当前位置:文档之家› 钢材轧制控制方法

钢材轧制控制方法

钢材轧制控制方法
钢材轧制控制方法

控制轧制的应用

【摘要】控制轧制是在热轧过程中通过对金属加热制度、变形制度和温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能的轧制新工艺。控制轧制工艺是一项节约合金、简化工序、节约能源消耗的先进轧钢技术,它能通过工艺手段充分挖掘钢材潜力,大幅度提高钢材综合性能,给冶金企业和社会带来巨大的经济效益。本文一直围绕着控制轧制,以控制轧制为中心,简单地介绍了控制轧制的概念,种类,优缺点以及控制轧制的强化机理,一直延伸至控制轧制在现实板带生产中的应用。

【关键字】控制轧制、强度、韧性、板带

【绪论】对低碳钢、低合金钢来说,采用控制轧制工艺主要是通过控制轧制工艺参数,细化变形奥氏体晶粒,经过奥氏体向铁素体和珠光体的相变,形成细化的铁素体晶粒和较为细小的珠光体球团,从而达到提高钢的强度、韧性和焊接性能的目的。

1、控制轧制的概念

1.1控制轧制的定义

控制轧制是指在比常规轧制温度稍低的条件下,采用强化压下和控制冷却等工艺措施来提高热轧钢材的强度、韧性等综合性能的一种轧制方法。控制轧制钢的性能可以达到或者超过现有热处理钢材的性能。

控制轧制工艺包括把钢坯加热到最适宜的温度,在轧制时控制变形量和变形温度以及轧后按工艺要求来冷却钢材。通常把控制轧制工艺分为三个阶段,如图1所示:1)变形和奥氏体再结晶同时进行阶段,即钢坯加热后粗大化了的γ晶粒经过在γ再结晶区域内的反复变形和再结晶而逐步得到细化的阶段;2)低温奥氏体变形阶段,当轧制变形进入γ未再结晶区域内时,变形后的γ晶粒不再发生再结晶,而呈现加工硬化状态,这种加工硬化了的奥氏体具有促进铁素体相变形核作用,使相变后的α晶粒细小;3)(γ+α)两相区变形阶段,当轧制温度继续降低到A r3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从而在α晶粒内形成亚晶,促进α晶粒的进一步细化。

图1 控制轧制的三个阶段

(1)—变形和奥氏体再结晶同时进行阶段;(2)—低温奥氏体变形阶段;

(3)—(γ+α)两相区变形阶段

1.2 控制轧制的优点

1)许多试验资料表明,用控制轧制方法生产的钢材,其强度和韧性等综合力学性能有很大的提高。例如控制轧制可以使铁素体晶粒细化,从而使钢材的强度得到提高,韧性得到改善。

2)简化生产工艺过程。控制轧制可以取代常化等温处理。

3)由于钢材的强韧性等综合性能得以提高,自然地导致钢材使用范围的扩大和产品使用寿命的增长。从生产过程的整体来看,由于生产工艺过程的简化,产品质量的提高,在适宜的生产条件下,会使钢材的成本降低。

4)用控制轧制钢材制造的设备重量轻,有利于设备轻型化。

1.3 控制轧制的种类

控制轧制是以细化晶粒为主,用以提高钢的强度和韧性的方法。控制轧制后奥氏体再结晶的过程,对获得细小晶粒组织起决定性作用。根据奥氏体发生塑性变形的条件(再结晶过程、非再结晶过程或γ+α转变的两相区变形),控制轧制可分为三种类型。

1.3.1 γ再结晶型控制轧制

它是将钢加热到奥氏体化温度,然后进行塑性变形,在每道次的变形过程中或者在两道次之间发生动态或静态再结晶,并完成其再结晶过程。经过反复轧制和再结晶,使奥氏体晶粒细化,这为相变后生成细小的铁素体晶粒提供了先决条件。为了防止再结晶后奥氏体晶粒长大,要严格控制接近于终轧几道的压下量、轧制温度和轧制的间隙时间。终轧道次要在接近相变点的温度下进行。为防止相变前的奥氏体晶粒和相变后铁素体晶粒长大,特别需要控制轧后冷却速度。这种控制轧制适用于低碳优质钢和普通碳素钢及低合金高强度钢。据资料统计,再结晶型的控制轧制较普通轧制,可使抗拉强度σb提高10%~30%,冲击韧性αk 提高20%~50%。根据钢中Nb含量的不同,要达到完全再结晶所需的临界变形量和变形温度如图2所示。从图中可以看出Nb对再结晶临界变形量的影响是:碳素钢的再结晶临界变形量较小,对变形温度的依赖也小。而含Nb钢的再结晶临界变形量都很大,而且对变形温度的依赖也很大。临界变形量随可溶解的Nb含量的增大而加大。变形温度降低,临界变形量加大。变形温度越低,则临界变形量增大得越多。

图2 碳素钢和含Nb钢的临界变形量与变形温度的关系

1—含0.03%Nb的钢,加工条件:1150℃固溶处理60min,

空冷到变形温度,按要求变形量轧制,轧后水冷

2—含0.02%Nb的钢,加工条件:

同1,但在轧前的轧制温度保温30min;

3—碳素钢,加工条件:同2

1.3.2 未再结晶型控制轧制

它是将钢加热到奥氏体化温度后,在奥氏体再结晶温度以下发生塑性变形,奥氏体变形后不发生再结晶。因此,变形的奥氏体晶粒被拉长,晶粒内产生大量变形带,在相变过程中在r晶界和变形带上形成α核,使α的形核点增多,相变后铁素体晶粒α细化,对提高钢材的强度和韧性有重要作用。这种控制工艺适用于含有微量合金元素的低碳钢,比如铌、钛、钒的低碳钢。

1.3.3 两相区控制轧制

它是将钢加热到奥氏体化温度后,经过一定变形,然后冷却到奥氏体加铁素体两相区再

继续进行塑性变形,并在A r1温度以上结束轧制。实验表明:在两相区轧制过程中,可以发生铁素体的动态再结晶;当变形量中等时,铁素体只有中等回复而引起再结晶;当变形量较小时(15%~30%),回复程度减小。在两相区的高温区,铁素体易发生再结晶;在两相区的低温区只发生回复。经轧制的奥氏体相转变成细小的铁素体和珠光体。由于碳在两相区的奥氏体中富集,碳以细小的碳化物析出。因此,在两相区中只要温度、压下量选择适当,就可以得到细小的铁素体和珠光体混合物,从而提高钢材的强度和韧性。一般来说,两相区的轧制温度稍低些,有利于提高钢板的强度。例如,日本森川博士的研究结果表明:在A+F 两相区中的高温区进行轧制时,钢材的韧性最好,降低轧制温度,则韧性反而变坏,如图3所示。两种钢的轧制温度与强度和韧性的变化规律是一致的。

图3 (A+F)两相区控轧时轧制温度和钢的性能关系

A钢—铁素体+珠光体;B钢—低碳贝氏体钢

(控轧条件:850℃以下,总压下率恒定为47%)

在实际轧制中,由于钢种、使用要求、设备能力等各不相同,各种控制轧制可以单独应用,也可以把两种或三种控制工艺配合在一起使用。

综上所述,在三个阶段中,轧制时发生的组织和物理的变化如图4所示,实际控制轧制工艺是这三个阶段的合理组合。从生产经验中得出,在700~1000℃之间,终轧温度每降低100℃,铁素体晶粒直径变小3~4μm,并能对力学性能产生相应效果。

图4 钢的显微组织及控轧工艺对钢的屈服强度和脆性转化温度的影响

1—铁素体-珠光体;2—控制轧制的铁素体-珠光体;3—贝氏体;4—控制轧制贝氏体;

5—调质回火索氏体

2、控制轧制的机理

所谓强度是指材料在外力作用下抵抗变形和破坏的能力。由于载荷有拉伸、压缩、弯曲、剪切等形式,所以强度可分为抗拉强度、抗压强度、抗弯强度、抗剪强度等。衡量金属材料强度的指标有屈服极限、强度极限等,但经常采用屈服极限来表示。

所谓韧性是表示材料在塑性变形和断裂过程中吸收能量的能力。韧性越好,则发生脆性断裂的可能性就越小。韧性可在材料科学及冶金学上,韧性是指当承受应力时对折断的抵抗,其定义为材料在破裂前所能吸收的能量与体积的比值。衡量韧性的指标有冲击韧性值和脆性转变温度。

控制轧制能使钢材强韧性化,其实质是通过调整各轧制工艺参数(如加热温度、变形量、终轧温度、轧后冷却)来控制钢在整个轧制过程中的冶金学过程(如奥氏体的再结晶、合金元素及其碳、氮化物的固溶和析出、相变、加工硬化、织构等),最后达到控制钢材组织和性能的目的。控制轧制提高钢材强度及韧性的三个主要机理是:晶粒细化,碳、氮化物强化以及亚晶强化。

2.1 晶粒细化

对于亚共析钢来说,铁素体晶粒越细,钢材的强度越高,韧性越好。相变前的奥氏体晶粒越小,相变后的铁素体晶粒也越小。控制轧制可以通过两种方法使奥氏体晶粒细化细化:一种是奥氏体加工和再结晶交替进行使晶粒细化;另一种是在奥氏体未再结晶区轧制。

降低钢坯加热温度得到较小的原始奥氏体晶粒,加大每一道次的变形量,降低终轧温度,都有利于奥氏体再结晶晶粒的细化。

为了实现在奥氏体未再结晶区轧制,需要提高奥氏体的再结晶温度,当钢中含铌、钛、钒等微量元素时,就具有这样的效果。因为这些元素的碳化物和氮化物由奥氏体析出后,可以明显地抑制奥氏体再结晶,从而有效地提高奥氏体再结晶温度,使轧制过程能在非结晶区域进行。

2.2 碳、氮化物强化

钒、铌、钛是比较强的碳化物或氮化物形成的元素,它们的碳化物或氮化物对钢的组织和性能发生强化作用,如图5所示。

图5 碳化物及氮化物形成元素的含量对奥氏体晶粒粗化温度的影响

碳化物和氮化物在高温时溶解于奥氏体,奥氏体向铁素体转变后析出,对钢直接起弥散强化作用。

2.3 亚晶强化

奥氏体晶粒的变化,在奥氏体+铁素体两相区域轧制时与在奥氏体再结晶温度以下轧制时相同。已相变的铁素体晶粒经轧制(变形)产生亚晶粒、位错等使钢强化。在两相区域轧制的钢材相变为铁素体晶粒(先形变后相变)和含有亚晶的铁素体晶粒(先相变后形变)的混合组织,从而使钢材的韧性和强度提高。

3、控制轧制在钢板生产中的应用

控制轧制是属于形变热处理的一种形式,它首先在中厚钢板和热轧带钢生产中得到成功的应用。控制轧制可以同时提高钢的强度、塑性和韧性,使之得到较高的综合力学性能。钢材的性能改善是由以下三个组织所决定的:1)钢的组织细化;2)碳化物的弥散强化;3)获得多边形亚结构组织。

一般认为第一个和第三个组织因素的作用更重要。晶粒的细化作用占强度提高效果的20~30%,而获得细小分散的亚结构组织能在提高强度的同时仍保持高塑性。而弥散强化作用一般不希望太大,因为弥散强化使强度提高的同时,使钢的塑性和韧性急剧降低。在控制轧制中碳化物的弥散强化(析出)作用主要作为细化晶粒的手段。

作为中厚钢板和带钢控制轧制工艺的主要参数是:钢的奥氏体化温度,即轧制前的板坯或钢锭的加热温度;轧制的温度制度;轧制的变形制度,其中包括各道次的压下量分配,特别是终轧前几道次的压下量分配,以及在某一温度范围内的总压下率;每道次之间的停留时间和轧后钢板与带钢的冷却制度,对带钢来说板卷的卷曲温度和冷却制度也是很重要的。

3.1钢板控制轧制的特点

为了获得中厚钢板高强度、高韧性的综合力学性能,可以采用不同的控制轧制工艺来达到。一般是在奥氏体再结晶区和奥氏体未再结晶区进行轧制。为了进一步提高钢的强度和降低钢的脆性转变温度,可在奥氏体和铁素体(γ+α)两相区进行一定程度的轧制。如表1所示控制轧制技术在板带材中的应用。

表1 控制轧制在板带材中的应用

在板带热轧过程中即可以采用单一类型的控制轧制,也可以采用两种或三种类型相配合的控制轧制工艺。采用什么类型的控制轧制工艺,取决于钢的化学成分、对成品钢板组织性能的要求、轧机的设备条件和工艺水平以及对轧机产量的要求等。轧机后面是否具备钢板控制冷却设备以及冷却设备能力的大小也都直接影响控制轧制工艺的选择。

3.2国内中厚板轧机采用的控制轧制

我国现有热轧中厚板轧机的类型和布置各有不同,所采用的控制轧制工艺也有较大的区别。下面用表2表示出目前国内中厚板轧机所采用的传统轧制和各种控制轧制工艺过程。

表2 传统轧制和控制轧制过程

3.2.1二辊-四辊中厚板轧机的控制轧制工艺

2800二辊-四辊中厚板轧机一般均采用板坯为原料。一种是连铸板坯,另一种是钢锭经初轧机轧成的板坯。板坯加热温度偏低,一般加热温度在1150~1200℃左右。

控制轧制工艺采用奥氏体再结晶型和未再结晶型二阶段轧制。在粗轧机(二辊)上采用再结晶型控制轧制。由于此时轧制温度高,可采用较大的道次变形量。粗轧的终轧温度在1000℃以上。轧后,送至精轧机(四辊)。在送至精轧机前,采用空冷或水冷快速降温到930~950℃左右,在精轧机上进行奥氏体未再结晶区控制轧制,终轧温度为800℃左右。在这一温度范围内的累积变形量一般达50%以上,根据钢种和钢板规格的不同,略有差异。

为了保持两架轧机的生产平衡,在精轧机上的前面一些道次仍为再结晶型控制轧制,甚至在部分再结晶的上限温度轧制,然后快冷到未再结晶型的控制轧制。如果不具备中间快冷装置,则采用空冷。为了不降低轧机的生产能力,在精轧机上可以采用多块钢板交叉轧制,既解决了钢板待温又不降低轧机产量。

首钢3500m二辊-四辊轧机采用控轧工艺生产Q345中厚板,其工艺是:连铸坯加热温度1150℃,采用奥氏体再结晶型和未再结晶型控轧工艺。在二辊粗轧机上进行奥氏体再结晶型控轧、开轧温度1050℃,道次压下率控制在15%~20%,最大道次变形量≤30%,950℃停轧、待温或水冷。待温厚度为2~2.5倍的成品厚度。(880±20)℃送入四辊精轧机轧制,终轧温度为(820±20)℃。精轧的累计变形量控制在55%~66%。由于本钢种的奥氏体未再结晶区较小,所以900℃钢温进入精轧机时,前几道是处在部分再结晶区的下限范畴轧制,之后,在进行未再结晶型控轧,直到轧成成品。钢板组织为均匀细小的铁素体和珠光体。

3.2.2三辊-四辊双机架中厚板采用的控制轧制工艺

2300三辊-四辊双机架轧机的许用轧制压力一般在20000kN左右。钢板的原料采用钢锭和连铸板坯。根据这些特点,采用如下工艺。

钢锭或连铸坯的加热温度为1150~1180℃,保温足够时间。在三辊轧机上采用纵轧、角轧、横轧交替轧制,以减少钢板性能的纵横向差别。总变形量控制在77%左右,采用的是再结晶型控轧。然后快速送到四辊精轧机轧制。四辊轧机轧制的第一阶段要求温度在1000℃以上,总变形量控制在47%左右,道次变形量应大于15~20%。然后快冷到950℃进行精轧机上的第二阶段轧制,总变形量要大于40%,终轧温度为800~820℃。第二阶段为未再结晶型控轧。

3.2.3单机架轧机采用的控制轧制工艺

单机架轧机时,粗轧和精轧的控轧工艺都是在一个轧机上进行。为了缩短中间待温时间,可以采用两块或三块钢板交替轧制,在轧机的前面或后面辊道上坯料待温或快冷的方式进行不同类型的控轧。例如,首先将三块钢坯在奥氏体再结晶区温度进行控轧工艺,依次轧到中间厚度,送至轧机后辊道冷却(空冷或水冷);将辊缝抬高,再将三块钢板返回机前辊道,达到未再结晶区温度后,再进行第二阶段的控轧或继续进行两相区的三阶段控轧工艺,轧成成品厚度。

四辊单机架中厚板轧机多采用奥氏体高温再结晶型和未再结晶型的两阶段的控轧工艺。为了增加变形奥氏体的再结晶数量,尽可能地达到完全再结晶,在轧机设备能力可能条件下,力争在高温条件下采用较大的道次压下量。为了缩短在部分再结晶区的待温时间,也可以在部分再结晶区的上限温度范围轧制一定道次,并适当延长轧后的停留时间,有利于发生再结晶和组织均匀化。

当钢温降到950~980℃左右,进行机前或机后待温或快冷。钢温达到奥氏体未再结晶区的温度范围,进行第Ⅱ阶段控轧,采取低温大压下的原则,确保未再结晶区的累计变形量大于50%~60%,有利于轧后奥氏体向铁素体相变形核,增加形核部位,达到细化铁素体晶粒和珠光体球团尺寸的目的。终轧温度应尽量控制在接近Ar3温度,防止晶粒长大,轧后立即相变。

舞阳4300mm单机架宽厚板轧机轧制Q370qD/Z25桥梁钢板的控制轧制工艺为:连铸坯的成分: C≤0.17%, 1.2~1.6%Mn, Si ≤0.5%, P≤0.025%,S≤0.007%,Al≥0.020%,Ⅴ≤0.080%,Nb≤0.045%,Ceg≤0.44%。连铸坯最高加热温度1260℃,均热温度1200~1240℃。采用奥氏体再结晶型和未再结晶型两阶段控轧工艺。开轧温度1150~1200℃,到950℃以上待温。第Ⅱ阶段的开轧温度在900℃以下,开轧前几道采用大压下量,累计变形量在60%左右,终轧温度控制在800~880℃。

3.3热连轧带钢的控制轧制

热轧宽带钢轧机的60%以上产品以板卷形式供给冷轧机,其余产品以热轧带钢和板卷形式供机器制造业、造船工业、大直径焊管业及冷弯型钢业使用。热轧带钢产品越来越多地用于汽车制造、火车车厢制造和生产高压容器等方面。微合金化的高强度焊接结构钢在宽带钢轧机生产的品种中所占比重越来越大,这些带钢都是采用控制轧制工艺生产的。

1)1700mm热连轧机根据其设备特点采用控制轧制工艺生产X60和X65级管线用钢的生产工艺如下:连铸板坯加热至1180~1220℃,终轧温度为830℃。为了提高横向冲击韧性,减少纵横向性能的差异,可向钢中加入稀土元素,将使纵横向冲击值之比由3.25~4.25降低至2.5。为了获得良好的钢板综合性能,在冶炼时采用了相应新技术,,进行低碳、低硫、

碳化合物变性处理,并进行Nb的微合金化。钢的成分如表3所示。

2)1550mm连轧带钢轧机采用控制轧制方法生产大直径螺旋焊管的成卷带钢。带钢厚度以15.1mm为主,坯料厚度为225mm。控制轧制工艺规定在低于1000℃时的总压下系数大于2.75,终轧温度为820℃。

3)2100mm宽带钢连轧机采用控制轧制工艺生产钢管用低合金钢板。板坯加热到1260℃。钢的成分为0.07~0.11%C,0.4~1.0%Mn,0.07~0.12%Ti,S含量不大于0.025%。在粗轧机组中轧制到38mm。当轧制厚带钢时,终轧温度应不高于900℃,在最后一些道次应加大压下量。当轧制薄带钢时终轧温度应控制在870~927℃。

4)在2000mm宽带钢轧机上轧制含钒和铌的少珠光体锰钢时采用的控制轧制工艺是:轧件冷却到控制温度900℃后,总压下率应不小于40%;终轧温度控制在800℃。

【总结】实现控制轧制是由多方面的因素共同决定的,控制轧制是通过控制热轧条件,获得粒度均匀细小的奥氏体晶粒,大量实验表明把精轧道次安排在950℃~800℃范围内,在该温度范围内轧制,钢材的奥氏体才能达到细化晶粒的目的,即在这一范围内由于奥氏体的再结晶点和Ar3温度点接近,通过加入合金元素,增加了再结晶温度和Ar3温度线之间的距离,增加了奥氏体未再结晶区的范围,实现在奥氏体未再结晶区的控制轧制的同时也充分利用了微量合金元素的作用。控制轧制是近十多年来国内外新发展起来的轧钢生产新技术,受到国际冶金界的重视。各国先后开展了多方面的理论研究和应用技术研究,并在轧钢生产中加以应用,明显的改善和提高了钢材的强韧性和使用性能,为节约能耗,简化生产工艺,开发钢材新品种创造了有利条件。

【参考文献】

[1]李曼云,孙本荣.《钢的控制轧制和控制冷却技术手册》.冶金工业出版社.1990 [2]王有名,李曼云,韦光.《钢材的控制轧制和控制冷却》.冶金工业出版社.1995 [3]袁志学,王淑平.《塑性变形与轧制原理》.冶金工业出版社.2008

[4]孟延军,关昕.《金属学及热处理》.冶金工业出版社.2008

中厚板的控制轧制与控制冷却工艺

中厚板的控制轧制与控制冷却工艺 孙洪亮 (材料成型及控制工程,1233010149) 【摘要】近三十年以来,控制轧制和控制冷却技术在国外得到了迅速的发展,各国先后开展了多方面的理论研究和应用技术研究,并在轧钢生产中加以利用,明显的改善和提高了钢材的强韧性和使用性能,为了节约能耗、简化生产工艺和开发钢材新品种创造了有力条件。目前国内外大多数宽厚板厂均采用控制轧制和控制冷却工艺,生产具有高强度、高韧性、良好焊接性的优质钢板。控制轧制和控制冷却工艺的开发与理论研究进一步揭示了热变形过程中变形和冷却工艺参数与钢材的组织变化、相关规律以及钢材性能之间的内在关系,充实和形成了钢材热变形条件下的物理冶金工程理论,为制定合理的热轧生产工艺提供理论依据。关键词:宽厚板厂,控制轧制,控制冷却 【关键词】控制轧制;控制冷却;冷却段长度 In the controlled rolling and controlled cooling technology of plate Abstract:For nearly 30 years, controlled rolling and controlled cooling technology obtained the rapid development in foreign countries, and countries successively carried out various theoretical research and applied technology research, and tries to use in the production of steel rolling, the obvious improve and enhance the tenacity of steel and the use of performance, in order to save energy consumption, simplify production process and development of new steel varieties created favourable conditions. Most lenient plate factory at home and abroad adopt controlled rolling and controlled cooling technology, production has high strength, high toughness and good weldability of high qualified steel plate. Controlled rolling and controlled cooling technology development and theory research of further reveals that the thermal deformation in the process of deformation and cooling process parameters and the change of the organization of the steel, the relevant laws and the internal relations between steel performance, enrich and formed steel thermal deformation under the condition of physical metallurgy engineering theory, to provide theoretical basis for reasonable hot-rolling process. Keywords: generous plate factory, controlled rolling and controlled cooling Key Words:Control rolling; Controlled cooling; Cooling length 1引言 近代工业发展对热轧非调质钢板的性能要求越来越高,除了具有高强度外,还要有良好的韧性、焊接性能及低的冷脆性。目前世界上许多国家都利用控轧和控冷工艺生产高寒地区使用的输油、输气管道用钢板、低碳含铌的低合金高强度钢板、高韧性钢板,以及造船板、桥

(轧钢)试题及答案

钢铁工业节能减排新技术普及答题试卷 (轧钢系统) 一、填空(80个空,40分) 1、实施连铸坯热送热装技术,其目的就是要降低燃料(能源)单耗、减少铸坯库存量和缩短生产准备时间,提高工序操作及自动化管理水平。 2、钢坯加热的目的是提高钢的塑性,降低轧制加工的变形抗力。 3、炉管水管绝热包扎是轧钢加热炉提高加热质量和降低燃料消耗的一项重要措施。 4、蓄热式轧钢加热炉有三种不同的结构形式分别是热烧嘴式加热炉、内置蓄热室加热炉、外置蓄热室加热炉。 5、蓄热式烧嘴加热炉按换向方式分为集中换向和分散换向两种。 6、蓄热式炉常用的蓄热体有陶瓷小球和蜂窝体。 7、控制轧制(Controlled Rooling)是指热轧过程中通过对金属加热制度、变形制度和温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小的晶粒组织,使钢材具有优异的综合力学性能的轧制新工艺。 8、油膜轴承按照润滑理论可以分为静压油膜轴承、动压油膜轴承及静动压油膜轴承三种。 9、变压器的损耗主要包括空载损耗和负载损耗,提高变压器的效率,就要应用新的技术和工艺来降低这些损耗. 10、我国钢铁企业综合废水处理工艺通常是由混凝、反应、沉淀、澄清和过滤等传统工艺单元组成。 11、钢铁工业水生态化,主要对钢铁企业用水进行污水减量化、无害化与资源化的模式研究过

程。 12、在热送热装工艺中,车辆传送包括火车运输和汽车运输两种方式。 13、在远距离输送连铸坯采用火车运输保温,常用的火车运输保温方式是保温罩保温。 14、生产计划确定是把接受合同的明细整理为具体的生产批量。 15、加热炉的“三高一低”理论是指“高炉温、高烟温、高余热回收、低惰性” 16、脉冲燃烧技术,无论在任何情况下,烧嘴只有两种工作状态,一种是最佳负荷工作,另一种是不工作。 17、轧钢加热炉节能的基本途径就是:提高炉子热效率,降低钢坯在炉内(带走)的热焓量。 18、烘炉是把冷炉逐渐加热升温以去除筑炉材料中存在的水分,并使耐火材料内部结构完成某种组织转变。 19、水煤浆燃烧是通过雾化器喷成雾滴在炉膛内燃烧, 20、在型材或线材轧机上,安装在轧辊孔型人口和出口处,引导扶持轧件顺利进人轧机和导出轧机的装置称为导卫装置。 21、BK型轧机轴承是一种自带密封多列圆柱滚子轴承,它安装在轧机的辊系用来承载径向轧制负荷。 22、降低变压器损耗一般通过两种途径,一种是使用更多的材料来降低损耗,另一种是采用新的技术和工艺来降低损耗。 23、变压器经济运行的目的就是降低变电站(所)的电能损耗,使变压器处于节电运行的状态。变压器经济运行的措施是选择最佳的运行方式、合理调整变压器的负载,对变电站(所)进行节能改造,加强变压器的节能管理。50 24、电能输人到电动机后,通过定子绕组与转子磁场相互作用,产生电磁转矩,从而使

钢材的控制轧制和控制冷却Word版

钢材的控制轧制和控制冷却 一、名词解释: 1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。。 2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。 3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。 4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。 两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。 5、再结晶临界变形量: 在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。 6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。 二、填空: 1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。另一类是材料的内在因素,主要是材料的化学成分和冶金状态。 2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。 3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。 4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。 5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。 6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。 7、钢的强化机制主要包括(固溶强化)、(位错强化)、(沉淀强化)、(细晶强化)、(亚晶强化)、(相变强化)等,其中(绕过)机制既能使钢强化又使钢的韧性得到提高。

控制轧制、控制冷却工艺

控制轧制、控制冷却工艺技术 1.1 控制轧制工艺 控制轧制工艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按工艺要求来冷却钢材。通常将控制轧制工艺分为三个阶段,如图 1.1所示[2]:(1>变形和奥氏体再结晶同时进行阶段,即钢坯加热后粗大化了的γ呈现加工硬化状态,这种加工硬化了得奥氏体具有促使铁素体相变形变形核作用,使相变后的α晶粒细小;(2> (γ+α>两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从而在α晶粒内形成亚晶,促使α晶粒的进一步细化。 图1.1控制轧制的三个阶段 (1>—变形和奥氏体再结晶同时进行阶段;(2>—低温奥氏体变形不发生再结晶阶段;(3>—<γ+α)两相区变形阶段。

1.2 控制轧制工艺的优点和缺点 控制轧制的优点如下: 1.可以在提高钢材强度的同时提高钢材的低温韧性。 采用普通热轧生产工艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,-40℃的冲击韧性A k≤431J,断口为95%纤维状断口。 当钢中加入微量铌后,仍然采用普通热轧工艺生产时,当采用控制轧制工艺生产时,-40℃的A k值会降低到78J以下,然而采用控制轧制工艺生产时。然而采用控制轧制工艺生产时-40℃的A k值可以达到728J以上。在通常热轧工艺下生产的低碳钢α晶粒只达到7~8级,经过控制轧制工艺生产的低碳钢α晶粒可以达到12级以上<按ASTM标准),通过细化晶粒同时达到提高强度和低温韧性是控轧工艺的最大优点。 2.可以充分发挥铌、钒、钛等微量元素的作用。 在普通热轧生产中,钢中加入铌或钒后主要起沉淀强化作用,其结果使热轧钢材强度提高、韧性变差,因此不少钢材不得不进行正火处理后交货。当采用控制轧制工艺生产时,铌将产生显著的晶粒细化和一定程度的沉淀强化,使轧后的钢材的强度和韧性都得到了很大提高,铌含量至万分之几就很有效,钢中加入的钒,因为具有一定程度的沉淀强化的同时还具有较弱的晶粒细化作用,因此在提高钢材强度的同时没有降低韧性的现象。加入钢种的钛虽然具有细化加热时原始γ晶粒的作用,但在普通轧制条件下钢中的钛不能发挥细化轧制变形过程中γ晶粒的作用,仍然得不到同时提高钢的强度和韧性的效果,当采用控制轧制工艺生产含钛钢时,才能使钢种的Ti

钢材控制轧制和控制冷却

钢材控制轧制与控制冷却 姓名:蔡翔 班级:材控12 学号: 钢材控制轧制与控制冷却 摘要:控轧控冷就是对热轧钢材进行组织性能控制得技术手段,目前已经广泛应用于热轧带钢、中厚板、型钢、棒线材与钢管等钢材生产得各个领域。控轧控冷技术能够通过袭警抢话、相变强化等方式,使钢材得强度韧度得以提高。 Abstract: controlled rolling is controlledcooling of hot rolled steel organization performance control technology, has been widely usedinthe hot rolled strip steel,plate,steel,wire rod and steelpipeand other steel products production fields。Controlledrollingtechnology of controlled cooling can pas sover assaulting a police officer, phasetransformationstrengthening and so on,to improve the strengthofthe steeltoug hness、 关键词:宽厚板厂,控制轧制,控制冷却 1。引言: 控轧控冷技术得发展历史: 20世纪之前,人们对金属显微组织已经有了一些早期研究与正确认识,已经观察到钢中得铁素体、渗碳体、珠光体、马氏体等组织。20世纪20年代起开始有学者研究轧制温度与变形对材料组织性能得影响,这就是人们对钢材组织性能控制得最初尝试,当时人们不仅已经能够

钢材轧制控制方法

控制轧制的应用 【摘要】控制轧制是在热轧过程中通过对金属加热制度、变形制度和温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能的轧制新工艺。控制轧制工艺是一项节约合金、简化工序、节约能源消耗的先进轧钢技术,它能通过工艺手段充分挖掘钢材潜力,大幅度提高钢材综合性能,给冶金企业和社会带来巨大的经济效益。本文一直围绕着控制轧制,以控制轧制为中心,简单地介绍了控制轧制的概念,种类,优缺点以及控制轧制的强化机理,一直延伸至控制轧制在现实板带生产中的应用。 【关键字】控制轧制、强度、韧性、板带 【绪论】对低碳钢、低合金钢来说,采用控制轧制工艺主要是通过控制轧制工艺参数,细化变形奥氏体晶粒,经过奥氏体向铁素体和珠光体的相变,形成细化的铁素体晶粒和较为细小的珠光体球团,从而达到提高钢的强度、韧性和焊接性能的目的。 1、控制轧制的概念 1.1控制轧制的定义 控制轧制是指在比常规轧制温度稍低的条件下,采用强化压下和控制冷却等工艺措施来提高热轧钢材的强度、韧性等综合性能的一种轧制方法。控制轧制钢的性能可以达到或者超过现有热处理钢材的性能。 控制轧制工艺包括把钢坯加热到最适宜的温度,在轧制时控制变形量和变形温度以及轧后按工艺要求来冷却钢材。通常把控制轧制工艺分为三个阶段,如图1所示:1)变形和奥氏体再结晶同时进行阶段,即钢坯加热后粗大化了的γ晶粒经过在γ再结晶区域内的反复变形和再结晶而逐步得到细化的阶段;2)低温奥氏体变形阶段,当轧制变形进入γ未再结晶区域内时,变形后的γ晶粒不再发生再结晶,而呈现加工硬化状态,这种加工硬化了的奥氏体具有促进铁素体相变形核作用,使相变后的α晶粒细小;3)(γ+α)两相区变形阶段,当轧制温度继续降低到A r3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从而在α晶粒内形成亚晶,促进α晶粒的进一步细化。

模具钢材料选择与表面处理实例分析.

模具钢材料选择与表面处理实例分析 去年,我们开始为国外的一家生产商生产数码相机外壳零部件。 在生产过程中,我们遇到了一些影响生产效率的问题。在对零件冲孔过程中,由于冲孔用的模具冲针磨损失效或断裂情况时有发生,而且存在很大的随机性,因此需要比较频繁地停机换针,很影响生产。为此,我们试验了两种模具钢,瑞典一胜百的ASP23和台湾生产的SKD11。ASP23的硬度较高,因此不易磨损,但韧性稍差;SKD11的韧性较好,不易断裂,但硬度较低,容易磨损失效。在价格上,ASP23要明显贵于SKD11,ASP23每公斤几百元,SKD11每公斤几十元。 为了更好的改善模具冲针的性能,我们找了多家从事表面处理的公司。其中有深圳的一家公司,镀氮化钛(TiN),还有一家香港公司镀类金刚石(DLC)膜,此外,还有一家北京公司,提供非晶金刚石(ta-C)镀膜。我们对氮化钛(TiN)都比较熟悉,它是一项已经很成熟的技术,有广泛的应用,而近年来,类金刚石(DLC)膜的应用也渐渐兴起,非晶金刚石(ta-C)镀膜则是一项全新的技术。对于三家的试验结果,我们做了比较:氮化钛(TiN)镀件的效果很不明显,并不是如其在市场上宣传的那样;类金刚石(DLC)膜镀件效果稍好于氮化钛(TiN);而非晶金刚石(ta-C)镀膜的效果我们比较满意,在首次非晶金刚石(ta-C)镀膜试验时,所有SKD11镀件的平均寿命提高了3倍,ASP23镀件的平均寿命提高了1倍,而且所有镀件寿命的提高幅度很平均,通常,新技术都存在工艺不够稳定的问题,为了验证这种技术的稳定性,我们又进行了第二次试验,这次同样使用ASP23和SKD11两种材质的模具钢,而且镀件的数量比第一次试验多,试验结果令我们很吃惊,ASP23镀件的平均寿命提高了2倍,而SDK11镀件的平均寿命提高了近7倍,对此,我们问了该公司的技术人员,他们解释说,对镀膜工艺进行了优化调整,因此镀膜效果更好了。 由于SKD11的成本明显低于ASP23,镀膜效果也好于ASP23,因此,我们采用了北京的这家表面处理公司提供的SKD11镀膜产品。

钢材的控制轧制与控制冷却技术

钢材的控制轧制与控制冷却技术 专业:材料成型及控制工程12 姓名:管沁 学号:

钢材的控制轧制与控制冷却技术 管沁 (材料成型及控制工程12级) [摘要]控制轧制和控制冷却能将热轧钢材的两种强化效果相加,进一步提高钢材的强度、韧性和焊接性能,获得更合理的综合力学性能。控轧控冷工艺是一项提高钢材质量、节约合金、简化工序、节约能源消耗的先进轧钢工艺技术。由于控轧控冷具有形变强化、相变强化的综合作用,因此控轧控冷既能提高钢材强度又能改善钢材的韧性和塑性。轧钢厂生产的中厚钢板、热轧板卷、棒、线、型材和钢管都可以采用控轧控冷工艺。 [关键词]控制轧制;控制冷却;中厚板;线材生产 Abstract:Controlled rolling and controlled cooling could add those two reinforcement effect of hot rolled steel products, further improve the strength, toughness and welding performance of steel, to obtain better comprehensive mechanical properties. Controlled rolling process of controlled cooling is an improve steel quality and saving alloy, simplify the process, save energy consumption of advanced rolling technology. Because the controlled rolling cold has deformation strengthening and phase transformation strengthening combination, so both can improve the strength of steel and controlled rolling cold can improve the toughness and plasticity of steel. Rolling mill in the production of medium plate, hot-rolled coil, rod, wire, profiles and steel tube can be used in a controlled rolling process of controlled cooling. Keyword:Controlled rolling;Controlled cooling;plate rolling Wire rod production 1.引言 控制轧制和控制冷却工艺是现代钢铁工业最大的技术成就之一,所谓控制轧制和控制冷却技术,就是在一定的钢材化学成分的情况下,通过对轧制温度、压下量和轧后冷却过程参数的控制,可以细化钢材显微组织、显著改善和提高钢材的性能,获得具有良好综合性能的钢铁材料。控制冷却是控制轧后钢材的冷却速度达到改善钢材组织和性能的目的。由于热轧变形作用,促使变形奥氏体向铁素体转变温度的提高,相变后的铁素体晶粒容易长大,造成力学性能降低。为了细化铁素体晶

控制轧制的应用分析

控制轧制的应用分析 摘要:控制轧制是目前世界上轧制中经常使用的技术。一般认为控制轧制技术是在20世纪60—70年代确立的,但实际上早在1920年,这一技术就初见端倪了,以后经过无数技术人员长期不断的努力才发展至今天的成就。这项工艺,节约合金,简化工序,节约能源消耗的先进轧钢技术,大幅度提高钢材的综合性能。本书的目的在于通过整理控制轧制技术进步的历程,向读者揭示控制轧制技术的重要性。主要介绍控制轧制的定义、种类、机理、优缺点、控制轧制与传统轧制的比较以及控制轧制技术在线棒材﹑型钢﹑双相钢生产中的应用。 关键词:控制轧制控制轧制机理控制轧制应用 前言: 随着科学技术的迅速发展,近几年来中国钢铁工业得到了高速发展,在钢铁工业的各项产品中,控制轧制是近十多年来国内外新发展起来的轧钢生产新技术,受到国际冶金界的重视。各国先后开展了多方面的理论研究和应用技术研究,并在轧钢生产中加以应用,明显地改善和提高了钢材的强韧性和使用性能,为节约能耗,简化生产工艺,开发钢材新品种创造了有利条件。 1 控制轧制的概述 1.1控制轧制的定义 在调整钢的化学成分的基础上,通过控制加热温度﹑轧制温度﹑变形制度等工艺参数,控制奥氏体状态和相变产物的组织状态,从而达到控制钢材组织性能的目的。 1.2控制轧制与普通轧制的比较 与普通生产工艺相比,通过控制轧制生产技术可以使钢板的抗拉强度和屈服强度平均提高约40―60MPa,在低温韧性﹑焊接性能﹑节能﹑降低碳含量﹑节省合金元素以及保持良好板形方面都有无可比拟的优越性。 1.3 控制轧制的种类 (1)完全再结晶型控制轧制。全部变形在奥氏体再结晶区进行,终轧温度不低于奥氏体再结晶温度上限,道次变形量不低于奥氏体再结晶的临界变形量 (2)再结晶型控制轧制与未再结晶配合的控制轧制。这一工艺特点是,在完全再结晶区进行一定道次的变形,在部分再结晶区进行待温,而在奥氏体的未再结晶区继续轧制一定道次,并在未再结晶区结束轧制 (3) 完全再结晶型、未再结晶和(γ+α) 两厢区控制轧制。这种工艺特点是,在奥氏体完全再结晶区轧制一些道次,接近部分再结晶区进行待温或快冷,进入未再结晶区温度后继续轧制,并且当钢温已经达到(γ+α)两相区时轧制一定道次,达到一定变形量后终止轧制。 如图1

常用钢材表面处理工艺流程

常用钢材表面处理工艺流程 (1)钢铁件电镀锌工艺流程┌酸性镀锌 除油→除锈→│→纯化→干燥└碱性镀锌 (2)钢铁件常温发黑工艺流程┌浸脱水防锈油││烘干 除油→除锈→常温发黑→│浸肥皂液——→浸锭子油或机油││└浸封闭剂(3)钢铁件磷化工艺流程除油→除锈→表调→磷化→涂装 (4)ABS/PC塑料电镀工艺流程 除油→亲水→预粗化(PC≥50%)→粗化→中和→整面→活化→解胶→化学沉镍→镀焦铜→镀酸铜→镀半亮镍→镀高硫镍→镀亮镍→镀封→镀铬(5)PCB电镀工艺流程 除油→粗化→预浸→活化→解胶→化学沉铜→镀铜→酸性除油→微蚀→镀低应力镍→镀亮镍→镀金→干燥 (6)钢铁件多层电镀工艺流程 除油→除锈→镀氰化铜→镀酸铜→镀半亮镍→镀高硫镍→镀亮镍→镍封→镀铬 (7)钢铁件前处理(打磨件、非打磨件)工艺流程 1、打磨件→除蜡→热浸除油→电解除油→酸蚀→非它电镀 2、非打磨件→热浸除油→电解除油→酸蚀→其它电镀 (8)锌合金件镀前处理工艺流程 除蜡→热浸除油→电解除油→酸蚀→镀碱铜→镀酸铜或焦磷酸铜→其它电镀(9)铝及其合金镀前处理工艺流程 除蜡→热浸除油→电解除油→酸蚀除垢→化学沉锌→浸酸→二次沉新→镀碱铜或镍→其它电镀

除蜡→热浸除油→电解除油→酸蚀除垢→铝铬化→干燥→喷沫或喷粉→烘干或粗化→成品 除蜡→热浸除油→电解除油→酸蚀除垢→阳极氧化→染色→封闭→干燥→成品 (10)铁件镀铬工艺流程: 除蜡→热浸除油→阴极→阳极→电解除油→弱酸浸蚀→预镀碱铜→酸性光亮铜(选择)→光亮镍→镀铬或其它 除蜡→热浸除油→阴极→阳极→电解除油→弱酸浸蚀→半光亮镍→高硫镍→光亮镍→镍封(选择)→镀铬 (11)锌合金镀铬工艺流程 除蜡→热浸除油→阴极电解除油→浸酸→碱性光亮铜→焦磷酸铜(选择性)→酸性光亮铜(选择性)→光亮镍→镀铬 (12)电叻架及染色工艺流程 前处理或电镀→纯水洗(2-3次)→预浸→电叻架→回收→纯水洗(2-3次)→烘干→成品 电镀锌的技术很多,提供一些专利技术的给你看看。

钢材的生产工艺

三、钢材的生产工艺 碳素钢的定义及钢中五元素 含碳2%以下的铁碳合金称为钢。碳素钢中的五元素是指化学成份中的主要组成物,即 C、Si、Mn、S、P(碳、硅、锰、硫、磷)。其次是在炼钢过程中不可避免地会混入气体,含O、H、N(氧、氢、氮)。此外,用铝-硅脱氧镇静工艺中,必然在钢水中含有 Al,当Als(酸溶铝)≥0.020%时,还有细化晶粒的作用。化学元素对钢性能的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的

控制轧制过程的基本原理

控制轧制过程的基本原理 历史背景 历史上,碳是提高钢的强度的最重要的化学元素,但碳对许多工艺性能如焊接性能、成型性能有不利的影响。因此,用碳强化的钢的应用受到限制。为了保证钢结构的安全性,要求钢的强度和韧性达到优良的配合,这种含碳较高的钢往往要进行成本高的热处理,如淬火加回火。 为了扩大成本低的高强度钢的应用,物理冶金学家们建议用其它强化机制来替代碳的强化。图1(1)显示,根据d-1/2规律(2),晶粒细化是同时提高强度和韧性的最有效的方法。控制轧制工艺是达到此目的的工业技术,该技术把成型过程与显微组织的控制过程结合起来。 均热温度 为了使加热工艺易于进行,传统方法是采用较高的均热温度。因此,轧制工艺从钢坯加热开始就要控制晶粒尺寸,而且其效果是明显的。人们知道,奥氏体晶粒长大与均热温度决定于均热时要求产生的冶金反应,即使微合金化元素溶于固溶体,其原因将于下面得到解决。对于钢种而言,最低的均热温度决定于铌、碳含量。如图2所示,对于0.10%C、0.03%Nb.的钢来说,其最低均热温度为1150℃。钛形成非常稳定的TiN,如图3(3)所示,它可在相当高的均热温度下控制奥氏体晶粒尺寸。另外钛还可以夺走N b(C、N)相中的N,形成的N b C 化合物更易溶解。在钢中一般氮含量的情况下,T i的最佳含量,即化学比含量,一般很低,

低于0.02%。 log(Nb)(C)=2.96-7510/T…Nordberg and Aronsson log(Nb)(C+12/14N)=2.26-6770/T…Irvine 再结晶控制轧制 钢在热变形过程中发生再结晶。控制这一过程使其发生多次再结晶可导致有效晶粒细化。应当注意每道次轧制应采用的最小变形量,否则将会发生晶粒长大,如图4(4)所示。图5(5)显示出一种典型的轧制制度可获得大约50μm的平均晶粒尺寸。在有铌微合金化的情况下,可以得到更细小的晶粒尺寸。这是因为扩散控制的过程,如道次间的晶粒长大,由于铌原子的直径比γ-Fe原子大15.2%,扩散过程受到很大阻碍。 变形前的奥氏体晶粒愈小,轧制温度愈低,每道次变形量愈大,最终再结晶后的晶粒尺寸愈小。文献[6]表明,如果最后三道次变形至少约25%,大于图5报道的15%,再结晶控

钢材控制轧制和控制冷却技术

钢材控制轧制和控制冷却技术 葛玉洁 (材料成型及控制工程12 学号:9) [摘要]控轧控冷是对热轧钢材进行组织性能控制的技术手段,目前已经广泛应用于热轧带钢、中厚板、型钢、棒线材和钢管等钢材生产的各个领域。控轧控冷技术能够通过袭警抢话、相变强化等方式,使钢材的强度韧度得以提高。 [关键词]钢材轧制;轧制钢材变形量;控制轧制;控制轧制与控制冷却Controlled rolling and controlled cooling is a technical means for the control of the microstructure and properties of hot rolled steel. It has been widely used in various fields such as hot strip, medium plate, steel bar, rod and steel tube. Controlled rolling and controlled cooling technology by assaulting kibitz, phase transformation strengthening, the strength toughness of steel can be improved. 1引言 1.1控轧控冷技术的发展历史: 20世纪之前,人们对金属显微组织已经有了一些早期研究和正确认识,已经观察到钢中的铁素体、渗碳体、珠光体、马氏体等组织。20世纪20年代起开始有学者研究轧制温度和变形对材料组织性能的影响,这是人们对钢材组织性能控制 的最初尝试,当时人们不仅已经能够使用金相显微镜来观察钢的组织形貌,而且 还通过X射线衍射技术的使用加深了对金属微观组织结构的认识。 1980年OLAC层流层装置投产,控轧控冷在板带、棒线材等大面积应用,技 术已成熟,理论进展发展迅速。 2.控制轧制: 2. 1控制轧制概念: 控制轧制是在热轧过程中把金属范性形变和固态相变结合起来而省去轧后的热处理工序。这是既能生产出强度、韧性兼优的钢材,而又能节约能耗的一项新工艺。控制轧制对轧机的 设备强度、动力和生产控制水平均提出了较高的要求。 3控制轧制的内容 控制轧制参数,包括温度、变形量等,以控制再结晶过程,获得所要求的组织和性能。 加入某些微量元素可使钢的再结晶开始温度升高很多,同时适当地降低轧制温度。从而使多 道次变形的效果叠加,使再结晶在较大的变形量和较低的温度下进行,而使钢材获得符合要 求的组织和性能的钢材. 根据塑性变形、再结晶和相变条件,控制轧制可分为三阶段,如下所

钢材的轧制控制

钢材的轧制控制 向明锁 (辽宁科技大学材料成型及其控制工程12级) 摘要:阐述了控制轧制的机理和工艺特点,介绍了二次加热炉的技术进展,铸轧 一体化技术——CASTRIP的技术发展,减量化技术发展,控制轧制技术发展,指出应积极消化吸收先进的控轧控冷工艺,研制开发出高强、高韧性钢材。 关键词:控制轧制技术发展机理工艺 Abstract: in this paper, the mechanism and process characteristics of controlled rolling are introduced. The technological progress of the two reheating furnace, the technology development of CASTRIP, the development of reduction technology, the development of control rolling technology, and the development of high strength and high toughness steel are pointed out. Key words: control rolling technology development mechanism. 1控制轧制基础 1.1控制轧制的概念控制轧制是指在比常规轧制温度稍低的条件下,采用强化压下和控制冷却等工艺措施来提高热轧钢材的强度、韧性等综合性能的一种轧制方法。控制轧制钢的性能可以达到或者超过现有热处理钢材的性能。 1.2控制轧制的优点控制轧制具有常规轧制方法所不具备的突出优点。归结起来大致有如下几点:(1)许多试验资料表明,用控制轧制方法生产的钢材,其强度和韧性等综合机械性能有很大的提高。例如控制轧制可使铁素体晶粒细化,从而使钢材的强度得到提高,韧性得到改善。(2)简化生产工艺过程。控制轧制可以取代常化等温处理。(3)由于钢材的强韧性等综合性能得以提高,自然地导致钢材使用范围的扩大和产品使用寿命的增长。从生产过程的整体来看,由于生产工艺过程的简化,产品质量的提高,在适宜的生产条件下,会使钢材

轧制工艺

博思格建筑系统(巴特勒)轻型钢结构的生产流程和制作工艺 1.前言 建筑轻钢结构和传统的混凝土结构相比,具有跨度大、结构基础要求低、抗震抗风能力强、外表美观、建造周期短、维修费用低等一系列的优点,因而越来越受欢迎,得到了飞速的发展。 和重钢相比,轻钢结构重量轻,用钢量少、对基础的承载要求更低,设计周期短、建造速度快,特别适合于建造大跨度结构。现已在厂房、办公楼、大型超市、物流仓库、展示厅、机库和室内体育场馆等产品领域得到了广泛的应用。 传统的轻钢制作方式,采用机械和手工方式进行组立、装焊,自动化程度不高、工艺流程不流贯,因而生产效率低,远不能满足建筑轻钢结构飞速发展的需要。 博思格建筑系统(巴特勒)针对轻型钢结构所设计的自动化钢结构生产流水线,占地面积小、布局紧凑,流程合理,充分体现了高速、高效和高精度生产的特点,取得了满意的实际效果。 2.轻型钢结构的工艺特点 2.1.结构特点 轻型钢结构通常采用Q345和Q235钢,且大部分是Q345钢。Q345钢作为最常用、成熟的低合金高强度结构用钢,性能优良,可焊性好。除了部分柱底板外,腹板、翼板厚度基本上是4-20mm中薄板,正是对焊接工艺最有利的厚度范围。轻钢结构一般不采用箱型、十字型结构,构件绝大部分是H型截面。由于经济、受力、结构的特点,一般不采用轧制H型钢,而大多数都采用焊接H型钢。 对于H型实腹梁柱结构,易于实现焊接、装配的自动化。但是除了夹层梁和部分边柱、中间柱为等截面外,大部分构件是变截面形式,这也给焊接的自动化提出了更高的要求。 2.2.切割方法 门式多头火焰切割是翼板开条的主要切割方法,丙烯、丙烷、LPG类新型燃气已逐步取代了乙炔。 腹板由于板厚较薄,而且大多是楔形形状,通常采用数控等离子的切割方法。采用氧气的等离子切割方法,切割速度快,切割质量好,但对消耗电极的要求更高。

钢材的控制轧制工艺介绍

钢材的控制轧制工艺介绍 班级: 姓名: 学号:

钢材的控制轧制工艺介绍 董玉柱 [摘要]近代工业发展对热轧非调质钢板的性能要求越来越高,除了具有高强度外,还要有良好的韧性、焊接性能及低的冷脆性。本文主要介绍了钢材的控制轧制原理,控制轧制工艺,控制轧制的优缺点和与常规轧制的区别和控制轧制,以及控制轧制的新技术TMCP技术。 [关键词]控制轧制工艺; 优缺点; TMCP Abstract:Modern industrial development on the performance of the hot rolled non quenched and tempered steel demand is higher and higher, In addition to high intensity, also have good toughness 、welding performance and low cold brittleness.In this paper,introducting the technology of steel controlled rolling,the merits and faults of controlled rolling & the different of normal controlled rolling & controlled rolling,besides,the new technology of controlled rolling Key Words: ControlledRolling; merits and faults; TMCP 1.引言 随着我国钢材产能的不断增加以及原材料价格的大幅上涨,材市场的竞争日趋激烈,了提高竞争力,须进一步降低钢材生产成本和提高产品质量。热轧圆钢而言在轧制过程中或在轧制结束后对轧件进行选择性的水冷,而进行控制轧制和控制冷却,以在提高钢材强度的同时提高钢材低温韧性和充分发挥V,Ti,Nb作用从而节约合金简化生产工序和节约能源消耗 。 2.控制轧制 控制轧制(ControlledRolling)加热制度、变形制度和温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小的晶粒组织,使钢材具有优异的综合力学性能的新工艺。对低碳钢、低合金钢来说采用控制轧制的工艺主要是通过控制轧制工艺参数细化变形奥氏体晶粒,经过奥氏体向铁素体和珠光体的相变,形成细化的铁素体晶粒和较为细小的

控制轧制基础

控制轧制基础 一、控制轧制的概念 控制轧制是指在比常规轧制温度稍低的条件下,采用强化压下和控制冷却等工艺措施来提高热轧钢材的强度、韧性等综合性能的一种轧制方法。控制轧制钢的性能可以达到或者超过现有热处理钢材的性能。 二、控制轧制的优点 控制轧制具有常规轧制方法所不具备的突出优点。归结起来大致有如下几点:(1)许多试验资料表明,用控制轧制方法生产的钢材,其强度和韧性等综合机械性能有很大的提高。例如控制轧制可使铁素体晶粒细化,从而使钢材的强度得到提高,韧性得到改善。 (2)简化生产工艺过程。控制轧制可以取代常化等温处理。 (3)由于钢材的强韧性等综合性能得以提高,自然地导致钢材使用范围的扩大和产品使用寿命的增长。从生产过程的整体来看,由于生产工艺过程的简化,产品质量的提高,在适宜的生产条件下,会使钢材的成本降低。 (4)用控制轧制钢材制造的设备重量轻,有利于设备轻型化。 三、控制轧制的种类 控制轧制是以细化晶粒为主,用以提高钢的强度和韧性的方法。控制轧制后奥氏体再结晶的过程,对获得细小晶粒组织起决定性作用。根据奥氏体发生塑性变形的条件(再结晶过程、非再结晶过程或γ-α转变的两相区变形),控制轧制可分为三种类型。 (一)再结晶型的控制轧制 它是将钢加热到奥氏体化温度,然后进行塑性变形,在每道次的变形过程中或者在两道次之间发生动态或静态再结晶,并完成其再结晶过程。经过反复轧制和再结晶,使奥氏体晶粒细化,这为相变后生成细小的铁素体晶粒提供了先决条件。为了防止再结晶后奥氏体晶粒长大,要严格控制接近于终轧几道的压下量、轧制温度和轧制的间隙时间。终轧道次要在接近相变点的温度下进行。为防止相变前的奥氏体晶粒和相变后的铁素体晶粒长大,特别需要控制轧后冷却速度。这种控制轧制适用于低碳优质钢和普通碳素钢及低合金高强度钢。 (二)未再结晶型控制轧制 它是钢加热到奥氏体化温度后,在奥氏体再结晶温度以下发生塑性变形,奥氏体变形后不发生再结晶(即不发生动态或静态再结晶)。因此,变形的奥氏体晶粒被拉长,晶粒内有大量变形带,相变过程中形核点多,相变后铁素体晶粒细化,对提高钢材的强度和韧性有重要作用。这种控制工艺适用于含有微量合金元素的低碳钢,如含铌、钛、钒的低碳钢。 (三)两相区控制轧制 它是加热到奥氏体化温度后,经过一定变形,然后冷却到奥氏体加铁素体两相区再继续进行塑性变形,并在Ar1温度以上结束轧制。实验表明:在两相区轧制过程中,可以发生铁素体的动态再结晶;当变形量中等时,铁素体只有中等回复而引起再结晶;当变形量较小时(15% -30%),回复程度减小。在两相区的高温区,铁素

相关主题
文本预览
相关文档 最新文档