
我们可以在图上以POISON为定位点,以POISON为圆心,以它的利益为半径画圆,那么我们可以得出这样的结论:越先圈进来的人就就是最喜欢这个品牌的消费群,越先圈进来的品牌越可能就是竞争品牌;当然,您也可以以某类人作为圆心,同意解读;如果POISON就是市场不存在的,在调查中可以设定为理想点,这样我们就可以得到理想点模型,同理也可以得到反理想点模型分析!
8-市场细分与定位
最后,研究人员可以根据前面的分析与自身市场状况,进行市场细分,找到目标消费群,然后定位进行分析!最终选择不同的目标市场制定有针对性的营销策略与市场投放!
我们也可以尝试采用多元对应分析,但不如简单对应分析有意义!
对应分析方法与对应图解读方法
简单对应分析的优点:
定性变量划分的类别越多,这种方法的优势越明显,揭示行变量类别间与列变量类别间的联系,将类别联系直观地表现在二维图形中(对应图),可以将名义变量或次序变量转变为间距变量。
简单对应分析的缺点:不能用于相关关系的假设检验,维度要由研究者决定,有时候对应图解释比较困难,对极端值比较敏感。