理论力学 第二章非惯性系中的质点动力学
- 格式:ppt
- 大小:4.74 MB
- 文档页数:45
4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。
在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。
质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。
δF W ¢—表示力F 在质点的相对位移上的元功。
则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。
注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。
例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。
求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。
包头师范学院本科毕业论文论文题目:非惯性系中动力学问题的讨论院系:物理科学与技术学院专业:物理学姓名:王文隆学号: 0809320007指导教师:鲁毅二〇一二年三月摘要综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。
介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。
最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。
关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律AbstractAnd under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department.Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply目录引言 (5)1非惯性系概述 (6)1.1非惯性系 (6)1.2 惯性力 (6)2 动力学方程 (7)2.1 质点动力学方程 (7)2.2 拉格朗日方程 (8)3 能量问题 (9)4 应用研究举例 (9)5 研究展望 (10)参考文献 (11)致谢 (12)非惯性系中动力学问题的讨论引言实际工程中有许多系统处于非惯性系内工作 ,如航空航天、天文和外星空探索等领域的许多转子系统。