(完整版)圆的方程高考题汇编(精华版)
- 格式:pdf
- 大小:171.87 KB
- 文档页数:5
高考数学4.1圆的方程专题22020.031,求以(1,2),(5,6)A B --为直径两端点的圆的方程. 2,椭圆的一焦点与两顶点为等边三角形的三个顶点,则长轴是短轴长的 []A .3倍B .2倍C .2倍D .32倍3, 曲线92522y x +=1与k y k x -+-92522=1(k <9)有相同的( )A .短轴B .焦点C .准线D .离心率4,21,F F 分别是椭圆2212x y +=的左右焦点,过1F 作倾斜角为4π的直线与椭圆交于P,Q两点,则PQ F 2∆的面积为 . 5,已知F 1,F 2为椭圆12222=+b y a x (a >b >0)的两个焦点,过F 2作椭圆的弦A B ,若△A F 1B 的周长为16,椭圆离心率 e =23,则椭圆的方程为 A .13422=+y xB .131622=+y xC .1121622=+y xD .141622=+y x6,圆06522=++++m y x y x 与直线032=++y x 相交于P 、Q 两点,若OQ OP ⊥,求实数m 的值7,圆x 2+y 2=1与圆(x -1)2+y 2=4的位置关系是 (A )相交 (B )内切 (C )外切 (D )内含8,椭圆⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数)的离心率为 [ ] A .32B .135C .35D .1329,对于椭圆122=-my x )1(<m ,给出下列命题:①焦点在x 轴上;②长半轴的长是m 1;③短半轴的长是1;④焦点到中心的距离是mm +-1;⑤准线方程是)1(1+-±=m m x ;⑥离心率m e +=1;其中正确命题的序号是 .10,已知椭圆1522=+m y x 的离心率λ=510,则m 的值为[]A .3 B .3或325C .15D . 15或315511,若直线4x-3y-2=0与圆01242222=-++-+a y ax y x 相交,则实数a 满足( ) (A) -3<a <7 (B )-6<a <4 (C )-7<a <3 (D )-21<a <1912,已知x 、y 满足191622=+y x ,求x + y 的取值范围13,圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A.22(2)5x y -+=B.22(2)5x y +-= C.22(2)(2)5x y +++=D.22(2)5x y ++= 14,设AB是过椭圆左焦点的弦,那么以AB为直径的圆与椭圆的左准线(A)相切 (B)相交 (C) 相离 (D) 相交或相切15,圆M :02422=++-+a y x y x 与y 轴相交于A 、B 两点,若ο90=∠AMB ,则a = 。
全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
高考圆复习题一、选择题1. 圆的标准方程是:A. \((x-a)^2+(y-b)^2=r^2\)B. \(x^2+y^2=r^2\)C. \((x-a)^2+(y-b)^2=1\)D. \(x^2+y^2=1\)2. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切3. 圆的切线与半径垂直,切点到圆心的距离等于:A. 半径的长度B. 切线的长度C. 圆心到切点的距离D. 半径的一半二、填空题4. 若圆的方程为 \(x^2+y^2=9\),圆心坐标为(0,0),半径为3,则圆上任意一点P(x,y)到圆心的距离为______。
5. 圆 \(x^2+y^2+Dx+Ey+F=0\) 与直线 \(Ax+By+C=0\) 相切,则\(D^2+E^2-4F=\) ______。
三、解答题6. 已知圆 \((x-2)^2+(y+1)^2=9\),求圆心坐标和半径。
7. 证明:圆的任意一条直径所对的圆周角是直角。
8. 已知圆心在原点,半径为4的圆,求经过点P(3,2)的圆的切线方程。
四、综合题9. 圆 \(x^2+y^2-4x-6y-10=0\) 与直线 \(2x+3y-11=0\) 相交于A、B 两点,求弦AB的长度。
10. 已知圆 \(x^2+y^2=16\) 内接于一个矩形,求矩形的面积最大值。
【答案】1. A2. B3. A4. 35. \(AB^2\)6. 圆心坐标为(2,-1),半径为3。
7. 证明略。
8. 切线方程为 \(x+3y-7=0\) 或 \(3x-y-5=0\)。
9. 弦AB的长度为 \(\sqrt{65}\)。
10. 矩形面积最大值为32。
【结束语】通过以上题目的练习,相信同学们对圆的方程、性质、与直线的位置关系等知识点有了更深刻的理解和掌握。
希望同学们能够继续努力,不断巩固和提高自己的数学能力,为即将到来的高考做好充分的准备。
直线与圆、圆与圆的位置关系一、单选题1.以直线30()ax y a a −−−=∈R 经过的定点为圆心,2为半径的圆的方程是( )A .222660x y x y +−++=B .222660x y x y ++−+=C .226260x y x y ++−+=D .226260x y x y +−++=2.若0x =,则2y x −的取值范围为( )A .[B .(,)−∞+∞C .11(,][,)22−∞−∪+∞D .11[,]22− 3.已知圆C :222210x y x y +−−+=,直线l :40x y +−=,若在直线l 上任取一点M 作圆C 的切线MA ,MB ,切点分别为A ,B ,则ACB ∠最小时,原点O 到直线AB 的距离为( )A B C D .4.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++−=上一点B ,则AC BC +的最小值为( )A.B .C . D .5.若圆22224120x y ax y a +−++−=上存在到直线4320x y −−=的距离等于1的点,则实数a 的取值范围是( )A .2921,44 −B .91,44 −C .91,,44 −∞−∪+∞D .2921,,44 −∞−∪+∞6.若直线m :0kx y +=被圆()2224x y −+=所截得的弦长为2,则点(0,A 与直线m 上任意一点P 的距离的最小值为( )A .1BCD .7.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点,A B 是MON ∠的ON 边上的两个定点,C 是OM 边上的一个动点,当C 在何处时,ACB ∠最大?问题的答案是:当且仅当ABC 的外接圆与边OM 相切于点C 时,ACB ∠最大.人们称这一命题为米勒定理.已知点,D E 的坐标分别是()0,1,()0,3,F 是x 轴正半轴上的一动点,当DFE ∠最大时,点F 的横坐标为( )A .1BCD .28.过点() 0 引直线l 与曲线y =A ,B 两点,O 为坐标原点,当AOB 的面积取最大值时,直线l 的斜率等于( )A B .C .D .二、多选题9.已知二次函数()220y x x m m =−+≠交x 轴于A ,B 两点(A ,B 不重合),交y 轴于C 点.圆M 过A ,B ,C 三点.下列说法正确的是( )①圆心M 在直线1x =上;②m 的取值范围是()0,1;③圆M 半径的最小值为1;④存在定点N ,使得圆M 恒过点N .A .①B .②C .③D .④10.设有一组圆22:()()4()k C x k y k k R −+−=∈,下列命题正确的是( ).A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆kC 均不经过点(3,0)C .经过点(2,2)的圆k C 有且只有一个D .所有圆的面积均为4π11.已知圆22:4C x y +=,直线():34330l m x y m ++−+=,(R m ∈).则下列四个命题正确的是( ) A .直线l 恒过定点()3,3−B .当0m =时,圆C 上有且仅有三个点到直线l 的距离都等于1C .圆C 与曲线22680x y x y m +−−+=恰有三条公切线,则16m =D .当13m =时,直线l 上一个动点P 向圆C 引两条切线PA ,PB ,其中A ,B 为切点,则直线AB 经过点164,99 −−12.以下四个命题表述正确的是( )A .圆222x y +=上有且仅有3个点到直线:10l x y −+=B .曲线221:+20C x y x +=与曲线222480C :x y x y m +−−+=,恰有四条公切线,则实数m 的取值范围为4m >C .已知圆22:2C x y +=,P 为直线0x y ++=上一动点,过点P 向圆C 引一条切线PA ,其中A 为切点,则PA 的最小值为2D .已知圆22:4C x y +=,点P 为直线:280l x y +−=上一动点,过点P 向圆C 引两条切线PA ,PB ,A ,B 为切点,则直线AB 经过点11,2三、填空题13.若方程222450x y xy kx y k λλ++++++=表示圆,则k 的取值范围为________.14.已知直线():40l ax y a R +−=∈是圆22:2610C x y x y +−−+=的对称轴.过点()4,A a −作圆C 的一条切线,切点为B ,有下列结论:①1a =;②AB =③切线AB ④对任意的实数m ,直线1y mx m −+与圆C 的位置关系都是相交.其中所有正确结论的序号为__________.15.几何学史上有一个著名的米勒问题:“设点,M N 是锐角AQB ∠的一边QA 上的两点,试在边QB 上找一点P ,使得MPN ∠最大”,如图,其结论是:点P 为过,M N 两点且射线QB 相切的圆的切点,根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点()1,2M −、()1,4N ,点P 在x 轴上移动,当MPN∠取最大值时,点P 的坐标为___________16.在平面直角坐标系xOy 中,直线l 过点(0,5)A 且与曲线225(0)x y x +=>相切于点B ,则直线l 的方程是_____,设E 是线段OB 中点,PQ (P 在Q 的上方)在直线l 上滑动,则||||OP EQ +的最小值是_____.四、解答题17.如图,已知ABC ∆的边AB 所在直线的方程为360x y −−=,(2,0)M 满足BM MC = ,点(1,1)T −在AC 边所在直线上且满足0AT AB ⋅= .(1)求AC 边所在直线的方程;(2)求ABC ∆外接圆的方程;18.已知点(),P x y 在圆22(1)1y x +−=上运动.(1)求12y x −−的最大值; (2)求2x y +的最小值.19.(疫情期间,作为街道工作人员的王阿姨和李叔叔需要上门排查外来人员信息,王阿姨和李叔叔分别需走访离家不超过200米、k 米的区域,如图,1l 、2l 分别是经过王阿姨家(点)的东西和南北走向的街道,且李叔叔家在王阿姨家的东偏北45°方向,以点O 为坐标原点,1l 、2l 为x 轴、y 轴建立平面直角坐标系,已知健康检查点(即点()100,400M )和平安检查点(即点()400,700N )是李叔叔负责区域中最远的两个检查点.(1)求出k ,并写出王阿姨和李叔叔负责区域边界的曲线方程;(2)王阿姨和李叔叔为交流疫情信息,需在姑山路(直线:10000l x y −+=)上碰头见面,你认为在何处最.20.已知圆1O 过点P ,且与圆2222:(2)(2)(0)O x y r r ++−=>关于直线20x y −+=对称. (1)求圆1O 、圆2O 的方程;(2)过点Q 向圆1O 和圆2O 各引一条切线,切点分别为,C D ,且2QD QC =,则是否存在一定点M ,使得Q 到M 的距离为定值M ?若存在,求出M 的坐标,并求出λ的值;若不存在,请说明理由.21.在平面直角坐标系xOy 中,已知圆N 过点()()1,0,1,0−,且圆心N 在直线:10l x y +−=上;圆22:(3)(4)8M x y −+−=,(1)求圆N 的标准方程,并判断圆M 与圆N 的位置关系; (2)直线MN 上是否存在点B ,使得过点B 分别作圆M 与圆N 的切线,切点分别为T ,S (不重合),满足2BS BT =?若存在,求出点B 的坐标,若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,已知点(2,4)P −−,圆22:4O x y +=与x 轴的负半轴的交点是Q ,过点P 的直线l 与圆O 交于不同的两点,A B .(1)设直线,QA QB 的斜率分别是12,k k ,求12k k +的值:(2)设AB 的中点为M ,点(1,0)N −,若14MN OM =,求QAB 的面积。
2017-2021全国高考真题数学汇编圆的方程一、单选题1.(2018·全国·高考真题(理))直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y −+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C.D.⎡⎣2.(2020·全国·高考真题(理))已知⊙M :222220x y x y +−−−=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y −−=B .210x y +−=C .210x y −+=D .210x y ++=3.(2020·全国·高考真题(文))已知圆2260x y x +−=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .44.(2020·全国·高考真题(理))若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +125.(2020·全国·高考真题(理))若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y −−=的距离为( ) ABCD二、多选题6.(2021·全国·高考真题)已知点P 在圆()()225516x y −+−=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =三、填空题7.(2018·全国·高考真题(文))直线1y x =+与圆22230x y y ++−=交于A B ,两点,则AB =________. 四、解答题8.(2017·全国·高考真题(理))已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P −,求直线l 与圆M 的方程."北题库"务号n g s h i a n g .c o m9.(2021·全国·高考真题(文))抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切. (1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.10.(2021·全国·高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.11.(2017·全国·高考真题(理))设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =−上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .12.(2018·全国·高考真题(文))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.(2018·全国·高考真题(理))在平面直角坐标系xOy 中,O 的参数方程为cos sin x y ,θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.14.(2018·全国·高考真题(文))在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+−=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.15.(2021·全国·高考真题(理))在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1. (1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程."北京题库"服务号j in g s h i b a n g .c o m参考答案1.A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可 详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴−−,则AB =点P 在圆22x 22y −+=()上 ∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABPSAB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题. 2.D 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【详解】圆的方程可化为()()22114x y −+−=,点 M 到直线l的距离为2d =>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =当直线MP l ⊥时,min MP min 1PA =,此时PM AB ⋅最小. ∴()1:112MP y x −=−即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得, 10x y =−⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y −++−=,即 2210x y y +−−=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】"北京题库"服务号in g s h i b a n g .c o m本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 3.B 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论. 【详解】圆2260x y x +−=化为22(3)9x y −+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题. 4.D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数yy '=,则直线l的斜率k =设直线l的方程为)0y x x =−,即00x x −+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x −−=,解得01x =,015x =−(舍),则直线l 的方程为210x y −+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 5.B 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y −−=的距离. 【详解】"北题库"服务号j in h n g .c o m由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a , 圆的标准方程为()()222x a y a a −+−=. 由题意可得()()22221a a a −+−=, 可得2650a a −+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5, 圆心到直线的距离均为1d = 圆心到直线的距离均为2d =圆心到直线230x y −−=的距离均为d ==所以,圆心到直线230x y −−=. 故选:B. 【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题. 6.ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y −+−=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +−=, 圆心M 到直线AB4=>,所以,点P 到直线AB42<410<,A 选项正确,B 选项错误; 如下图所示:"北京题库"服务号n g s h i b a n g .c o m当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD. 【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r −+. 7.【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】根据题意,圆的方程可化为22(1)4x y ++=, 所以圆的圆心为(0,1)−,且半径是2,根据点到直线的距离公式可以求得d ==结合圆中的特殊三角形,可知AB==【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.8.(1)证明见解析;(2) 20x y −−=, ()()223110x y −+−=或240x y +−=, 2291854216x y ⎛⎫⎛⎫−++= ⎪ ⎪⎝⎭⎝⎭.【详解】(1)设()()1122,,,A x y B x y ,:2l x my =+.由22,2x my y x=+⎧⎨=⎩ 可得2240y my −−=,则124y y =−. 又221212,22y y x x ==,故()2121244y yx x ==. 因此OA 的斜率与OB 的斜率之积为1212414y y x x −⋅==−,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得()21212122,424y y m x x m y y m +=+=++=+. 故圆心M 的坐标为()22,m m +,圆M的半径r .由于圆M 过点()4,2P −,因此0AP BP ⋅=,故()()()()121244220x x y y −−+++=, 即()()1212121242200x x x x y y y y −+++++=, 由(1)可得12124,4y y x x =−=."北京题库"务号j in g s h i b a n g .c o m所以2210m m −−=,解得1m =或12m =−.当1m =时,直线l 的方程为20x y −−=,圆心M 的坐标为()3,1,圆M,圆M 的方程为()()223110x y −+−=.当12m =−时,直线l 的方程为240x y +−=,圆心M 的坐标为91,42⎛⎫− ⎪⎝⎭,圆M,圆M 的方程为2291854216x y ⎛⎫⎛⎫−++= ⎪ ⎪⎝⎭⎝⎭. 【名师点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用“点差法”,但不要忘记验证0∆>或说明中点在曲线内部.9.(1)抛物线2:C y x =,M 方程为22(2)1x y −+=;(2)相切,理由见解析 【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)法一:先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论,法二:12A A 斜率不存在时同法一,当斜率存在时,表达出直线12A A 与13A A 的直线方程,进而表达出直线23A A 的方程,利用点到直线距离公式证明相切. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>−,20,1120,21OP OQ OP OQ y p p ⊥∴⋅=−=−=∴=,所以抛物线C 的方程为2y x =,(0,2),M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y −+=;(2)[方法一]设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x −=−, "北京题库"服务号j in g s h i b a n g .c o m又13133131313A Ay yk yx x y y−====∴=−+,330,(0,0)x A=,此时直线1323,A A A A关于x轴对称,所以直线23A A与圆M相切;若直线121323,,A A A A A A斜率均存在,则121323121323111,,A A A A A Ak k ky y y y y y===+++,所以直线12A A方程为()11121y y x xy y−=−+,整理得1212()0x y y y y y−++=,同理直线13A A的方程为1313()0x y y y y y−++=,直线23A A的方程为2323()0x y y y y y−++=,12A A与圆M相切,1=整理得22212121(1)230y y y y y−++−=,13A A与圆M相切,同理22213131(1)230y y y y y−++−=所以23,y y为方程222111(1)230y y y y y−++−=的两根,2112323221123,11y yy y y yy y−+=−⋅=−−,M到直线23A A的距离为:2123|2|y−+=22121111yy+===+,所以直线23A A与圆M相切;综上若直线1213,A A A A与圆M相切,则直线23A A与圆M相切.[方法二]【最优解】设()()()222111113333322222,,,,,,,,A x y y x A x y y x A x y y x===.当12x x=时,同解法1.当12x x≠时,直线12A A的方程为()211121y yy y x xx x−−=−−,即121212y yxyy y y y=+++.由直线12A A与M1=,化简得()121212130y y x x x+−−+=,"京题库"服务号jingshibang.com同理,由直线13A A 与M 相切得()131312130y y x x x +−−+=.因为方程()1112130y y x x x +−−+=同时经过点23,A A ,所以23,A A 的直线方程为()1112130y y x x x +−−+=,点M 到直线23A A1==.所以直线23A A 与M 相切.综上所述,若直线1213,A A A A 与M 相切,则直线23A A 与M 相切. 【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示,法二是利用相切等条件得到23A A 的直线方程为()1112130y y x x x +−−+=,利用点到直线距离进行证明,方法二更为简单,开拓学生思路10.(1)2p =;(2)【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y . 所以()()22001453=−+−≤≤−x y y . 从而有||==FN=因为053y −≤≤−,所以当03y =−时,min ||4==FN . 又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+−=,解得2p =; (2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法 抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2x y ',京题库"服务号j s h i b a n g .c o m设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x −=−,即112x x y y =−,即11220x x y y −−=,同理可知,直线PB 的方程为22220x x y y −−=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y −−=⎧⎨−−=⎩,所以,点A 、B 的坐标满足方程00220x x y y −−=, 所以,直线AB 的方程为00220x x y y −−=, 联立0022204x x y y x y −−=⎧⎪⎨=⎪⎩,可得200240x x x y −+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB =点P 到直线AB的距离为d所以,()3220011422PABS AB d x y =⋅==−△, ()()2222000000041441215621x y y y y y y −=−+−=−−−=−++,由已知可得053y −≤≤−,所以,当05y =−时,PAB△的面积取最大值321202⨯=[方法二]:【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫− ⎪⎝⎭x Q x y .()32221200001111||242222⎛⎫=⋅−=−=− ⎪⎝⎭PABSPQ x x x y x y . P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=−+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=−=−+=−++⎣⎦PABSx y . 故当sin 1α=−时PAB △的面积最大,最大值为 [方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b −−=."北京题"服务号j g s h i b a n g .c o m判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==−.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42−=−PA x x l y x x ,整理得21124x x y x =⋅−,同理可得222:24=⋅−PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅−⎪⎪⎨⎪=⋅−⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b −. 将点P 的坐标代入圆M 的方程,得22(2)(4)1+−+=k b ,整理得221(4)4b k −−=.由弦长公式得12||=−=AB x.点P 到直线AB的距离为d =.所以21||222==+==PABSAB d kb=其中[5,3]=−∈−−P y b ,即[3,5]∈b . 当5b=时,()max=PAB S【整体点评】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y −−=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫− ⎪⎝⎭x Q x y .由121||2PABSPQ x x =⋅−求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==−.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b −,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值; 11.(1)222x y +=;(2)见解析. 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =−=() 由NP 2NM=得002x x y y ==,. "北京题库"服j in g s h i b a n g .c o m因为M (00,x y )在C 上,所以22x 122y +=. 因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =−=−−−⋅=+−,,,,,()OP m n PQ 3m t n ==−−−,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0.所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 12.(1) y =x –1,(2)()()223216x y −+−=或()()22116144x y −++=. 【详解】分析:(1)根据抛物线定义得12AB x x p =++,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线l 的方程;(2)先求AB 中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由()214y k x y x⎧=−⎨=⎩得()2222240k x k x k −++=. 216160k ∆=+=,故212224k x x k ++=.所以()()21224411k AB AF BF x x k +=+=+++=.由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为()23y x −=−−,即5y x =−+.设所求圆的圆心坐标为(x 0,y 0),则()()002200051116.2y x y x x =−+⎧⎪⎨−++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=−⎩, 因此所求圆的方程为()()223216x y −+−=或()()22116144x y −++=."北京题库"服务号j in g s h i b a n g .c o m点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程依据已知条件列出关于,,a b r 的方程组,从而求出,,a b r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.13.(1)3(,)44ππ(2)sin 2,22x y αα⎧=⎪⎪⎨⎪=⎪⎩(α为参数,344ππα<<) 【详解】分析:(1)由圆与直线相交,圆心到直线距离d r <可得. (2)联立方程,由根与系数的关系求解详解:(1)O 的直角坐标方程为221x y +=. 当2πα=时,l 与O 交于两点.当2πα≠时,记tan k α=,则l的方程为y kx =l 与O1<,解得1k <−或1k >,即,42ππα⎛⎫∈ ⎪⎝⎭或3,24ππα⎛⎫∈ ⎪⎝⎭. 综上,α的取值范围是3,44ππ⎛⎫ ⎪⎝⎭. (2)l的参数方程为,(x tcos t y tsin αα=⎧⎪⎨=⎪⎩为参数,344ππα<< ). 设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足210t α−+=.于是A B t t α+=,P t α.又点P 的坐标(),x y满足,.P P x t cos y t sin αα=⎧⎪⎨=⎪⎩ 所以点P的轨迹的参数方程是2,222x y αα⎧=⎪⎪⎨⎪=−−⎪⎩(α为参数,344ππα<< ). 点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档题. 14.(1) 22(1)4x y ++=. (2) 423y x =−+. 京题"服务号j in g s h i b a n g .c o m【详解】分析:(1)就根据cos x ρθ=,sin y ρθ=以及222x y ρ=+,将方程22cos 30ρρθ+−=中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线2C 是圆心为()1,0A −,半径为2的圆,1C 是过点()0,2B 且关于y 轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k 所满足的关系式,从而求得结果.详解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为()2214x y ++=.(2)由(1)知2C 是圆心为()1,0A −,半径为2的圆.由题设知,1C 是过点()0,2B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =−或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =−时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =−+. 点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.15.(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)2cos()43πρθ+=2cos()43πρθ−=【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可. 【详解】(1)由题意,C 的普通方程为22(2)(1)1x y −+−=,所以C 的参数方程为2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)(2)[方法一]:直角坐标系方法①当切线斜率不存在时,切线方程为4x =,此时圆心到直线的距离为2>r ,故舍去. ②当切线斜率存在时,设其方程为(4)1y k x =−+,即410kx y k −−+=."北京题库"j in g s h i b a n o m1=,即22|2|1==+k k k,解得k=.所以切线方程为4)1=−+y x或4)1=−+y x.两条切线的极坐标方程分别为sin cos133ρθρθ=−+和sin cos1ρθθ=+.即5sin26πρθ⎛⎫+=−⎪⎝⎭sin26πρθ⎛⎫+=⎪⎝⎭[方法二]【最优解】定义求斜率法如图所示,过点F作C的两条切线,切点分别为A,B.在ACF中,tan∠==ACAFCAF,又∥CF x轴,所以两条切线,FA FB故切线的方程为4)1=−+y x,(4)1=−+y x,这两条切线的极坐标方程为sin cos1ρθθ=−+和sin cos1ρθθ=.【整体点评】(2)的方法一直角坐标系中直线与圆相切的条件求得切线方程,再转化为极坐标方程,方法二:直接根据倾斜角求得切线的斜率,得到切线的直角坐标方程,然后转化为极坐标方程,在本题中巧妙的利用已知圆和点的特殊性求解,计算尤其简洁,为最优解."北京题库"服务号jingshibang.co。
高考数学必考之圆的方程考点一 圆的方程1.圆心为()3,1,半径为5的圆的标准方程是【答案】()()223125x y -+-=【解析】∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()223125x y -+-=,2.已知点()3,6A ,()1,4B ,()1,0C ,则ABC ∆外接圆的圆心坐标为 【答案】()5,2【解析】线段AB 中点坐标为()2,5,线段AB 斜率为64131-=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+.线段AC 中点坐标为()2,3,线段AC 斜率为60331-=-,所以线段AC 垂直平分线的斜率为13-,故线段AC 的垂直平分线方程为()1323y x -=--,即11133y x =-+.由75111233y x x y y x =-+⎧=⎧⎪⇒⎨⎨==-+⎩⎪⎩.所以ABC ∆外接圆的圆心坐标为()5,2. 3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是【答案】-2<a <23【解析】由题意可得圆的标准方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<.考点二 点与圆的位置关系1.点()1,1在圆()2211x y +-=的( )A .圆上B .圆内C .圆外D .无法判定【答案】A【解析】将点()1,1的坐标代入圆()2211x y +-=的方程即()221111+-=,∴点()1,1在圆()2211x y +-=上,2.经过点(1,2)A 可做圆22240x y mx y ++-+=的两条切线,则m 的范围是( )A .(,(23,)-∞-+∞B .(5,(23,)--+∞C .(,)-∞-⋃+∞D .(5,(22,)--+∞【答案】B【解析】圆22240x y mx y ++-+=,即为222()(1)324m m x y -+-=-, 2304m ∴->⇒m <-m > 由题意知点A 在圆外,14440m ∴++-+>,解得5m >-.所以5m -<<-m >故选B3.若坐标原点在圆22222240x y mx my m +-++-=的内部,则实数m 的取值范围是( )A .()1,1-B .,22⎛-⎝⎭C .(D .(【答案】D【解析】把原点坐标代入圆的方程得:222002020240m m m +-⨯+⨯+-<解得:m <本题正确选项:D考点三 直线与圆1.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = 。
《圆与方程》各省高考试题及其答案一、选择题1.(09·宁夏海南)已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 ( )A .2(2)x ++2(2)y -=1B .2(2)x -+2(2)y +=1C .2(2)x ++2(2)y +=1D .2(2)x -+2(2)y -=12.(09·重庆)直线1y x =+与圆221x y +=的位置关系为 ( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离3.(09·重庆)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为 ( )A .22(2)1x y +-=B .22(2)1x y ++=C .22(1)(3)1x y -+-=D .22(3)1x y +-=4.(08·湖北)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有( )A.16条B. 17条C. 32条D. 34条5.(06·重庆)以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为 ( )A .22(2)(1)3x y -++=B .22(2)(1)3x y ++-=C .22(2)(1)9x y -++=D .22(2)(1)3x y ++-=6.方程222460x y x y ++--=表示的图形是( )A.以(12)-,为半径的圆 B.以(12),为半径的圆C.以(12)--,为半径的圆 D.以(12)-,为半径的圆 7.点(11),在圆22()()4x a y a -++=的内部,则a 的取值范围是( ) A.11a -<< B.01a << C.1a <-或1a > D.1a =±8.若22(1)20x y x y λλλ++-++=表示圆,则λ的取值范围是( )A.(0)+,∞ B.114⎡⎤⎢⎥⎣⎦, C.1(1)()5+-,∞∞, D.R9.两圆229x y +=和228690x y x y +-++=的位置关系是( ) A 相离 B 相交 C 内切 D 外切二、填空题 1.(09·四川)若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .2.(09·天津)若圆224x y +=与圆22260x y ay ++-=(a >0)的公共弦的长为则a =___________.3.(09·辽宁)已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为_____________.三、解答题1.已知一圆经过点A (2,-3)和B (-2,-5),且圆心C 在直线l :230x y --=上,求此圆的方程.2.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半, 求:(1)动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹.1.【答案】B【解析】设圆2C 的圆心为(a ,b ),则依题意,有111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩, 解得22a b =⎧⎨=-⎩,对称圆的半径不变,为1. 2.【答案】B【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B. 3.【答案】A 【解法】设圆心坐标为(0,)b1=,解得2b =, 故圆的方程为22(2)1x y +-=.4.【答案】C【解析】由已知得圆心为P(-1,2),半径为13,显然过A 点的弦长中最长的是直径,此时只有一条,其长度为26,过A 点的弦长中最短的是过A 点且垂直于线段PA 的弦,也只有一条,其长度为10(PA 的长为12,弦长=2221213-=10),而其它的弦可以看成是绕A 点不间断旋转而成的,并且除了最长与最短的外,均有两条件弦关于过A 点的直径对称,所以所求的弦共有2(26-10-1)+2=32.故选C .1.【答案】4【解析】由题知)0,(),0,0(21m O O , 且53||5<<m ,又21AO A O ⊥,所以有525)52()5(222±=⇒=+=m m ∴452052=⋅⋅=AB . 2【答案】1【解析】由知22260x y ay ++-=, 222)3()1(6=---+a a 解之得1=a .3.【答案】22(1)(1)2x y -++=【解析】圆心在x +y =0上,结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.解答题1解:因为A (2,-3),B (-2,-5),所以线段AB 的中点D 的坐标为(0,-4),又 5(3)1222AB k ---==--,所以线段AB 的垂直 平分线的方程是24y x =--.联立方程组23024x y y x --=⎧⎨=--⎩,解得12x y =-⎧⎨=-⎩.所以,圆心坐标为C (-1,-2),半径||r CA==, 所以,此圆的标准方程是22(1)(2)10x y +++=.2解:(1)设动点M (x ,y )为轨迹上任意一点,则点M 的轨迹就是集合P 1{|||||}2M MA MB ==. 由两点距离公式,点M 适合的条件可表示为= 平方后再整理,得 2216x y +=. 可以验证,这就是动点M 的轨迹方程.(2)设动点N 的坐标为(x ,y ),M 的坐标是(x 1,y 1).由于A (2,0),且N为线段AM 的中点,所以122x x +=, 102y y +=.所以有122x x =-,12y y = ① 由(1)题知,M 是圆2216x y +=上的点,所以M 坐标(x 1,y 1)满足:221116x y +=②,将①代入②整理,得22(1)4x y -+=.所以N的轨迹是以(1,0)为圆心,以2为半径的圆.。
2019-2019年高考数学圆的方程专题练习(含答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,下面是查字典数学网整理的2019-2019年高考数学圆的方程专题练习,希望岁考生复习有帮助。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).所以该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,所以圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x 联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2019江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y|的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号.[答案] 96.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2019泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a=________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,所以的最小值为-4.10.已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,所以圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2=2.一般说来,“教师”概念之形成经历了十分漫长的历史。
专专9.2圆的专专一、单选题1. 已知圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,a ,b为正实数,则ab 的最大值为 ( )A. B.94C.32D.22. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是( )A. [2,6]B. [4,8]C.D.3. 已知圆2260x y x +-=,过点(1,2)D 的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 44. 已知圆M 的方程为22680x y x y +--=,过点(0,4)P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( )A. 30B. 40C. 60D. 805. 在平面直角坐标系xOy 中,已知点,,若动点M 满足||2||MA MO =,则OM ON ⋅的取值范围是( )A.B.C.D.6. 若平面内两定点A ,B 之间的距离为2,动点P 满足|||PB PA =,则tan ABP∠的最大值为( )A.2B. 1C.D. 7. 已知圆22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点,过点P 作圆M 的切线PA ,PB ,且切点为A ,B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++= 8. 已知圆221x y +=,点(1,0)A ,ABC 内接于圆,且60BAC ︒∠=,当B ,C 在圆上运动时,BC 中点的轨迹方程是( )A. 2212x y +=B. 2214x y +=C. 2211()22x y x +=<D. 2211()44x y x +=<9. 已知线段AB 是圆C :224x y +=上的一条动弦,且||23AB =,若点P 为直线40x y +-=上的任意一点,则的最小值为( )A. 1B. 1C. 2D. 2二、多选题10. 已知点P 在圆22(5)(5)16x y -+-=上,点(4,0)A ,(0,2)B ,则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB 的距离大于2C. 当PBA ∠最小时,||PB =D. 当PBA ∠最大时,||PB =11. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1:2,则圆C的方程为( )A. 224()33x y ++= B. 224(33x y +-=C. 224(3x y +=D. 224(3x y ++=12. 关于圆2221:2104C x y kx y k k +-++-+=,下列说法正确的是( ) A. k 的取值范围是0k >B. 若4k =,过(3,4)M 的直线与圆C 相交所得弦长为125160x y --=C. 若4k =,圆C 与圆221x y +=相交D. 若4k =,0m >,0n >,直线10mx ny --=恒过圆C 的圆心,则128m n+恒成立13. 圆C :224630x y x y ++--=,直线:3470l x y --=,点P 在圆C 上,点Q在直线l 上,则下列结论正确的是( )A. 直线l 与圆C 相交B. ||PQ 的最小值是1C. 若P 到直线l 的距离为2,则点P 有2个D. 从Q 点向圆C 引切线,切线长的最小值是314. 已知222{(,)|}A x y x y r =+=,222{(,)|()()}B x y x a y b r =-+-=,1122{(,),(,)}A B x y x y ⋂=,则( )A. 22202a b r <+<B. 1212()()0a x x b y y -+-=C. 1212,x x a y y b +=+=D. 221122a b ax by +=+三、填空题15. 已知P ,Q 分别为圆M :22(6)(3)4x y -+-=与圆N :22(4)(2)1x y ++-=上的动点,A 为x 轴上的动点,则||||AP AQ +的最小值为__________.16. 在平面直角坐标系xOy 中,A 为直线l :2y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点.D 若0AB CD ⋅=,则点A 的横坐标为__________.17. 已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________.18. 已知圆O :221x y +=和点(2,0)A -,若定点(,0)(2)B b b ≠-和常数λ满足,对圆O 上任意一点M ,都有||||MB MA λ=,则λ=__________.19. 在平面直角坐标系xOy 中,已知直角ABC 中,直角顶点A 在直线60x y -+=上,顶点B ,C 在圆2210x y +=上,则点A 横坐标的取值范围是__________. 四、解答题20. 已知两个定点(4,0)A -,(1,0)B -,动点P 满足||2||.PA PB =设动点P 的轨迹为曲线E ,直线l : 4.y kx =-()Ⅰ求曲线E 的轨迹方程;()Ⅱ若l 与曲线E 交于不同的C ,D 两点,且90(COD O ︒∠=为坐标原点),求直线l的斜率;()Ⅲ若12k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点.答案和解析1.【答案】B解:由已知,得圆1C :22()(2)1x a y ++-=的圆心为1(,2)C a -,半径1 1.r = 圆2C :22()(2)4x b y -+-=的圆心为2(,2)C b ,半径2 2.r =圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,1212,||C C r r ∴=+即3a b +=, 由基本不等式,得29()24a b ab +=,取等号时32a b ==, 故选:.B2.【答案】A解:直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,∴令0x =,得2y =-,令0y =,得2x =-,(2,0)A ∴-,(0,2)B -,||4422AB =+=,点P 到直线20x y ++=的距离为ABP 的高h , 圆的圆心为(2,0),半径为2,圆心到直线的距离为:,所以点P 到直线的距离h 的最大值为22232+=,最小值为2222-=,则ABP 面积为,最大值为1223262⨯⨯=, 最小值为122222⨯⨯=, 所以ABP 面积的取值范围为[2,6]. 故选.A解:由圆的方程可得圆心坐标(3,0)C ,半径3r =,且点D 在圆内,设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ===所以最小的弦长||2AB ==, 故选.B4.【答案】B解:圆 M 的标准方程为 22(3)(4)25x y -+-=, 即圆是以 (3,4)M 为圆心,5为半径的圆,且由 22(03)(44)925-+-=<,即点 (0,4)P 在圆内, 则最短的弦是以 (0,4)P 为中点的弦, 所以 225()92AC =+,所以 8AC =, 过 (0,4)P 最长的弦 BD 为直径, 所以 10BD =,且 AC BD ⊥, 故而故选.B5.【答案】D解:设(,)M x y ,因为动点M 满足||||MA MO = 则222222(2)22(2)8x y x y x y ++=+⇒+-=,即(,)(1,0)[OM ON x y x ⋅=⋅=∈-, 故选.D解:以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系, 如图,则(1,0)A ,(1,0)B -,设,2222(1)2(1)x y x y ++=-+,整理得:2222610(3)8x y x x y +-+=⇒-+=,根据图象可知,当BP 为圆C 切线时,tan ABP ∠取得最大值, 此时BP == 则tan 1PC ABP PB ∠===, 故选:.B7.【答案】D解:圆M 方程的圆心(1,1)M ,半径2r =, 根据切线的性质及圆的对称性可知PM AB ⊥, 则||||42||||PAMPM AB SPA AM ⋅==⋅,要使||||PM AB ⋅最小,只需最小,即最小,此时PM l ⊥,min |212|||55PM ++∴==,22||||||1PA PM AM =-=, 过点M 且垂直于l 的方程为11(1)2y x -=-,将其与l 的方程联立,解得(1,0)P -, 以PM 为直径的圆的方程为,结合圆M 的方程两式相减可得直线AB 的方程为210x y ++=, 故选.D(,)P x y8.【答案】D解:设BC 中点是D ,圆周角等于圆心角的一半,120BOC ︒∴∠=,60BOD ︒∠=,在直角三角形BOD 中,有12OD =, 故中点D 的轨迹方程是:2214x y +=, 考虑A ,B 重合的极限情况,此时30OAC ︒∠=, 则直线AC 所在的方程为3333y x =-, 联立,得或故C 的横坐标为12-,AC 的中点横坐标为1.4因为A ,B 不重合,所以D 点横坐标14x <, 故选:.D9.【答案】C解:由题意,过圆心C 作CD AB ⊥交AB 于点D ,又圆C :224x y +=,圆心为(0,0)C ,半径2r =, 所以,则||||2||2||PA PB PC CA PC CB PC CD PD +=+++=+=, 当PC AB ⊥时,且D 在线段PC 上时,||PD 取最小值, 由点C 到直线40x y +-=的距离,所以,所以的最小值为42 2.-故选.C10.【答案】ACD解:由点(4,0)A ,(0,2)B , 可得直线AB 的方程为240.x y +-=则圆心(5,5)=,故P 到直线AB 410<,42<,所以A 正确,B 错误.由题意可知,当直线PB 与圆相切时,PBA ∠最大或最小, 由于圆心到B 的距离为,此时,故C ,D 都正确.故选.ACD11.【答案】AB解:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π, 设圆心(0,)a ,半径为 r , 则sin13r π=,cos||3r a π=,解得r =243r =,||3a =,即3a =±,故圆C 的方程为224(.33x y +±= 故选.AB12.【答案】ACD解:对于A ,若方程22212104x y kx y k k +-++-+=表示圆,则,化简得0k >,故A 正确;对于B ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.过(3,4)M 的直线的斜率不存在时,直线方程为3x =,圆心到直线3x =的距离为1,则过(3,4)M 的直线与圆 C 相交所得弦长为2222123-=; 过(3,4)M 的直线的斜率存在时,设直线的斜率为k , 则直线方程为,即430kx y k -+-=,设圆心到直线430kx y k -+-=的距离为d ,因为弦长为23,则222223d -=,解得1d =, 故,解得125k =, 所以直线方程为,即125160x y --=,故满足条件的直线方程为3x =或125160x y --=, 故B 错误;对于C ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.圆221x y +=的圆心为,半径为1,所以两圆心间的距离为,又21521-<<+,故两圆相交,故C 正确;对于D ,若4k =,则圆C 的圆心为,又直线10mx ny --=恒过圆C 的圆心,则21m n +=,又0m >,0n >, 则444248m n m n m n m=++⨯= 当且仅当224n m =,即11,42m n ==时等号成立, 故D 正确. 故选.ACD13.【答案】BCD解:圆的方程化为标准形式为,圆心为,半径 4.r =圆心C 到直线l 的距离为22|3(2)437|543(4)d ⨯--⨯-==>+-,∴直线l 与圆C 相离,不相交,故选项A 错误;||PQ 的最小值为541-=,故选项B 正确;圆C 上的点到l 的距离最小值为541-=,最大值为549+=,2(1,9)∈,∴圆C 上到直线l 的距离为2的点P 有2个,故选项C 正确;Q 到圆C 的切线QT ,T 为切点,则,当||QC 最小时||QT 最小,||QC 的最小值等于C 到直线l 的距离5d =,22||543QT ∴=-=最小值,故选项D 正确.故选.BCD14.【答案】BCD解:设两圆相交于111(,)P x y ,222(,)P x y ,圆,圆C :222()()x a y b r -+-=,则02||OC r <<,即22204a b r <+<,故A 错误,两圆方程相减可得直线12P P 的方程为:22220a b ax by +--=,即2222ax by a b +=+, 分别把111(,)P x y ,222(,)P x y 两点代入2222ax by a b +=+得:221122ax by a b +=+,222222ax by a b +=+,两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,故BD 正确; 由圆的性质可知:线段12P P 与线段OC 互相平分,12x x a ∴+=,12y y b +=,故C 正确,故选:.BCD15.【答案】3解:如图所示,因为圆N :22(4)(2)1x y ++-=关于x 轴对称的圆为圆G :22(4)(2)1x y +++=, 则||||AP AQ +的最小值为22||12105355 3.MG --=+-=-故答案为55 3.-16.【答案】3解:设(,2)A a a ,0a >,(5,0)B ,5(,)2a C a +∴, 则圆C 的方程为(5)()(2)0.x x a y y a --+-=联立2(5)()(2)0y x x x a y y a =⎧⎨--+-=⎩,解得(1,2).D223215(5,2)(,2)240.22a a a AB CD a a a a a ----∴⋅=--⋅-=+-= 解得:3a =或 1.a =-又0a >, 3.a ∴=即A 的横坐标为3.故答案为:3.17.【答案】22(1)(2)4x y -+-=解:圆C 的圆心在第一象限,且在直线2y x =上,故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故有|1||2|a a +=,解得1a =,或1(3a =-舍去),故半径为2, 则圆C 的方程为22(1)(2)4x y -+-=,故答案为:22(1)(2) 4.x y -+-=18.【答案】12解:根据题意,设(,)M x y ,若||||MB MA λ=,变形可得222||||MB MA λ=,即222222()(2)x b y x y λλ-+=++,又由221x y +=,则变形可得:2221245b bx x λλ+-=+, 则有2225142b bλλ⎧=+⎨=-⎩, 解可得1(2λ=负值舍去),12b =-; 故答案为:1.219.【答案】[4,2]--解:如图过直线60x y -+=上点P 作圆2210x y +=的切线,当两条切线垂直时,根据,得4OPB π∠=, 所以, 则由题意得,设(,6)A x x +,则22(6)25x x ++,即2680x x ++,解得42x --,所以点A 横坐标的取值范围是[4,2].--故答案为[4,2].--20.【答案】解:(1)设点P 坐标为(,)x y ,由||2||PA PB ==, 平方可得22228164(21)x y x x y x +++=+++,整理得:曲线E 的轨迹方程为224x y +=; (2)直线l 的方程为4y kx =-,依题意可得三角形COD 为等腰直角三角形,圆心到直线的距离为1||2CD =则d ==,k ∴=;(3)由题意可知:O ,Q ,M ,N 四点共圆且在以OQ 为直径的圆上, 设1(,4)2Q t t -,以OQ 为直径的圆的方程为1()(4)02x x t y y t -+-+=, 即:22(4)02t x tx y y -+--=,又M ,N 在曲线E :224x y +=上,可得MN 的方程为1(4)402tx t y +--=, 即()4(1)02y x t y +-+=,由0210y x y ⎧+=⎪⎨⎪+=⎩得121x y ⎧=⎪⎨⎪=-⎩, ∴直线MN 过定点1(,1).2-。
圆与方程一、选择题1. 已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2. 圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A.相交B.相切C.相离D.不确定的3. 若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) A.1,-1 B.2,-2 C.1 D.-14. 圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21B.23C.1D.35. 若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππ C.)2,3(ππD.]2,6[ππ 6. 给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④7. 过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=48.设A 、B 是x 轴上的两点,点P 的横坐标为2且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=09. 下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1C.x -y =1D.x 2-y 2=110. 过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3x C.y =33x D.y =-33x 11. 曲线x 2+y 2+22x -22y =0关于( )A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称12. 直线y =33x 绕按逆时针原点方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点13. 直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4πC .3π D.2π14. 已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( ) A.5 B.4 C.3 D.215. 如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 16. 下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示17. 圆x2+y2-2x=0和x2+y2+4y=0的位置关系是()A.相离B.外切C.相交D.内切二、填空题18. 直线y=1与直线y=3x+3的夹角为_____.19. 若经过两点A(-1,0)、B(0,2)的直线l与圆(x-1)2+(y-a)2=1相切,则a=_____.20. 圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.21. 已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形PACB面积的最小值为.22. 已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.23. 已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.24. 圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为 .25. 集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.26. 设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是 .27 . 以点C(-2,3)为圆心且与y轴相切的圆的方程是 .三、解答题28. 设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.29.已知点P到两个定点M(-1,0)、N(1,0)距离的比为2,点N到直线PM的距离为1.求直线PN的方程.30. 设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.31. 已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.32. 在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.33. 已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.3.答案:D解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-14.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 5.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323图7—3∵交点在第一象限,∴⎩⎨⎧>>0y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果. 6.答案:D解析:联立方程组,依次考查判别式,确定D. 7.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a .由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1因此所求圆的方程为(x -1)2+(y -1)2=4 8.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 9.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 10.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x .11.答案:B 12.答案:C图7— 4 图7—5解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 13.答案:C解析:如图7—7所示, 由⎪⎩⎪⎨⎧=+=-+432322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.14.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题.15.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意. 16.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示.17.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为图7—7图7—8O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C. 18.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.19.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 20.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 21.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形PACB =2S △PAC=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形PACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形PACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S PACD =22. 22.答案:34 解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10.图7—9图7—10∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 23.答案:34 解析:圆的圆心为(-1,0),如图7—11.当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 24.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1.故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1. 25.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7. 26.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的图7—11中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426kk k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x ②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.27.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.28.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.29.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①① ②因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3). 直线PN 的方程为y =x -1或y =-x +1.30.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |.由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1,从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值, 由此有⎩⎨⎧=-=1222a b ba 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2 31.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====. 由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).32.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)>S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.33.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆.图7—15。
圆的方程章末练习
1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x -y +=0或2x -y -=055B .2x +y +=0或2x +y -=055C .2x -y +5=0或2x -y -5=0D .2x +y +5=0或2x +y -5=0
2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( )A .2 B .86C .4
D .10
63.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )
A .-或-
B .-或-53353223
C .-或-
D .-或-54454334
4.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点
A (-4,a )作圆C 的一条切线,切点为
B ,则|AB |=( )
A .2
B .42
C .6
D .210
5.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )
A .-2
B .-4
C .-6
D .-8
6.已知圆
: ( x +1)2 + ( y −1)2=1,圆 与圆 关于直线 x − y − 1 = 0 对称,则圆
1C 1C 2C 的方程为( )
2C (A ) ( x + 2)2 + ( y − 2)2 =1 (B )
( x − 2)2 + ( y + 2)2 =1
(C )
( x + 2)2 + ( y + 2)2 =1 (D ) ( x − 2)2 + ( y − 2)2 =1
7.(2013江西理9)过点引直线与曲线相交于,两点,为坐标
y =A B O 原点,当的面积取最大值时,直线的斜率等于( )
AOB △
A
B .
C .
D .8.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直
线2x +y -4=0相切,则圆C 面积的最小值为( )
A.
B.4π
53π4C .(6-2)π
D.55π4
9.已知圆
,圆
,分别是圆()()2
2
1:231
C x y -+-=()()2
2
2:349
C x y -+-=M N ,上的动点,为轴上的动点,则的最小值为( )
12C C ,P x PM PN +A.
C. D. 4-1-6-10.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为2,则圆C 的标准方程为________.
312.过点 A(4,1)的圆 C 与直线
x − y − 1 = 0 相切于点 B(2,1).则圆 C 的方程为
________.
13.直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.
14.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则
a 2+
b 2=________.
15.由直线y =x +1上的点向圆(x -3)2+(y +2)2=1引切线,则切线长的最小值为
________.
16.已知直线x -y +2=0及直线x -y -10=0截圆C 所得的弦长均为8,则圆C 的
33面积是________.
17.已知圆C 过点(-1,0),且圆心在x 轴的负半轴上,直线l :y =x -1被该圆所截得的
18.已知圆C :(x -4)2+(y -3)2=1和两点A (-m ,0),B (m ,0)(m >0),若圆C 上至少存在一点P ,使得∠APB =90°,则m 的取值范围是________.
19.(2015江苏理10)在平面直角坐标系中,以点
为圆心且与直线
xOy ()1,0相切的所有圆中,半径最大的圆的标准方程为
.
210mx y m ---=()m ∈R 20.设直线ax +2y +6=0与圆x 2+y 2-2x +4y =0相交于点P ,Q 两点,O 为坐标原点,
且OP ⊥OQ ,求实数a 的值.
21.(2016江苏18)如图所示,在平面直角坐标系
xOy 中,已知以M
为圆心的圆
22:1214600M x y x y +--+=及其上一点()2,4A .
(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x
=上,求圆N
的标准方程;
(2)设平行于OA 的直线与圆M 相交于,B C 两点,且BC
OA =,求直线的方程;
22.(2013江苏17)如图,在平面直角坐标系中,点,直线.设
xOy )3,0(A 42:-=x y l 圆的半径为,圆心在上.
C
(2)若圆上存在点,使,求圆心的横坐标的取值范围.C M MO MA 2=C a
23.[2014 年高考全国新课标Ⅰ卷文数第 20 题]已知点
P (2,2) ,圆 C : x 2 + y 2 − 8 y = 0 ,过点 P 的动直线 l 与圆 C 交于 A , B 两点,
线段 AB 的中点为 M , O 为坐标原点.(1)求 M 的轨迹方程;
(2)当 OP = OM 时,求 l 的方程及 ∆ POM 的面积
24.[2011 年高考全国新课标文数第 20 题](本小题满分 12 分)
在平面直角坐标系 xOy 中,曲线 y = x 2 − 6 x +1与坐标轴的交点都在圆 C 上(Ⅰ)求圆 C 的方程;
(Ⅱ)若圆 C 与直线 x − y + a = 0 交与 A ,B 两点,且 OA ⊥OB ,求 a 的值。
25.[2015 年高考全国新课标Ⅰ卷文数第 20 题]
26.[2007年高考全国新课标文数第21题]
在平面直角坐标系xOy中,已知圆x2+ y2−12 x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在常数k,使得向量OA+ OB与PQ共线?如果存在,求k值;如果不存在,请说明理由.。