大学物理(分子物理部分)
- 格式:ppt
- 大小:1.10 MB
- 文档页数:34
第二章(P255)1.简述聚合物的分子运动特点。
答:聚合物的分子运动的特点是:运动单元的多重性:聚合物的运动单元可以是侧基、支链、链节、链段和整个分子等。
高分子热运动是一个松弛过程:在一定的外界条件下,聚合物从一种平衡状态通过热运动达到与外界条件相适应的新的平衡态,这个过程不是瞬间完成的,需要一定的时间。
高分子热运动与温度有关:随着温度的升高,高分子热运动的松弛时间缩短。
2.试用自由体积理论解释聚合物的玻璃化转变。
答:根据自由体积理论,液体或固体物质的体积是由两部分组成的:一部分是被分子占据的体积,称为已占体积,另一部分是未被占据的以“孔穴”形式分散于整个物质之中的自由体积。
正是由于自由体积的存在,分子链才可能通过转动和位移而调整构象。
自由体积理论认为,当高聚物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积将达到最低值,这时高聚物进入玻璃态。
在玻璃态下,由于链段运动被冻结,自由体积也被冻结,并保持一恒定值。
因此,对任何高聚物,玻璃化温度就是自由体积达到某一临界值时的温度,高聚物的玻璃态可视为等自由体积状态。
3.何谓玻璃化转变温度?简述一种测量聚合物玻璃化温度的方法。
答:聚合物玻璃态与高弹态之间的转变称为玻璃化转变,对应的转变温度为玻璃化转变温度。
玻璃化转变温度可以用膨胀计法测定,即直接测量高聚物的体积或比容随温度的变化。
从体积或比容对温度曲线两端的直线部分外推,其交点对应的温度作为T;g T也可以用差热分析测量,其基本原理是在等速升温的条件下,连续测定被测试g样与惰性基准物之间的温度差△T,并以△T对试样T作图,即得差热曲线,曲线上出现一台阶,台阶处所对应的温度即为T。
g4.试从分子运动的观点说明非晶聚合物的三种力学状态和两种转变。
答:在玻璃态下(T<Tg ),由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基、支链和小链节能运动。
大学物理练习题五一、选择题1.温度、压强相同的氦气和氧气,它们分子的平均动能k ε和平均平动动能t ε有如下关系: [ C ](A) k ε和t ε都相等。
(B) k ε相等,而t ε不相等。
(C)t ε相等,而k ε不相等。
(D) k ε和t ε都不相等。
解:分子的平均动能 (氦气i = 3, 氧气i ≥5)2.已知氢气与氧气的温度相同,请判断下列说法哪个正确? [ D ](A )氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强。
(B )氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度。
(C )氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大。
(D )氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大。
解:m 比氢分子大。
(A) nkT P =,T 相同, 还要看n ;(B) T 相同mol M 确定, 还要看P ;(C) 对很多分子,不是所有氢分子的速率都大。
3.已知一定量的某种理想气体,在温度为T 1与T 2时的分子最可几速率分别为V p1和V p2,分子速率分布函数的最大值分别为f(V p1)和f(V p2)。
若T 1 > T 2,则 [ B ](A )V p1 >V p2; f(V p1) > f(V p2)。
(B )V p1 >V p2; f(V p1) < f(V p2)。
(C )V p1 < V p2; f(V p1) > f(V p2)。
(D )V p1 < V p2; f(V p1) < f(V p2)。
, 若T 1 > T 2,则V p1>V p2 ;而V p 大对应的曲线峰值f(V p )小。
4.在标准状态下,若氧气(视为刚性双原子分子理想气体)和氦气的体积比2/1/21=V V ,则其内能之比21/E E 为: [ C] (A )3/10 (B )1/2 (C )5/6 (D )5/3解:内能PV iE 2=,氧气i=5,氦气i=3,压强P 相同。
第四章(P318)1.解释下列名词:柔量;理想网络;松弛时间;时温等效;零切粘度;银纹;脆性断裂;滞后环。
答:(1)柔量:模量的倒数称为柔量,可用来表示形变的难易程度。
(2)理想网络:每个交联点由四个链组成,交联点是无规分布的;两交联点之间的链—网链是高斯链,其末端距符合高斯分布;由这些高斯链组成的各向同性的交联网的构象总数是各个单独网链的构象数的乘积,也就是网络的熵是各个网络链的熵的总和;交联网中的交联点在形变前和形变后都是固定在其平均位置上的,形变时,这些交联点按与橡胶试样的宏观变形相同的比例移动,即符合所谓“仿射”变形的假定。
(3)松弛时间谱:由于高分子运动单元的多重性,其运动单元的大小不同,相应的松弛时间的长短也不一致,短的可以几秒钟,长的可达几天、甚至几年。
松弛时间的分布是很宽的,在一定范围内可以认为是一个连续的分布,称为松弛时间谱。
(4)时温等效:同一个力学松弛现象,既可以在较高的温度下,在较短的时间内观察到,也可以在较低的温度下,在较长的时间内观察到。
因此,升高温度与延长观察时间对分子运动是等效的,对高聚物的粘弹行为也是等效的,这个等效性可以借助于一个转换因子T a 来实现,即借助于转换因子可以将在某一温度下测定的力学数据变成另一温度下的力学数据,这就是时温等效。
(5)零剪切粘度:即剪切速率趋近于零的粘度。
(6)银纹:某些聚合物在受到拉伸应力时,会产生许多微小的裂纹,这些裂纹由于光的折射,看上去是发亮的,所以称为银纹。
(7)脆性断裂:在材料出现屈服之前发生的断裂。
(8)滞后环:由橡胶的拉伸-压缩循环的应力应变曲线所构成的闭合的曲线常称为“滞后圈”。
2.试述橡胶的热力学方程的意义,并解释其拉伸过程中的放热效应和具有负的膨胀系数。
答:橡胶的热力学方程是VT V T l S T l U f ,,⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=,其物理意义是:橡胶的张力是由于形变时内能发生变化和熵发生变化所引起的。
4-15 氢原子的同位素氘(21H)和氚(31H)在高温条件下发生聚变反应,产生氦(42He)原子核和一个中子(10n),并释放出大量能量,其反应方程为21H + 31H42He + 10n止质量为2.0135原子质量单位(1原子质量单位=1.600×10-27kg),氚核和氦核及中子的质量分别为3.0155,4.0015,1.00865原子质量单位.求上述聚变反应释放出来的能量. 解: 反应前总质量为0290.50155.30135.2=+amu 反应后总质量为0102.50087.10015.4=+amu 质量亏损 0188.00102.50290.5=-=∆m amukg 1012.329-⨯=()282921031012.3⨯⨯⨯==-mc E ∆∆J 1081.221-⨯=71075.1⨯=eV6-9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度; (3)求x =0.2m t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅. (2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅ 222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m6-13 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s -1,波长为2m ,求: (1)波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标;(4) P 点回到平衡位置所需的最短时间. 解: 由题5-13图可知1.0=A m ,0=t 时,0,200<=v A y ,∴30πφ=,由题知2=λm , 10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m题5-13图(2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如题5-13图(a),则由P 点回到平衡位置应经历的位相角题5-13图(a)πππφ6523=+=∆ ∴所属最短时间为121106/5==∆=∆ππωφt s 6-19 如题5-19图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波速u =0.2m ·s -1,求:(1)两波传到P 点时的位相差;(2)当这两列波的振动方向相同时,P 处合振动的振幅; 解: (1) )(2)(12BP CP ---=∆λπϕφφ)(BP CP u --=ωπ 0)4.05.0(2.02=--=ππ题5-19图(2)P 点是相长干涉,且振动方向相同,所以321104-⨯=+=A A A P m6-20 一平面简谐波沿x 轴正向传播,如题5-20图所示.已知振幅为A ,频率为ν 波速为u . (1)若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程; (2)若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置. 解: (1)∵0=t 时,0,000>=v y ,∴20πφ-=故波动方程为]2)(2cos[ππ--=u x t v A y m题5-20图(2)入射波传到反射面时的振动位相为(即将λ43=x 代入)2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为 ππλλπ25432-=-⨯-,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为]2)(2cos[ππυ--=ux t A y ]2)(2cos[ππυ-++u x t A )22cos(2cos 2ππυπυ-=t u x A 故波节位置为2)12(22πλππυ+==k x u x 故 4)12(λ+=k x (,2,1,0±±=k …)根据题意,k 只能取1,0,即λλ43,41=x 7-7 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )( (4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间内的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 内的分子数占总分子数的百分比. (2) v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数. (4)⎰vv v f 0d )(:表示分布在21~v v 区间内的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间内所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数.7-15 试说明下列各量的物理意义. (1)kT 21 (2)kT 23 (3)kT i2 (4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T .(2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统内能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的内能RT 23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT 23.7-24 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比. 解:(1)因为 nkT p =则1=HOn n (2)由平均速率公式mol60.1M RTv = 41mol mol ==O H HOM M v v8-12 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆=吸热 )(2)(1212V T T R iT T C E Q -=-=∆=υυ 25.623)300350(31.823=-⨯⨯=∆=E Q J 对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ吸热 75.1038)300350(31.825=-⨯⨯=Q J )(12V T T C E -=∆υ 内能增加 25.623)300350(31.823=-⨯⨯=∆E J 对外作功 5.4155.62375.1038=-=∆-=E Q A J8-15 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγVV p p 111= ⎰=21d V V V p A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV V V p 又 )(1111211+-+----=γγγγV V V p A 112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A8-19 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算 (1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少? (3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少? 解:(1)卡诺热机效率 121T T -=η%7010003001=-=η (2)低温热源温度不变时,若 %8030011=-=T η 要求 15001=T K ,高温热源温度需提高500K (3)高温热源温度不变时,若 %80100012=-=T η 要求 2002=T K ,低温热源温度需降低100K11-6 如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11-16 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==。