大学物理-气体分子动理论
- 格式:ppt
- 大小:4.54 MB
- 文档页数:69
第十章 气体动理论主要内容
一.理想气体状态方程: m PV RT M
'=; P nkT = 8.31J R k mol =;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =
二. 理想气体压强公式
23kt p n ε= ε=213=22kt mv kT 分子平均平动动能
三. 理想气体温度公式
21322kt mv kT ε==
四.能均分原理
1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。
2. 气体分子的自由度
单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i =
3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为1
2
kT
五. 理想气体的内能(所有分子热运动动能之和)
1.1mol 理想气体=⋅=22A i i E N kT RT 3. 一定量理想气体()2i m E RT M
νν'==
六.麦克斯韦速率发布函数(可能会命题计算题,各种表达式的物理含义要牢记) 1()N
f v N v =d d , 速率在v 附近,单位速率区间内分子数占总分子数的百分率。
归一化条件:0()1f v v ∞=⎰d ,
=
=≈
平均速率:v ==≈ 最概然速率
:p v =≈
七.碰撞频率:
2z d nv =
平均自由程:λ=。
第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 nkT p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p ==≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT mgh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。