控制轧制、控制冷却工艺
- 格式:doc
- 大小:198.00 KB
- 文档页数:14
控制轧制及控制冷却技术在型钢生产中的应用一、引言型钢是一种重要的金属材料,在建筑、汽车制造、机械制造等领域具有广泛的应用。
为了提高型钢的质量和性能,控制轧制及控制冷却技术被广泛应用于型钢生产中。
这些技术通过精确控制轧制工艺参数和冷却过程,可以有效提高型钢的强度、塑性和表面质量,满足不同领域对型钢材料性能的需求。
二、控制轧制技术的应用1. 调整轧制温度和速度在型钢轧制中,通过调整轧制温度和轧制速度,可以控制晶粒的细化和晶格的取向,从而提高型钢的强度和塑性。
尤其是在热轧过程中,通过精确控制轧制温度和速度,可以有效控制晶粒生长,减少析出相的尺寸,使得型钢的晶粒细化,提高强度和硬度。
2. 控制轧制力和变形量通过精确控制轧制力和变形量,可以有效调整型钢的组织结构和力学性能。
在轧制过程中,通过监测轧辊力和变形量,可以实现对型钢的细微调整,达到提高型钢性能的目的。
在轧制高强度型钢时,通过增加轧制力和变形量,可以有效提高型钢的强度和硬度。
3. 控制轧制辊形状通过选择合适的轧辊形状,可以实现更加精确的型钢轧制。
不同形状的轧辊对型钢的变形和组织结构有着不同的影响,因此通过调整轧辊的形状,可以实现对型钢结构和性能的精细控制。
三、控制冷却技术的应用1. 控制冷却速度在型钢生产中,通过控制冷却速度,可以实现对型钢组织和性能的调整。
在快速冷却条件下,型钢的组织结构更加均匀,晶粒更加细小,从而提高了型钢的强度和韧性。
在慢速冷却条件下,型钢的组织结构更加致密,表面质量更好,适用于高表面质量要求的场合。
2. 控制冷却介质不同的冷却介质对型钢的冷却效果和组织结构有着不同的影响。
通过选择合适的冷却介质,可以实现对型钢组织和性能的精细调控。
对于高强度型钢,可以采用高效的水冷或气体冷却,快速降温,实现对型钢强度和硬度的提高。
3. 控制冷却方式在型钢生产中,采用不同的冷却方式,可以实现对型钢的细微调整。
采用直接水冷或间接水冷,可以分别实现快速和慢速的冷却效果,从而满足不同型钢的冷却需求。
控轧控冷工艺基本原理控轧控冷工艺是一种通过控制轧制和冷却条件来调控钢材的组织和性能的加工工艺。
其基本原理是通过控制轧制温度、变形程度和冷却速度等参数,实现对钢材组织和性能的调控。
1. 控轧工艺原理控轧是指在钢材的轧制过程中,通过调整轧制温度和变形程度等参数,控制其组织和性能的加工工艺。
控轧工艺的基本原理是通过控制轧制温度和变形程度,调整钢材的晶粒度、相组成和形貌等因素,从而实现对钢材性能的调控。
在控轧过程中,调整轧制温度可以影响钢材的晶粒度和相组成。
通过控制轧制温度的高低,可以实现晶粒细化或粗化,进而影响钢材的力学性能和韧性。
同时,调整轧制温度还可以改变钢材中的相组成,如奥氏体、铁素体和贝氏体等的含量和分布,从而调节钢材的强度、硬度和耐腐蚀性能。
控轧过程中的变形程度也对钢材的组织和性能产生重要影响。
通过控制变形程度,可以实现钢材的晶粒细化、相变和组织调控。
在轧制过程中,钢材受到外力的变形,晶粒会发生形变和细化,从而提高钢材的强度和韧性。
同时,变形程度还可以引起钢材中的相变,如奥氏体向铁素体的相变,进一步改善钢材的性能。
2. 控冷工艺原理控冷是指在钢材的冷却过程中,通过调整冷却速度和冷却方式等参数,控制其组织和性能的加工工艺。
控冷工艺的基本原理是通过控制冷却速度,调整钢材的组织和性能。
在控冷过程中,调整冷却速度可以影响钢材的相组成和组织形貌。
通过控制冷却速度的快慢,可以实现钢材中相的相变和组织的调控。
当冷却速度较快时,钢材中的相变会受到限制,从而形成细小的相和均匀的组织。
相反,当冷却速度较慢时,钢材中的相变会较为充分,形成较大的相和不均匀的组织。
不同的冷却速度会影响钢材的强度、硬度和韧性等性能。
控冷过程中的冷却方式也会对钢材的组织和性能产生影响。
不同的冷却方式,如空冷、水冷、油冷等,具有不同的冷却速度和冷却效果。
通过选择合适的冷却方式,可以实现钢材组织的定向调控,从而达到钢材性能的要求。
3. 控轧控冷工艺的应用控轧控冷工艺广泛应用于钢材的生产和加工过程中。
控制轧制和控制冷却工艺讲义控制轧制和冷却工艺讲义一、轧制工艺控制1. 轧制温度控制a. 在热轧过程中,轧机和钢坯之间的接触摩擦会产生高温,因此需要控制轧机温度,避免过热。
b. 实时监测轧机温度,根据温度变化调整轧制速度和冷却水量,确保温度适中。
c. 使用专用液体和冷却器进行在线冷却,防止轧机过热引起事故。
2. 轧制力控制a. 测量轧机产生的轧制力,确保轧机施加的压力适中。
b. 监控轧制力的变化,根据钢坯的变形情况调整轧制力,使钢坯的形状和尺寸满足要求。
c. 根据轧制力的大小调整轧制速度,保持稳定的轧制负荷。
3. 轧制速度控制a. 根据不同钢材的特性和规格,调整轧制速度,确保成品钢材的质量和尺寸满足要求。
b. 控制轧制速度的稳定性,避免过快或过慢的轧制速度导致钢材质量不达标。
4. 轧辊调整控制a. 定期检查和调整轧辊的位置和间距,确保钢坯能够顺利通过轧机,避免产生不均匀的轧制力和过度变形。
b. 根据车间实际情况和轧制工艺要求,调整轧辊的工作方式和参数,使轧制过程更加稳定和高效。
二、冷却工艺控制1. 冷却水量控制a. 根据钢材的材质和规格,调整冷却水的流量和压力,确保钢材迅速冷却到所需温度。
b. 监测冷却水流量和温度,根据实时数据调整冷却水量,确保冷却效果和成品钢材的质量。
2. 冷却速度控制a. 根据不同的冷却工艺要求,调整冷却速度,使钢材的组织和性能满足要求。
b. 监控冷却速度的变化,根据实时数据调整冷却速度,确保成品钢材的质量和性能稳定。
3. 冷却方法控制a. 根据钢材的特性和要求,选择合适的冷却方法,如水冷、风冷等。
b. 根据不同冷却方法的特点和效果,调整冷却工艺参数,使冷却效果和成品钢材的质量最优化。
4. 冷却设备维护a. 定期检查和维护冷却设备,确保设备的正常运行和效果良好。
b. 清洗和更换冷却设备中的阻塞、损坏部件,保证冷却水的流量和质量。
以上是对控制轧制和控制冷却工艺的讲义,通过合理的工艺控制和设备维护,能够提高轧制和冷却过程的效率和质量,满足钢材的要求。
线材生产中的控制轧制和控制冷却技术线材是现代工业生产中使用频繁的一种材料,它广泛应用于电线电缆、机械制造、建筑材料等行业。
在线材生产过程中,控制轧制和控制冷却技术是关键的环节,它们直接影响着线材的质量、机械性能和用途范围。
一、控制轧制控制轧制是指通过改变轧制变形量、轧制温度、轧制速度、轧制力等因素,控制金属材料的形变和微观组织,达到调整线材力学性能、改善表面质量和优化产品用途的目的。
1、轧制变形量控制轧制变形量是指轧制前后的减压变化,它对线材的力学性能和表面质量有着直接影响。
为了保证线材的质量稳定和合格率,轧制变形量控制必须精准可靠,并考虑到批量变化和轧制型号的特定要求。
目前,国内外的轧制变形量控制采用电液伺服技术,通过实时监测轧制变形量变化,及时控制系统参数的变化,保证线材轧制变形量的稳定。
2、轧制温度控制轧制温度是指线材在轧制时的温度,它对线材的力学性能和表面质量有着重大影响。
过高或过低的温度会导致线材的晶粒过大或过小,从而影响线材的硬度、韧性和塑性等力学性能。
为了提高线材的机械性能和用途范围,轧制温度控制必须准确可靠,并考虑到金属材料的温度敏感性和轧制工艺的特定要求。
目前,国内外的轧制温度控制采用激光测温技术或红外线测温技术,通过实时监测线材温度变化,及时调整轧制温度,保证线材轧制温度的稳定。
3、轧制速度控制轧制速度是指线材在轧制过程中的速度,它对线材的表面质量和机械性能有着直接影响。
过高或过低的轧制速度会导致线材表面的纹路不均匀和线材的硬度、韧性等力学性能下降。
为了提高线材的表面质量和机械性能,轧制速度控制必须准确可靠,并考虑到轧制型号的特定要求。
目前,国内外的轧制速度控制采用伺服电机技术或电磁流体技术,通过实时监测线材的速度变化,及时调整轧制速度,保证线材轧制速度的稳定。
二、控制冷却控制冷却是指针对金属材料在热加工过程中产生的内应力、变形、晶粒长大等现象,通过采用不同的冷却方式和工艺参数,调整金属材料的组织和性能。
钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。
2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。
3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。
在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。
4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。
两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。
同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出.5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。
6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。
二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。
另一类是材料的内在因素,主要是材料的化学成分和冶金状态。
2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的.3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。
4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。
5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。
6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能.7、钢的强化机制主要包括(固溶强化)、(位错强化)、(沉淀强化)、(细晶强化)、(亚晶强化)、(相变强化)等,其中(绕过)机制既能使钢强化又使钢的韧性得到提高。
控轧与控冷一:名词解释控制轧制:是指在热轧过程中通加热制度,变形制度,温度制度的合理控制,使钢材具有优异综合理学性能的轧制新工艺。
控制冷却:是指控制轧后钢材的冷却速度达到改善组织和性能的目的。
金属强化:通过合金化,塑性变形,和热处理等手段提高金属材料的强度。
韧性:材料在断裂前在塑性变形和裂纹扩展时吸收能量的能力。
铁素体:铁或其内固溶体有一种或数种其他元素形成的体心立方固溶体。
奥氏体:γ铁内固溶有碳和其他元素的面立方固溶体。
贝氏体:钢在奥氏体化后被过冷到珠光体转变温度一下,马氏体转变温度以上这一中间温度区间,转变而成的有铁素体及其内分布着弥散的碳化物形成的亚稳定结构。
IF钢:又称无间隙,由于C,N含量低,在加入一定量TI,Nb使钢背固定成碳化物,氮化物或者碳氮化物,从而使钢无间隙存在。
不锈钢:在腐蚀介质中有良好的耐腐蚀性的钢。
双相钢:由马氏体或奥氏体基本两相组织构成的钢。
再结晶:经冷塑性变形的金属超过一定加热温度时,通过形核长大形成等轴晶粒无畸变新晶粒过程。
在线常化:在热轧无缝钢生产中,在轧管延伸工序后,将钢管按常化处理要求冷却到某一温度后,再进行加热炉生产,然后进行减轻轧制,按照一定冷却速度冷却至常温。
1·控制轧制与普通轧制的区别答:可以充分发挥微量元素的作用起沉淀强化,细化晶粒的作用;提高钢的强度的同时题干钢的韧性;降低了终轧温度,采用较低的卷曲温度,课消除或减少板卷头部,中部和尾部的强度差;采用低温大压下细化低碳钢的铁素体晶粒,提高强韧性。
2·控制冷却的目的答:节约冷床面积;防止或减轻转型材的翘曲和弯曲;降低残余应力;提高型材的力学性能及改善组织状态,简化生产工艺。
3·影响材料强韧性的因素答:化学成分;气体夹杂物;晶粒尺寸;沉淀析出;形变;相变组织等的影响。
其中气体夹杂物对韧性有害,晶粒越小,材料韧性越好。
4·提高材料强韧性的措施答:晶粒细化;冶炼:采用真空搅拌,减少有害成分;控扎:使形变强化,提高材料强韧性;热处理:阻止晶粒长大,使晶粒细化,提高强韧性。
绪论控轧、控冷的含义:控轧—控制钢的加热温度、速度,开、终轧温度,轧制变形率和变形速率,使塑性变形和动态相变相结合,又称形变热处理。
控冷—控制轧后冷却速度,使其通过相变得到所需的组织和晶粒度,以及第二相粒子的析出。
控轧、空冷相结合可提高钢的强度和韧性。
1. 控轧、控冷是挖掘钢的潜力,开发新产品的有利武器2. 控轧、控冷又叫形变热处理,不同于常规热处理,是形变和相变的有机结合,利用轧制余热在线热处理可节约能源,缩短工期,提高经济效益。
3. 是连铸连轧柔性生产系统的组成部分。
控轧控冷是一个系统工程,涉及钢的成份控制,纯净度控制,铸造组织控制,温度控制,变形控制,相变控制,必须系列优化综合考虑。
控轧、控冷的理论基础是传热学、塑性加工力学、塑性加工金属学、流体力学。
第一章钢的强化和韧性第一节钢的强化机制固溶强化、位错强化、沉淀强化、(晶界强化、亚晶强化)、细晶强化、相变强化钢的强化反映其内能的提高金属塑性变形机理是位错运动,位错运动阻力越大σs越高。
金属断裂是由于裂纹源的扩展,金属内部越致密,原子结合强度越高σb越高。
1、固溶强化铁和碳的相互作用表现为两方面:1、形成固溶体;2、形成化合物(1)固溶体:就是固体溶液,是溶质原子溶入溶剂中所形成的晶体,保持溶剂元素的晶体结构。
(2)固溶体的分类:置换固溶体和间隙固溶体晶格扭曲,内能增加,强度增加。
运动的位错和异质原子相互作用使强度提高。
(给位错移动增加点状障碍物)固溶强化的规律(1)溶质元素溶解量增加,固溶体的强度也增加例如:对于无限固溶体,当溶质原子浓度为50%时强度最大;而对于有限固溶体,其强度随溶质元素溶解量增加而增大(2)溶质元素在溶剂中的饱和溶解度愈小,其固溶强化效果愈好。
(3)形成间隙固溶体的溶质元素(如C、N、B等元素在Fe中)其强化作用大于形成置换固溶体(如Mn、Si、P等元素在Fe中)的溶质元素。
但对韧性、塑性的削弱也很显著,而置换式固溶强化却基本不削弱基体的韧性和塑性。
控制轧制、控制冷却⼯艺控制轧制、控制冷却⼯艺技术1.1 控制轧制⼯艺控制轧制⼯艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按⼯艺要求来冷却钢材。
通常将控制轧制⼯艺分为三个阶段,如图 1.1所⽰[2]:(1>变形和奥⽒体再结晶同时进⾏阶段,即钢坯加热后粗⼤化了的γ呈现加⼯硬化状态,这种加⼯硬化了得奥⽒体具有促使铁素体相变形变形核作⽤,使相变后的α晶粒细⼩;(2> (γ+α>两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从⽽在α晶粒内形成亚晶,促使α晶粒的进⼀步细化。
图1.1控制轧制的三个阶段(1>—变形和奥⽒体再结晶同时进⾏阶段;(2>—低温奥⽒体变形不发⽣再结晶阶段;(3>—<γ+α)两相区变形阶段。
1.2 控制轧制⼯艺的优点和缺点控制轧制的优点如下:1.可以在提⾼钢材强度的同时提⾼钢材的低温韧性。
采⽤普通热轧⽣产⼯艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,-40℃的冲击韧性A k≤431J,断⼝为95%纤维状断⼝。
当钢中加⼊微量铌后,仍然采⽤普通热轧⼯艺⽣产时,当采⽤控制轧制⼯艺⽣产时,-40℃的A k值会降低到78J以下,然⽽采⽤控制轧制⼯艺⽣产时。
然⽽采⽤控制轧制⼯艺⽣产时-40℃的A k值可以达到728J以上。
在通常热轧⼯艺下⽣产的低碳钢α晶粒只达到7~8级,经过控制轧制⼯艺⽣产的低碳钢α晶粒可以达到12级以上<按ASTM标准),通过细化晶粒同时达到提⾼强度和低温韧性是控轧⼯艺的最⼤优点。
2.可以充分发挥铌、钒、钛等微量元素的作⽤。
在普通热轧⽣产中,钢中加⼊铌或钒后主要起沉淀强化作⽤,其结果使热轧钢材强度提⾼、韧性变差,因此不少钢材不得不进⾏正⽕处理后交货。
当采⽤控制轧制⼯艺⽣产时,铌将产⽣显著的晶粒细化和⼀定程度的沉淀强化,使轧后的钢材的强度和韧性都得到了很⼤提⾼,铌含量⾄万分之⼏就很有效,钢中加⼊的钒,因为具有⼀定程度的沉淀强化的同时还具有较弱的晶粒细化作⽤,因此在提⾼钢材强度的同时没有降低韧性的现象。
控制轧制及控制冷却技术在型钢生产中的应用一、导言在当今工业领域中,钢铁工业一直扮演着不可或缺的角色。
而型钢作为钢铁产品中的重要一员,其质量和性能的提升一直是企业和行业追求的目标。
控制轧制及控制冷却技术作为一种重要的生产工艺,对型钢的生产和性能提升具有重要意义。
本文将从控制轧制和控制冷却技术在型钢生产中的基本原理、关键技术和应用实例等方面展开探讨,旨在深入了解这一主题的重要性和具体应用。
二、控制轧制技术控制轧制技术是指钢铁生产中利用先进的控制系统和设备,对轧制过程中的参数进行精确控制,以获得高质量、高性能的型钢产品的一种技术。
这项技术最早应用于薄板生产领域,后来逐步在型钢生产中得到推广和应用。
1. 温度控制:在轧制过程中,控制轧制技术可以通过对钢坯的温度进行精确调控,以保证轧制过程中的塑性变形性能,从而得到均匀、细腻的晶粒结构。
2. 形状控制:利用控制轧制技术可以对轧制过程中的轧辊、模具等设备进行精确控制,获得符合设计要求的型钢截面形状和尺寸精度。
3. 轧制力控制:控制轧制技术可以实现对轧制力的实时监测和调节,避免轧制过程中的过度变形,并保证产品的尺寸和形状精度。
三、控制冷却技术控制冷却技术是指在型钢生产过程中,通过对冷却过程的控制,使钢材在冷却过程中获得理想的组织和性能。
这项技术的应用可以有效提高型钢的强度、韧性和耐磨性等性能,同时降低产品的变形和裂纹率。
1. 冷却介质控制:通过选择不同的冷却介质和控制冷却速度,可以使型钢获得不同的组织和性能,如马氏体组织、贝氏体组织等,从而满足不同领域对型钢性能的要求。
2. 温度控制:在控制冷却技术中,对冷却过程中的温度进行精确控制,可以有效控制组织相变,并获得理想的力学性能,如强度、韧性等。
3. 冷却速度控制:通过对型钢冷却速度进行控制,可以获得不同的组织和性能,如快速冷却可以获得细小的组织和高强度,而缓慢冷却则可以得到较好的塑性和韧性。
四、控制轧制及控制冷却技术在型钢生产中的应用实例1. 控制轧制技术在型钢生产中的应用:某钢铁企业引进了先进的控制轧制系统和设备,通过对轧制过程中的温度、形状和轧制力等参数进行精确控制,生产出了高精度、高强度的型钢产品,受到了市场的广泛认可。
控制轧制、控制冷却工艺技术1.1 控制轧制工艺控制轧制工艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按工艺要求来冷却钢材。
通常将控制轧制工艺分为三个阶段,如图 1.1所示[2]:(1>变形和奥氏体再结晶同时进行阶段,即钢坯加热后粗大化了的γ呈现加工硬化状态,这种加工硬化了得奥氏体具有促使铁素体相变形变形核作用,使相变后的α晶粒细小;(2> (γ+α>两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从而在α晶粒内形成亚晶,促使α晶粒的进一步细化。
图1.1控制轧制的三个阶段(1>—变形和奥氏体再结晶同时进行阶段;(2>—低温奥氏体变形不发生再结晶阶段;(3>—<γ+α)两相区变形阶段。
1.2 控制轧制工艺的优点和缺点控制轧制的优点如下:1.可以在提高钢材强度的同时提高钢材的低温韧性。
采用普通热轧生产工艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,-40℃的冲击韧性A k≤431J,断口为95%纤维状断口。
当钢中加入微量铌后,仍然采用普通热轧工艺生产时,当采用控制轧制工艺生产时,-40℃的A k值会降低到78J以下,然而采用控制轧制工艺生产时。
然而采用控制轧制工艺生产时-40℃的A k值可以达到728J以上。
在通常热轧工艺下生产的低碳钢α晶粒只达到7~8级,经过控制轧制工艺生产的低碳钢α晶粒可以达到12级以上<按ASTM标准),通过细化晶粒同时达到提高强度和低温韧性是控轧工艺的最大优点。
2.可以充分发挥铌、钒、钛等微量元素的作用。
在普通热轧生产中,钢中加入铌或钒后主要起沉淀强化作用,其结果使热轧钢材强度提高、韧性变差,因此不少钢材不得不进行正火处理后交货。
当采用控制轧制工艺生产时,铌将产生显著的晶粒细化和一定程度的沉淀强化,使轧后的钢材的强度和韧性都得到了很大提高,铌含量至万分之几就很有效,钢中加入的钒,因为具有一定程度的沉淀强化的同时还具有较弱的晶粒细化作用,因此在提高钢材强度的同时没有降低韧性的现象。
加入钢种的钛虽然具有细化加热时原始γ晶粒的作用,但在普通轧制条件下钢中的钛不能发挥细化轧制变形过程中γ晶粒的作用,仍然得不到同时提高钢的强度和韧性的效果,当采用控制轧制工艺生产含钛钢时,才能使钢种的Ti<C,N)起沉淀强化和晶粒细化的双重作用,如有的文献中报导控制轧制生产的含钛钢的强度75%来自沉淀强化,25%来自晶粒细化。
因为有中等程度的晶粒细化效果,钢的低温韧性提高。
控制轧制工艺的缺点:要求较低的轧制变形温度和一定的道次压下率,因此增大了轧制的负荷。
此外因为要求较低的终轧制温度,大规格产品需要在轧制道次之间待温,降低轧机的生产率。
为此世界各国开始对轧机进行技术改造,采用大负荷轧机,安装升降辊道,道次间中间冷却来减少轧制待温时间,提高轧机生产效率。
1.3 控制冷却的工艺特点控制冷却的优点:1. 节约能源、降低生产成本。
利用轧后钢材余热,给予一定的冷却速度控制其相变过程,从而可以取代轧后正火处理和淬火加回火处理,节省了二次加热的能耗,减少了工序,缩短了生产周期,从而减低了成本。
2. 可以降低奥氏体相变温度,细化室温组织。
轧后控制冷却能够降低奥氏体相变温度,对同一晶粒级别的奥氏体,低温相变后会使α晶粒明显细化,使珠光体片层间隔明显变薄。
例如,在800℃终轧的16Mn钢材,当轧后冷却温度从0.5℃/s提高到9.5℃/s时α晶粒平均直径从12μm细化到7.5μm,σs从360Pa增加到420Pa。
3. 可以降低钢的碳当量。
采用轧后控制冷却工艺有可能减少钢中碳含量及合金元素加入量,达到降低碳当量的效果。
低的碳当量有利于焊接性能、低温韧性和冷成型性能,这是当前各国所追求的大规模生产工业用钢材的最经济工艺路线。
4. 道次间控制冷却可以减少待温时间,提高轧机的小时产量。
在道次间采用控制冷却,可以精确地控制终轧温度,减少轧件停下来等待降温的时间。
在控制轧制时,为了保证能在奥氏体未再结晶区轧制,一般均采用待温轧制的工艺,待温轧制延长轧制节奏,降低产量。
为了少影响产量,采用多块钢坯循环交叉轧制的方法,虽然补救了一些,但需要增建离线旁路辊道及移送设备,增加了场地和设备。
采用道次间控制冷却,在保证冷却均匀的条件下,可以取消待温和循环轧制。
从而提高产量。
如生产3.0mm厚、1000mm宽热轧板卷时,开动连轧机架间的冷却装置可以使轧机小时产量从550t增加到720t。
1.4 控制轧制、控制冷却工艺参数控制特点控制轧制和控制冷却的工艺参数控制与普通轧制工艺相比具有如下特点:1. 控制钢坯加热温度。
根据对钢材性能的要求来确定钢坯加热温度,对于要求强度高而韧性可以稍差的微合金,加热温度可以高于1200℃。
对于韧性为主要性能指标的钢材,则必须控制加热温度在1150℃以下。
2. 控制最后几个轧制道次的轧制温度。
一般要求终轧道次的轧制温度接近Ar3温度,有时也将终轧温度控制在(γ+α>两相区内。
3. 要求在奥氏体末再结晶区域内给予足够的变形量。
对于微合金钢要求900~950℃以下的总变形量大于50%,对于普碳钢通常多道次变形累积达到奥氏体再结晶。
4. 要求轧制后的钢材冷却速度、开始快冷温度、快冷终了温度或卷取温度,以便获得必要的显微组织。
通常轧后第一冷却阶段冷速要大,第二阶段冷速要根据钢材性能要求不同而不同。
现将提高轧制和控制冷却钢材强韧性的各种因素整理归纳如表1-1所示表1.1提高控轧、控冷钢材强韧性的因素因素控制途径及其行为晶粒细化在奥氏体未再结晶区轧制变形,使奥氏体晶内产生变形,促使相变细化,控制轧后奥氏体向铁素体析出强化在奥氏体向铁素体转变两相加工硬化针状铁素体钢相变强化2 我国控制轧制、控制冷却技术的发展我国有丰富的铌、钒、钛和稀土资源,具有发展微合金控制轧制、控制冷却技术的广阔前途。
近十年来,尤其是第六个五年计划期间以来,控制轧制、控制冷却技术在我国取得了不小的进展。
目前每年采用控制轧制、控制冷却工艺生产的刚才已经超过100万吨,涉及到20多个钢种,已经应用到造船、石油、天然气输送管线、锅炉及压力容器、钢板桩、汽车大量、螺纹钢筋、钢丝绳、轴承及地质管等方面。
其中板材占40%左右,棒、线材占60%左右,管材和型材所占比例较小。
目前控制轧制、控制冷却技术在工业实验和生产上的应用如表1-1所示。
国内各厂采用控制轧制和控制冷却工艺在提纲产品综合性能方面所获得的效果,举出其中的一部分例子列于表2.2,2.3。
上钢2350mm二辊-四辊中板轧机与武钢2800mm二辊-四辊中板轧机,采用两阶段控轧工艺,生产了合乎劳氏船规要求的09MnNb、16MnNb钢DH360N级船板;上钢三厂的2300mm三辊-四辊中板轧机采用混合型控制轧制工艺与轧后控冷相结合,生产出了性能达到国外同类产品实物水品的容器钢板。
武钢热轧厂1700mm热连轧机采用Ⅰ型和Ⅱ型控轧工艺,或配合使用轧后控冷,研制出7~12mm厚的合乎API-5L标准要求的X60和X65级含铌微合金钢板卷。
太钢五轧厂中板轧机采用控制轧制工艺,解决了20g钢时效冲击值及16Mng钢屈服强度偏低的问题,使热轧性能合格率提高15%以上;武钢轧板厂采用控轧工艺,提高了4C船板热轧性能合格率38%以上,邯郸钢铁厂2300mm三辊劳特式中板轧机采用IB型控制轧制工艺,轧以后水幕冷却,提高了A2F、20g中板综合性能合格率。
表2.1控制轧制、控制冷却技术在工业中的应用钢材品种控轧、控冷工艺类型应用品种板带材再结晶控制轧制法低碳钒钛氮钢,含铌中高碳钢未再结晶控制轧制法低碳硅锰钢,20g,低碳锰铌钢<γ+α)两相区控制法低碳锰铌钢,低碳锰铌钒钢控制轧制+控制冷却低碳锰铌钢,低碳钛钢,A2F钢,含铬铅热轧双相钢棒线材钢筋轧后穿水冷却20gMnSi钢,3号钢,5号钢线材穿水冷却+相变冷却硬钢缆,冷墩钢丝,结构钢丝轴承钢轧后控制冷却GCr15钢钢管旋转内射流冷却钢管轧后控制冷却石油钢管,地质管,低碳硅锰钢型材角钢降温控制轧制15Mn钢角钢轧后控制冷却16Mn钢,ZC造船角钢高碳钢型材控制冷却中、高碳钢高碳钢型材控制轧制中、高碳钢,含铌中、高碳钢表2.2 国内控轧、控冷技术的使用效果举例钢种及品种传统工艺存在问题控轧、控冷工艺效果14MnTiRc钢板轧态低温韧性不稳定,必须热轧后正火交货轧态:σs=450~610MPa-40时,Ak=89~612J正火态:σs=411~470MPa-40℃时,Ak=766~1380J 控轧工艺达到正火处理效果控轧态:σs=480~529MPa-40℃时,Ak=796JC<D)级船板热轧态-40℃时,Ak也不合格热轧态提供低韧性,使合格率达到90%上09MnNb钢板轧态低温韧性不稳定,必须热轧后正火交货轧态:σs=382MPa-40℃时,Ak=48J正火态:σs≥343MPa-40℃时,Ak=926J 控轧工艺优于正火态性能控轧态:σs>392~411MPa -40℃时,Ak=463~926J16MnR容器钢板热轧后低温韧性不合格正火后σs≤343MPa控轧控冷工艺使综合性能控轧控冷态:σs>382MPa-40℃时,Ak=690J16MnV容器钢板热轧后低温韧性不合格,正火后σs有时偏低控轧控冷工艺使综合性能控轧控冷态:σs>392MPa-40℃时,Ak>246J15Mng钢板热轧态σs偏低控轧态σs满足要求20g钢板热轧态冲击韧性偏低控轧后提高性能合格率9~15% 20Mn钢筋热轧态达Ⅱ级钢筋控冷后达Ⅲ级钢筋A3钢筋控冷后达Ⅱ级钢筋数A3,16MnA3F棒热轧态强度有时偏低控冷后使性能合格率提高15%材GCr15钢热轧态球化退火时间长控冷后缩短球化退火时间四分之一3.控制轧制促使铁素体细化是达到最佳综合性能的最有效的办法。
细化铁素体晶粒基本上有两个途径,一种是细化奥氏体晶粒,然后通过相变得到细小的铁素体晶粒,另一种是直接细化铁素体晶粒。
细化奥氏体晶粒基本上从两方面着手:一方面是细化原始奥氏体晶粒,即从加热温度、加热时间及加入微量元素入手;另一方面是采用形变再结晶的方法。
加入微量元素能提高晶粒开始长大的温度,其措施是在奥氏体析出体组织中嵌入细的析出物,从而抑制奥氏体晶粒长大,当析出物的晶粒度为100~200Å时共析作用最大。
铝以氮化铝的形式细化晶粒,使可焊接普通结构钢为本质细晶粒钢。
此外微合金花元素铌、钒、钛通过他们的碳化物、氮化物及碳氮化物均能对细化奥氏体晶粒产生不同程度的影响。
为了抑制在轧制前的加热过程中这类产物的析出物的再溶解,应尽可能降低加热温度。