6[1]2_不动点迭代法及其收敛定理(精)
- 格式:ppt
- 大小:991.50 KB
- 文档页数:54
非线性算子不动点理论是非线性泛函分析的重要组成部分,利用迭代算法逼近非线性算子不动点的越来越广泛。
从具体的空间(如pL 空间或pl 空间)到抽象空间(如Hilbert 空间,Banach 空间,赋范线性空间);从单值映象到集值映象;从一般意义的映象(如非扩张映象,严格伪压缩映象;强伪压缩映象等)到渐进意义的映象(如渐进非扩张映象,渐进伪压缩映象,k-强渐进伪压缩映象等);从迭代序列的构造(如Mann 与Ishikawa 迭代序列,具误差(或混合误差)Mann 与Ishikawa 迭代序列, Halpern 迭代序列等)到迭代序列的强(弱)收敛性,稳定性。
可以说成果丰富。
迭代序列构成了非线性算子不动点理论中的重要问题。
在不动点理论方面,从20世纪初著名的Banach 压缩映射原理和Browder 不动点定理问世以来,特别是近30年来,由于实际需要的推动和数学工作者的不断努力,这门科学的理论及应用的研究已经取得重要的进展,并且日趋完善。
下面我们主要介绍一些近几年来不动点的迭代格式: 首先,我们先看下一算子的发展一 算子1 T 称为非扩张的,如果Tx Ty x y -≤- ,,x y C ∀∈。
2 T 称为压缩的,如果存在(0,1)α∈,使得,,Tx Ty x y x y C α-≤-∀∈:()T D T E →3 T 称为渐进非扩张的,如果存在一序列{}[0,)n k ∈∞,lim 1n n k →∞=,使得 ,,(),1n n n T x T y k x y x y D T n -≤-∈≥4 T 称为渐进伪压缩的,如果存在一序列{}[0,),lim 1n n n k k →∞∈∞=,,对任意给定的,()x y D T ∈存在()()j x y J x y -∈-,使得2,(),1n n n T x T y j x y k x y n <-->≤-∀≥5 T 称为严格渐进伪压缩的,如果存在一序列{}[0,),lim (0,1)n n n k k k →∞∈∞=∈,,对任意给定的,()x y D T ∈存在()()j x y J x y -∈-,使得2,(),1n n n T x T y j x y k x y n <-->≤-∀≥如果1,1,n k n T =∀≥ 称为伪压缩的。
函数迭代与不动点迭代法函数迭代和不动点迭代法是数值分析中常用的数值迭代方法,用于求解方程或优化问题。
它们在不同的应用领域都有广泛的应用,并且具有简单易懂、易于实现等优点。
本文将介绍函数迭代的基本原理和步骤,并详细介绍不动点迭代法的定义、性质以及求解过程。
函数迭代函数迭代是一种基本的数值迭代方法,用于求解非线性方程或优化问题。
它的基本思想是通过多次迭代,使得每次迭代得到的结果趋近于方程的根或优化问题的极值点。
函数迭代的基本步骤如下:1.选择一个初始值x0作为迭代的起点。
2.根据迭代公式x n+1=f(x n),计算出下一个迭代点x n+1。
3.判断是否达到迭代的停止条件。
如果满足停止条件,则输出近似解x n+1;否则,返回第2步。
函数迭代的收敛性与迭代函数f(x)的选择密切相关。
如果函数迭代收敛,即x n收敛于方程的根或优化问题的极值点,那么我们可以通过多次迭代得到近似解。
反之,如果函数迭代发散或者收敛速度非常慢,那么我们需要考虑其他的数值方法。
不动点迭代法不动点迭代法是函数迭代的一种特殊形式,它通过将方程转化为f(x)=x的形式,求解方程的根或优化问题的极值点。
不动点迭代法的基本思想是选择一个适当的迭代函数g(x),通过迭代公式x n+1=g(x n),不断迭代,直到找到满足f(x)=x的不动点。
不动点迭代法的步骤如下:1.将方程f(x)=x转化为g(x)=x的形式,即f(x)=x等价于g(x)−x=0。
2.选择一个初始值x0作为迭代的起点。
3.根据迭代公式x n+1=g(x n),计算出下一个迭代点x n+1。
4.判断是否达到迭代的停止条件。
如果满足停止条件,则输出近似解x n+1;否则,返回第3步。
不动点迭代法的关键是选择合适的迭代函数g(x)。
迭代函数g(x)应该满足以下条件:1.在方程f(x)=x的根或优化问题的极值点附近,迭代函数g(x)的导数g′(x)存在且连续。
2.在方程f(x)=x的根或优化问题的极值点附近,满足|g′(x)|<1。
不动点收敛定理引言:在数学中,不动点收敛定理是一种重要的收敛性证明方法,它在多个领域有着广泛的应用。
不动点收敛定理指出,对于某种函数或操作,如果存在一个不动点,即函数或操作的输出与输入相等的点,那么通过迭代运算,可以将输入逐步靠近不动点,从而实现收敛。
本文将介绍不动点收敛定理的基本概念、原理以及应用。
一、不动点的定义:在函数论中,给定一个函数 f(x),如果存在一个实数 a,使得 f(a) = a,那么 a 就是函数 f(x) 的不动点。
不动点可以看作是函数f(x) 的输入与输出相等的点,即满足 f(a) = a 的点。
二、不动点收敛定理:不动点收敛定理是指,如果一个函数 f(x) 在某个区间上连续且导数存在,且在该区间上 f'(x) 的绝对值小于 1,那么通过迭代运算x_{n+1} = f(x_n),其中 x_0 是初始值,可以将 x_n 逐步靠近不动点 a。
定理的证明如下:假设函数 f(x) 在区间 [a, b] 上连续且导数存在,且在该区间上f'(x) 的绝对值小于 1。
我们设 x_0 是初始值,通过迭代运算x_{n+1} = f(x_n),我们希望证明 x_n 逐步靠近不动点 a。
根据函数的导数存在性,我们可以使用拉格朗日中值定理。
根据拉格朗日中值定理,存在一个点c,使得f(c) - f(x_0) = f'(c)(x_0 - c)。
由于 f'(x) 的绝对值小于 1,所以 |f'(c)| < 1,从而我们可以得到 |f(c) - f(x_0)| < |x_0 - c|。
接下来,我们将证明在每一步迭代中,x_n 与不动点 a 的差值不断减小。
假设在第 n 步迭代后,x_n 与不动点 a 的差值为 d_n = x_n - a,那么根据迭代运算有 x_{n+1} = f(x_n)。
我们可以将x_{n+1} 和 a 分别表示为 x_{n+1} = a + d_{n+1} 和 a + d_n,其中 d_{n+1} = x_{n+1} - a。
第四章 一元方程求根/非线性方程组数值解法初步 4.1 一元方程求根的主要概念、思想和二分法 1.主要概念包含一个未知量的x 的一元方程的一般形式记为 0)(=x f 通常,考虑如下的情形:(1) 一元函数f 在某个区间比如],[b a 上连续,即],[b a C f ∈的情形。
(2) f 是x 的二次以上的代数多项式,如 010423=-+x x这时称方程为多项式方程或高次代数方程。
(3) f 不是代数多项式,如 01=-xxe , 0cos 2312=--x x , ;012222=-+-xe x x这称为超越方程,也是本章的研究内容。
通常,对于f 不是x 的线性函数的方程,人们统称为一元非线性方程,简称一元方程或非线性方程。
在实际应用中,f 可能是非常复杂的表达式,甚至还包含多个其他参数,令人眼花缭乱。
因此,首先一定要识别未知量是哪一个,是不是这里所研究的一元非线性方程的情形。
只有这样,才能使用一元非线性方程求根的计算方法。
我们将看到,非线性方程的求根的方法主要是迭代法。
方程0)(=x f 的解*x ,即0)(*=x f ,也称为方程的根,或函数f 的零点。
这里 *x 可为实数或复数,但我们主要考虑实数根。
我们熟悉一元二次方程有单根与重根 的概念。
推广到一般非线性方程,若f 可表示为)()()(*x g x x x f m-=其中 m 为正整数,0)(*≠x g ,则称*x 是方程0)(=x f 的m 重根,或函数f的m 重零点。
当1=m 时,*x 是方程0)(=x f 的单根,或函数f 的单重零点。
由此,若*x 是0)(=x f 的m 重根且)(x g 充分光滑,则意味着⎪⎩⎪⎨⎧≠===-0*)(0)(,,0)(',0)()(*)1(**x fx fx f x f m m2. 主要思想如果假设方程在区间],[b a 有根,就称为],[b a 为方程的有根区间;如果还已知方程在],[b a 上有且只有一个根,即有根区间把根隔离了,那样更好。