力学演示实验研究
- 格式:doc
- 大小:1.10 MB
- 文档页数:10
实验名称:牛顿第二定律演示一、实验目的1. 验证牛顿第二定律的正确性。
2. 了解力、质量和加速度之间的关系。
3. 培养学生观察、分析、实验和总结的能力。
二、实验原理牛顿第二定律:物体的加速度与作用在它上面的合外力成正比,与它的质量成反比,加速度的方向与合外力的方向相同。
即:F=ma。
三、实验仪器1. 弹簧测力计2. 小车3. 测速仪4. 轨道5. 滚动轴承6. 水平桌面7. 秒表8. 记录本四、实验步骤1. 将小车放在水平桌面上,用弹簧测力计拉动小车,使小车在水平桌面上做匀速直线运动,记录此时弹簧测力计的示数F1。
2. 在小车前方放置一固定在水平桌面上的滚动轴承,将小车从静止释放,使其通过滚动轴承,记录小车通过滚动轴承所需的时间t。
3. 用秒表测量小车通过滚动轴承的平均速度v。
4. 根据牛顿第二定律,计算小车受到的合外力F2。
5. 比较F1和F2的大小,分析实验结果。
五、实验数据及处理1. 弹簧测力计示数F1:N2. 小车通过滚动轴承所需时间t:s3. 小车通过滚动轴承的平均速度v:m/s4. 小车受到的合外力F2:N根据牛顿第二定律,计算F2:F2 = m a = m (v / t)六、实验结果与分析1. 弹簧测力计示数F1与小车受到的合外力F2的比值为:F1 / F2 = N / N = 1由此可知,弹簧测力计示数F1与小车受到的合外力F2成正比,验证了牛顿第二定律的正确性。
2. 实验过程中,小车通过滚动轴承的平均速度v与时间t成反比,说明小车在水平桌面上的加速度a与合外力F2成正比,与质量m成反比,符合牛顿第二定律。
3. 通过实验,加深了对牛顿第二定律的理解,培养了观察、分析、实验和总结的能力。
七、实验结论1. 牛顿第二定律的正确性得到了验证。
2. 力、质量和加速度之间的关系得到了验证。
3. 通过实验,提高了观察、分析、实验和总结的能力。
八、实验注意事项1. 实验过程中,注意安全,防止弹簧测力计损坏。
(完整word版)流体⼒学流动演⽰实验流体⼒学流动演⽰实验流体⼒学演⽰实验包括流线流谱演⽰实验、流动演⽰实验两部分。
各实验具体内容如下:第1部分流线流谱演⽰实验1.1 实验⽬的1)了解电化学法流动显⽰原理。
2)观察流体运动的流线和迹线,了解各种简单势流的流谱。
3)观察流体流经不同固体边界时的流动现象和流线流谱特征。
1.2 实验装置实验装置见图1.1。
图1.1 流线流谱实验装置图说明:本实验装置包括3种型号的流谱仪,Ⅰ型演⽰机翼绕流流线分布,Ⅱ型演⽰圆柱绕流流线分布,Ⅲ型演⽰⽂丘⾥管、孔板、突缩、突扩、闸板等流段纵剖⾯上的流谱。
流谱仪由⽔泵、⼯作液体、流速调节阀、对⽐度调节旋钮与正负电极、夹缝流道显- 1 -⽰⾯、灯光、机翼、圆柱、⽂丘⾥管流道等组成。
1.3 实验原理流线流谱显⽰仪采⽤电化学法电极染⾊显⽰技术,以平板间夹缝式流道为流动显⽰平⾯,⼯作液体在⽔泵驱动下从显⽰⾯底部流出,⼯作液体是由酸碱度指⽰剂配制的⽔溶液,在直流电极作⽤下会发⽣⽔解电离,在阴极附近液体变为碱性,从⽽液体呈现紫红⾊。
在阳极附近液体变为酸性,从⽽液体呈现黄⾊。
其他液体仍为中性的橘黄⾊。
带有⼀定颜⾊的流体在流动过程中形成紫红⾊和黄⾊相间的流线或迹线。
流线或迹线的形状,反映了机翼绕流、圆柱绕流流动特性,反映了⽂丘⾥管、孔板、突缩、突扩、闸板等流道内流动特性。
流体⾃下⽽上流过夹缝流道显⽰⾯后经顶端的汇流孔流回⽔箱中,经⽔泵混合,中和消⾊,循环使⽤。
实验指导与分析如下:1)Ⅰ型演⽰仪。
演⽰机翼绕流的流线分布。
由流动显⽰图像可见,机翼右侧即向天侧流线较密,由连续⽅程和能量⽅程可知,流线密,表明流速⼤、压强低;⽽机翼左侧即向地侧流线较稀疏,表明速低、压强较⾼。
这表明机翼在实际飞⾏中受到⼀个向上的合⼒即升⼒。
本仪器通过机翼腰部孔道流体流动⽅向可以显⽰出升⼒⽅向。
此外,在流道出⼝端还可以观察到流线汇集后,并⽆交叉,从⽽验证流线不会重和的特性。
流体演示实验实验报告流体演示实验实验报告一、引言流体力学是研究流体运动的力学学科,其应用广泛且深入。
为了更好地理解流体力学的基本原理和现象,我们进行了一系列流体演示实验。
本实验报告旨在总结实验过程、分析实验数据,并对实验结果进行讨论。
二、实验目的1. 通过观察流体在不同条件下的行为,理解流体的基本性质和行为规律。
2. 利用实验数据,验证流体力学的基本方程和理论模型。
3. 培养实验操作和数据处理的能力。
三、实验装置与方法本次实验主要使用了以下装置和方法:1. 流体容器:采用透明的玻璃容器,便于观察流体的运动。
2. 流体介质:使用水作为流体介质,因其流动性好且易观察。
3. 流体控制装置:通过调节阀门、泵等装置,控制流体的流量和压力。
4. 流体测量设备:使用流量计、压力计等设备,测量流体的流量和压力。
5. 观察工具:借助显微镜、放大镜等工具,观察流体的微观行为。
四、实验过程与结果1. 流体的黏性实验我们将一小滴染料加入水中,并观察其在水中的扩散情况。
结果显示,染料逐渐扩散开来,形成一个较大的扩散圈。
这表明水具有一定的黏性,即流体的内部存在摩擦力,阻碍了其自由扩散。
2. 流体的压力传递实验我们将一个小孔打在容器的侧面,并从孔处注入水。
观察到水会从孔口喷出,喷出的高度与注入水的高度成正比关系。
这说明流体的压力会沿着容器内的各个方向传递,且传递的速度相同。
3. 流体的流动实验我们调节流体控制装置,使水从一端流入容器,然后从另一端流出。
观察到水在容器内形成了一个明显的流动状态,且流速在不同位置处不同。
这表明流体在受力作用下会产生流动,并且流速与位置有关。
4. 流体的表面张力实验我们在容器中加入一些肥皂水,并在其表面放置一根细棍。
观察到肥皂水的表面形成了一个凹陷,细棍也被吸附在表面上。
这说明肥皂水具有较大的表面张力,能够使表面呈现一定的弹性。
五、实验讨论与分析通过以上实验结果,我们可以得出以下结论:1. 流体具有黏性,内部存在摩擦力,阻碍了其自由扩散。
力学演示实验研究实验报告【实验目的】1.熟悉仪器使用,熟练基本操作2.参与实验过程,获得实验体会3.明确实验原理,掌握操作要领4.探讨教学方法,提高教学技能【实验器材】实验仪器如下所示:【实验过程与数据处理】一、重心实验重心,是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。
规则而密度均匀物体的重心就是它的几何中心。
不规则物体的重心,可以用悬挂法来确定。
物体的重心,不一定在物体上。
另外,重心可以指事情的中心或主要部分。
1.定义:一个物体的各部分都要受到重力的作用。
从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。
2.物体的重心位置:(1)质量均匀分布的物体(均匀物体),重心的位置只跟物体的形状有关。
有规则形状的物体,它的重心就在几何中心上,例如,均匀细直棒的中心在棒的中点,均匀球体的重心在球心,均匀圆柱的重心在轴线的中点。
不规则物体的重心,可以用悬挂法来确定.物体的重心,不一定在物体上。
(2)质量分布不均匀的物体,重心的位置除跟物体的形状有关外,还跟物体内质量的分布有关。
载重汽车的重心随着装货多少和装载位置而变化,起重机的重心随着提升物体的重量和高度而变化。
3.重心的影响因素:(1)物体的形状(2)质量的分布实验一:寻找薄片重心实验寻找重心的方法:(1)悬挂法:只适用于薄板(不一定均匀)。
首先找一根细绳,在物体上找一点,用绳悬挂,划出物体静止后的重力线,同理再找一点悬挂,两条重力线的交点就是物体重心。
(2)支撑法:只适用于细棒(不一定均匀)。
用一个支点支撑物体,不断变化位置,越稳定的位置,越接近重心。
一种可能的变通方式是用两个支点支撑,然后施加较小的力使两个支点靠近,因为离重心近的支点摩擦力会大,所以物体会随之移动,使另一个支点更接近重心,如此可以找到重心的近似位置。
(3)针顶法:同样只适用于薄板。
用一根细针顶住板子的下面,当板子能够保持平衡,那么针顶的位置接近重心。
一、实验目的1. 理解并掌握力学基本原理在现实生活中的应用。
2. 通过实验演示,加深对力学概念的理解。
3. 培养实验操作技能和观察能力。
二、实验内容1. 验证牛顿第一定律(惯性定律)2. 验证牛顿第二定律(加速度定律)3. 验证牛顿第三定律(作用力与反作用力定律)4. 验证斜面定律5. 验证杠杆原理三、实验仪器1. 平滑斜面2. 斜面小车3. 弹簧测力计4. 定滑轮5. 力学小车6. 杠杆7. 弹簧8. 测量尺9. 计时器四、实验原理1. 牛顿第一定律:物体在没有外力作用下,将保持静止或匀速直线运动状态。
2. 牛顿第二定律:物体所受合外力等于物体质量与加速度的乘积。
3. 牛顿第三定律:两个物体相互作用时,作用力与反作用力大小相等、方向相反。
4. 斜面定律:物体沿斜面下滑时,所受重力沿斜面方向的分力等于物体下滑加速度与斜面角度的正弦值之积。
5. 杠杆原理:杠杆平衡时,动力与动力臂的乘积等于阻力与阻力臂的乘积。
五、实验步骤及结果1. 验证牛顿第一定律将斜面小车放在水平面上,用弹簧测力计拉动小车,使其达到匀速直线运动。
断开弹簧测力计,观察小车是否保持匀速直线运动。
结果:小车保持匀速直线运动,验证了牛顿第一定律。
2. 验证牛顿第二定律在斜面上放置小车,用弹簧测力计垂直向上拉动小车,使其沿斜面下滑。
记录不同拉力下小车的加速度。
结果:随着拉力的增大,小车的加速度也增大,验证了牛顿第二定律。
3. 验证牛顿第三定律将定滑轮悬挂在天花板上,将力学小车系在定滑轮的另一端。
用弹簧测力计拉动小车,观察定滑轮的拉力。
结果:定滑轮的拉力与小车的拉力大小相等、方向相反,验证了牛顿第三定律。
4. 验证斜面定律在斜面上放置小车,用弹簧测力计垂直向上拉动小车,使其沿斜面下滑。
记录不同拉力下小车下滑的加速度和斜面角度。
结果:随着斜面角度的增大,小车的加速度也增大,验证了斜面定律。
5. 验证杠杆原理将杠杆一端固定在支架上,另一端放置重物。
力学大学物理演示实验报告力学大学物理演示实验报告引言:力学是物理学的基础,它研究物体的运动和力的作用。
在力学的学习中,实验是不可或缺的一部分,通过实验可以直观地观察和验证物理原理。
本次实验旨在通过一系列力学演示实验,深入理解力学的基本概念和原理。
实验一:牛顿摆实验牛顿摆是一种简单的力学系统,通过摆动的运动来研究重力和摆长对摆动周期的影响。
实验中,我们使用了一根细线和一个小球,将小球挂在细线的一端,然后使其摆动。
通过改变摆长,我们发现摆长的变化会导致摆动周期的变化。
这是因为摆长的增加会使重力对小球的作用力变大,从而加快了摆动的速度。
实验二:斜面实验斜面实验是研究物体在斜面上滑动的实验,通过改变斜面的角度和物体的质量,我们可以观察到物体滑动的加速度和滑动距离的变化。
实验中,我们使用了一个小车和一个倾斜的平面,将小车放在斜面上,然后观察其滑动的情况。
我们发现,当斜面的角度增加时,小车的滑动速度和加速度也会增加,而当物体的质量增加时,小车的滑动速度和加速度减小。
实验三:弹簧振子实验弹簧振子是一种周期性运动的力学系统,通过改变弹簧的劲度系数和质量,我们可以观察到振动周期和振幅的变化。
实验中,我们使用了一个弹簧和一个质量块,将质量块挂在弹簧上,然后观察其振动的情况。
我们发现,当弹簧的劲度系数增加时,振动周期减小,而当质量增加时,振动周期增加。
同时,振幅也会受到这两个因素的影响。
实验四:牛顿第二定律实验牛顿第二定律描述了物体的加速度与作用力和物体质量的关系。
通过实验,我们可以验证这个定律。
实验中,我们使用了一个力传感器和一个质量块,将质量块挂在力传感器上,然后施加不同的力。
通过记录力传感器的读数和质量块的加速度,我们可以得到作用力与加速度的关系。
实验结果表明,作用力与加速度成正比,且与质量无关,验证了牛顿第二定律。
结论:通过以上实验,我们深入理解了力学的基本概念和原理。
牛顿摆实验让我们认识到摆长对摆动周期的影响,斜面实验让我们观察到斜面角度和物体质量对滑动加速度的影响,弹簧振子实验让我们了解到弹簧劲度系数和质量对振动周期和振幅的影响,牛顿第二定律实验验证了作用力与加速度成正比,与质量无关的规律。
自制教具在初中物理力学演示实验中的设计与应用研究摘要:物理是一门实验科学,实验在教学中占据重要地位。
物理作为一个理论知识较为晦涩难懂且需要通过自行动手实验探究加深对学科知识理解的学科,相关知识的实验探究是进行物理学习必不可缺的一个过程。
在新课程改革的要求标准下,也明确地提出了,初中物理教师,也要多使用自制的教具进行自制教育试验,来探究物理原理。
关键词:自制教具;初中物理;力学演示实验;设计应用引言利用生活当中简单易得的材料进行教具自制,并且将其应用于物理教学当中,能够让学生在自行制作教具的过程当中,了解教具的结构及实验的原理,更好地掌握所学知识,激发学生学习物理的积极性,让其形成良好的物理综合素养。
1初中物理自制教育试验开发的意义探究物理作为一个理论知识较为晦涩难懂且需要通过自行动手实验探究加深对学科知识理解的学科,相关知识的实验探究是进行物理学习必不可缺的一个过程。
但是由于每个学校的实验条件水平参差不齐,且部分落后地区难以提供实验场所和器材,对实验教学造成了局限性,并且不能保证每个学生都有参与,其次物理实验在大部分人看来受到了实验环境和专业器材的局限。
而对初中物理进行自制教育试验开发有效解决了这一现状,同时也丰富了物理实验形式,拉近了学科知识与学生日常生活的距离。
自制教育试验使自行进行实验探究更为真实可行,极大地锻炼了学生的动手操作能力和实验设计逻辑能力,激发了学生的自主探究兴趣。
2自制教具在初中物理力学演示实验中的设计与应用2.1要发挥学生的主动性,让学生多制作仪器自制教育试验在初中物理的教学当中,更能够发挥出学生的主动性。
开展自制教育试验能够为学生在物理实验当中的主体地位,帮助学生更好地学习物理理论知识,提高学生的物理水平,促进学生全面发展。
低成本的实验,还要求教师鼓励引导学生利用熟悉的物品来制作实验器材,能够在实验开展的过程中引导学生动手操作,培养学生的创新能力,进而促进学生全面发展。
初中物理教师在实践的过程当中,要从生活走向物理,从物理走向社会。
大二物理演示实验报告物理力学演示实验报告导读:想知道物理力学演示实验报告范文?只要看看WTT帮你整理的就可以了。
《物理力学演示实验报告一》今天上午我们很高兴的到理学院参观了大学物理演示实验室,我们参观并亲自操作了一些实验,在这次的演示实验课中,我见到了一些很新奇的仪器和实验,一个个奇妙的实验吸引了我们的注意力,通过奇妙的物理现象感受了伟大的自然科学的奥妙,给我印象深刻地有以下几个实验,在演示实验室,老师首先给我们演示的是锥体上滚实验,其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态,本今天上午我们很高兴的到理学院参观了大学物理演示实验室,尽管天气很冷,但是我们的热情很高,毕竟这对我们来说是一个全新的领域,是我们之前从未接触过的东西。
在老师的带领下,我们参观并亲自操作了一些实验。
在这次的演示实验课中,我见到了一些很新奇的仪器和实验,一个个奇妙的实验吸引了我们的注意力,通过奇妙的物理现象感受了伟大的自然科学的奥妙。
给我印象深刻地有以下几个实验。
一.锥体上滚在演示实验室,老师首先给我们演示的是锥体上滚实验。
其实验原理是:能量最低原理指出:物体或系统的能量总是自然趋向最低状态。
本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。
实验现象仍然符合能量最低原理,其核心在于刚体在重力场中的平衡问题,而自由运动的物体在重力的作用下总是平衡在重力势能极小的位置。
通过这个实验,我们知道了有时候现象和本质完全相反。
二.电磁炮接着我们又做了电磁炮的实验。
电磁炮是利用电磁力代替火药爆炸力来加速弹丸的电磁发射系统,它主要有电源、高速开关、加速装置和炮弹组成。
根据通电线圈磁场的相互作用原理,加速线圈固定在炮管中,当它通入交变电流时,产生的交变磁场就会在线圈中产生感应电流,感应电流的磁场与加速线圈电流的磁场相互作用,使弹丸加速运动并发射出去。
实验报告:理论力学演示实验一、实验目的1. 了解理论力学基本概念和原理;2. 通过实验验证牛顿运动定律;3. 掌握质点运动学、动力学的基本实验方法;4. 培养学生的实验操作能力和科学素养。
二、实验原理1. 牛顿运动定律:物体在力的作用下,其运动状态发生改变。
力是改变物体运动状态的原因。
2. 质点运动学:研究质点在空间中的运动规律,包括速度、加速度、位移等。
3. 质点动力学:研究质点在力的作用下的运动规律,包括牛顿第二定律、牛顿第三定律等。
三、实验仪器1. 理论力学演示台2. 滑轮组3. 弹簧测力计4. 水平仪5. 秒表6. 铅笔、纸、直尺四、实验步骤1. 观察演示台上的实验装置,了解其结构和工作原理。
2. 验证牛顿第一定律:将物体放置在演示台上,观察物体在无外力作用下的运动状态。
3. 验证牛顿第二定律:利用滑轮组,使物体在重力作用下做匀加速直线运动,记录数据,计算加速度。
4. 验证牛顿第三定律:将两个相同的物体分别放置在演示台上,通过相互作用力使它们相互靠近,观察现象。
5. 测量物体运动学参数:使用秒表测量物体通过一定距离所需时间,计算速度和加速度。
6. 测量力的大小:使用弹簧测力计测量物体所受重力,以及通过滑轮组产生的拉力。
五、实验数据及处理1. 验证牛顿第一定律:物体在无外力作用下,保持静止或匀速直线运动。
2. 验证牛顿第二定律:物体所受合力与加速度成正比,与物体质量成反比。
实验数据:F1 = 2.0 N,m = 0.5 kg,a1 = 4.0 m/s²F2 = 3.0 N,m = 0.5 kg,a2 = 6.0 m/s²实验结果:F1/a1 = F2/a2 = 2.0/4.0 = 3.0/6.0 = 0.5 N/kg,符合牛顿第二定律。
3. 验证牛顿第三定律:两个物体相互作用力大小相等、方向相反。
实验数据:F1 = 2.0 N,F2 = -2.0 N实验结果:F1 = -F2,符合牛顿第三定律。
一、实验目的1. 观察流体在管道中的层流和湍流现象,了解两种流态的特征和产生条件。
2. 学习雷诺数的概念及其在流体流动中的应用。
3. 掌握雷诺实验的基本原理和操作方法。
二、实验原理雷诺实验是一种经典的流体力学实验,用于研究流体在管道中的流动状态。
实验原理如下:1. 流体流动存在两种基本状态:层流和湍流。
层流是指流体在管道中作平行于管轴的直线运动,各流层之间没有混合;湍流是指流体在管道中作紊乱的不规则运动,各流层之间有明显的混合。
2. 雷诺数(Re)是判断流体流动状态的无量纲参数,其计算公式为:Re = (ρvd)/μ其中,ρ为流体密度,v为流体在管道中的平均流速,d为管道直径,μ为流体黏度。
3. 当雷诺数小于2000时,流体呈层流状态;当雷诺数大于4000时,流体呈湍流状态;当雷诺数在2000~4000之间时,流体处于过渡状态。
三、实验器材1. 雷诺实验装置:包括管道、水箱、流量计、调速器、有色水等。
2. 测量工具:尺子、秒表、计算器等。
四、实验步骤1. 将实验装置组装好,检查各部件是否正常。
2. 向水箱中加入一定量的有色水,并打开水流,使有色水在管道中流动。
3. 调节调速器,使管道中的流速逐渐增大。
4. 观察管道中的流态变化,记录层流和湍流现象出现的临界流速。
5. 计算不同流速下的雷诺数,分析流体流动状态。
6. 根据实验数据,绘制雷诺数与流速的关系曲线。
五、实验结果与分析1. 实验结果表明,当流速较小时,管道中的流态为层流,表现为流体分层流动,各流层之间没有明显混合。
2. 随着流速的增加,层流现象逐渐减弱,当流速达到一定值时,流态发生突变,出现湍流现象,表现为流体紊乱流动,各流层之间混合明显。
3. 根据实验数据,计算得到的临界雷诺数与理论值基本吻合。
4. 分析实验数据,绘制雷诺数与流速的关系曲线,发现两者呈线性关系。
六、实验总结1. 雷诺实验是一种经典的流体力学实验,用于研究流体在管道中的流动状态。
力学演示实验研究
——许亚娜物理082班08180209
实验目的:
熟悉仪器使用,熟悉仪器操作;
参与实验过程,获得试验体会;
明确实验原理,掌握实验要领;
探讨教学方法,提高教学技能。
实验仪器:
滚摆、能量演示转换器、离心轨道、颠倒之舞、托里拆利演示器、力的合成与分解演示器、演示力矩盘、动能势能演示器、反冲运动演示器、水波试验仪、轨道小车、重心实验组合。
实验过程:
一、能量的转化实验:
1、滚摆
滚摆应用的原理是是势能与动能的转化。
将滚摆从一定的高度下落,滚摆会在重力的作用下下落,重力势能会转化为动能,所以滚秋具有速度,当下落到最低端,由于绳的拉力作用,滚球会顺着细线向上滚动,于此反复,滚球就会不断的上下自由滚动,进行着势能和动能的转化。
2、光能、电能、动能转化器
太阳能转换为电能有两种基本途径:一种是把太阳辐射能转换为热能;另一种是通过光电器件将太阳光直接转换为电能。
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。
以光电效应工作的菁膜式太阳能电池为主流,而以光化学效应工作的式太阳能民池则还处于萌芽阶段。
太阳光照在半导体p-n结上,形成新的空穴由-电子对。
在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。
这就是光电效应太阳能电池的工作原理。
半导体吸收光能并将光能转化为电能,电能的作用会使小风扇发生转动。
完成了光能到电能的转化,电能到动能的转化。
3、热能—动能的转换
如图所示的钢管里有液体酒精,通过人工的方法对钢管摩擦,使酒精发热转化为气体,钢管内体积膨胀,气体对活塞做工,使活塞冲出瓶口,动能转化为势能,向上飞出。
4、动能—热能转化
当抽气棒对空气做功,动能转换为热能,达到棉花的着火点,棉花会发出一阵火花。
这里是能量的转化,做功转化为热能。
5、动能势能转换器
如图所示装置,右边是一个重力势能与动能的转化器,将小球的细线拉直,从一定的高度下落,当下落到最低点时会与轨道上的小球发生碰撞,势能转化为动能,被撞的小球具有动能开始运动。
左边的是弹性势能与动能的转换器,将小球放到弹簧上端,压缩弹簧然后放开,弹性势能转换为动能,小球会在动能的作用下飞出管子。
二、验证重心系统
1、重心在针尖的仪器
如图中所示的仪器时经过严格计算过的重心在针尖的系统,当仪器摆放在底端时,只要其重心的位置没有发生改变,无论怎样旋转,仪器都不会发生偏转或者掉下来。
这就是证明了物体可以看成是质量集中在重心的质点。
2、重心变化
如图所示的装置可以左右改变角度,当角度改变时,物体的重心也因此而改变,下端的小悬球的方向时刻与重心的方向在同一条直线上,在偏转的过程中,如果小悬球的位置在外面,物体就会发生转动,因为重力对物体形成了力矩。
右图所示必须用手将物体握住否则小球会转动。
斜面木板的运动:
如图中所示,一块小木板在斜面上,当小木板的重力方向没有构成力矩时,小球做的运动时滑动,但如果构成力矩,则小球做的运动时转动。
图中是在发生滑动,如果继续增大斜面的角度,小球在一定角度下做转动。
三、惯性系统
图中的装置是,一个金属球自由的放在支架上,有一块小铁片垫在金属球的下方,旁边是一个金属板,通过冲量可以使金属片射出。
本实验主要观察的是金属球的运动应该是怎样的,是静止在原地还是随同金属片飞出。
实验的结果是金属球静止在原地,此实验说明了物体具有保持原有的运动状态的性质,叫做惯性。
四、验证液体分子的表面张力
如图所示,用形状各异的金属器材去与肥皂水接触。
因为液体的表面是有张力的,所以液体会吸附在金属面上并形成各种图案,左边的图案仔细观察会发现中间每一块面的角度都是120度。
右边本来整个圆盘都是液体包围,当用手指轻轻的将一边弄破,会发现红绳会由于受到表面张力的作用而想另一边移去。
种种迹象都证明了液体是有受到表面张力的作用的。
五、托里拆利演示器
图中是为了验证物体的热胀冷缩的性质。
但由于只是微小的形变很难用肉眼来观察,所以用了放大的原理来观察。
图式,待测发生形变的钢丝与一条长板相连指向另一边刻度尺的原点,若钢丝发生微小的形变,则在另一边的刻度尺上,木板的移动应该较大。
这样,通过观察木板所指刻度的变化来判断钢铁是否发生形变。
六、颠倒之舞
七、验证反冲力
如图所示的装置,中间有一个漏斗,漏斗的下面有两根细管,水可以从漏斗里面流出,由于下面两个细管的出口不同,水流出的方向将也会相反,由于水的反冲力的作用是漏斗在盘内发生转动。
八、分子间存在吸引力
图中上面两块是铅块,当用力摩擦时,由于分子间存在相互作用力,在这个时候表现出来的是分子间的吸引力,分子间会由于吸引力的作用而很难分开,如下图,在铅块的下面加上了很多砝码,两块铅块都没有被拉开,可以说明分子间
存在着较强的吸引力。
九、力的合成演示仪
力是一种矢量,力的合成与分解满足平行四边形定则,如图所示,根据两个力的大小和方向可以确定其合力的大小和方向。
演示仪上面有力的大小和方向的量度。
十、滚筒
如图所示,滚筒的外部形状是圆柱形,它的奇迹之处是当把滚筒推出一段距离之后,滚筒会在内部力的作用下自动往回滚动。
其工作原理是,其内部是几根有弹性的绳索相互缠绕,里面并吊挂一重物。
当一开始滚筒在外力的作用下滚动时,内部的重物会在弹性绳里缠绕,当滚球滚动一段距离后,内部的弹性绳的缠绕方向会反转,在重物的作用下,滚球会往回滚动。
十一、虹吸现象
原理:虹吸现象是液态分子间引力与位能差所造成的,即利用水柱压力差,使水上升后再流到低处。
由于管口水面承受不同的大气压力,水会由压力大的一边流向压力小的一边,直到两边的大气压力相等,容器内的水面变成相同的高度,水就会停止流动.利用虹吸现象很快就可将容器内的水抽出。
图中所示,倒进去的是一杯水,出来的是两杯水。
十二、验证波的干涉衍射现象
如图中所示,实验仪器面上有一层水。
水的上面有两个在相同电压和频率下震动的金属棒。
由于是相同电压和频率,两个棒产生的水波是相干波。
由于是相干波,故就可以观察到波地干涉与衍射现象,图中所示可以观察到波地干涉现象。
十三、离心轨道
原理:当小球到达最高点时,有一个临界速度才能够成功滑过。
让小球从不同的高度下落,势能转化为动能,如果动能不够,小球就会下落,只有速度达到时,才会越过圆环。
用来验证圆周运动的离心条件。
十四、力矩盘
原理:力矩盘是直径25厘米的圆盘,圆盘中心有轴承,可套在方座支架的水平横轴上自由转动。
木质力矩盘可将图钉或大头针钉在上面用以悬挂砝码或测力计。
铝质力矩盘的盘面上有若干(不少于32个)直径为1.5毫米的小孔,钩码或测力计的悬线可穿入孔中用火柴棍固定。
这个实验用木质力矩盘来做实验。
十五、碰撞球
原理:是用来验证当不受外力或者受到的合外力为零的时候动量守恒定律。
图式,当把摆线调节在同一条水平线上时,小球之间的相互碰撞可以验证动量守恒定律。
十六、用垂线法测得物体的重心
由于物体的重心是始终竖直向下的,所以用两次细线吊住,两次的交点便是重
心。
以下实验一起可以用来测其重心。
十七:轨道小车
原理:用来验证牛顿第二定律,当给小车一个力,小车在作用力下,运动会发生改变,这就是牛顿第二定律。
实验体会:
在本次试验的过程中对能量的转换的印象最为深刻,势能、动能、电能、光能在一定的情况下都能发生转换,更好的验证了能量是可以相互转换的,也证明了能量守恒定律。
力学实验,其中托里拆利实验是利用力学放大的原理,将微笑的变化转化成为较大的变动,从而更好的从实验中观察变化并的扯结论。
用相同电压和频率振动形成的水波而引起的干涉和衍射,是积极用水波来代替机械波,更好的直观的观察波地干涉和衍射。
验证分子间存在引力,本来没有想过分子间的引力很大,当它能够挂起很多砝码的时候,才知道分子间的引力是非常大的。