射线检测中铸件常见缺陷特征辨析
- 格式:doc
- 大小:118.00 KB
- 文档页数:11
焊缝、铸件缺陷及伪缺陷在X 射线底片上影像特征的分析樊星明一 .单个气孔 (分散气孔 )1.特征和分布状态单个气孔缺陷在焊接内部多呈单一状态均匀分布,在焊缝上部,气孔体积不大 ,呈球状或椭圆形,外表光滑。
2.X 射线检测单个气孔与 X 射线底片上能清晰地显示出气孔的球状,椭圆状轮廓,由于经常采用射线方向与焊缝纵向垂直的透照方法,我们在底片上看到的都是气孔的正投影图象,所以,在 X 射线底片上都不能反映单个气孔缺陷在焊缝横向所处位置,即不能说明单个气孔是在焊缝的上部、中部或下部。
3.形成原因A焊接前未将焊缝坡口处金属上的铁锈、油污和油漆等清理干净。
B电焊条潮湿,水分在电弧高温作用下分解成氢气和氧气等气体,溶解于液态金属中,此时假设焊缝中液态金属凝固过快,熔解气休不能及时自焊缝中逸出。
C由于电弧加热母材温度不够高,焊接速度又过快等不合理工艺因素影响。
二 .链式气孔缺陷1.特征与分布状态链式乞孔在焊缝中呈一直线分布,气孔边沿相互衔接,状如链条,链的中心与焊缝轴线平行。
在埋弧焊中带出现在母材与焊缝之间。
在单面对接焊缝中常出现在焊接底部,链式乞孔缺陷很容易和未焊透缺陷混淆。
为了与未焊透缺陷区别,链状乞孔又称细线气孔。
在焊缝边沿的纵剖面上可以看到链状气孔,在母材与焊缝分界面上呈链环状影像。
在焊缝横剖面上链状气孔是呈单个分布,并有一定距离。
链状气孔之所以有以上所述的分布状态是由于母材与焊缝边界处冷却速度大,液态金属在此处受母材激冷,首先在此处凝固。
而氢气泡在固相外表上形成时消耗的功又小,因此氢气在熔池中析出即在此处元集形成气泡,来不及逸出。
2.X 射线检测链式气孔缺陷在X 射线底片上能清晰地显示出来,有的链环状分布,连续长度有30mm 以上有的那么呈断链状。
一段一段分布在焊缝与母材边沿部位底片上呈暗色图像,在链的边沿可清楚扯到气孔圆形轮廓。
3.形成原因主要是由氢引起的,氢来源于潮湿的助熔剂和没有充分枯燥的焊条涂料中的水分。
海绵状疏松铸件射线评定
海绵状疏松是指铸件表面或内部出现的一种缺陷,通常是由于
金属液体凝固过程中产生的气泡或气孔所致。
这种缺陷会降低铸件
的强度和密封性,因此需要进行射线评定来检测和评估其质量。
首先,射线评定是一种常用的无损检测方法,通过X射线或γ
射线对铸件进行检测,可以有效地发现和评定海绵状疏松缺陷。
在
进行射线评定时,需要考虑以下几个方面:
1. 检测方法,常见的射线评定方法包括X射线检测和γ射线
检测。
X射线透射能力强,适用于较厚的铸件;而γ射线透射能力弱,适用于较薄的铸件。
2. 检测设备,射线评定需要使用X射线机或γ射线机,这些
设备需要经过专业培训的操作人员进行操作,以确保安全和准确性。
3. 检测标准,针对海绵状疏松缺陷的射线评定需要遵循相关的
国家标准或行业标准,以确定缺陷的类型、大小和位置。
4. 结果评定,通过射线评定得到的结果需要由专业的质检人员
进行评定,判断铸件是否符合质量要求,是否需要修复或报废。
此外,海绵状疏松缺陷的产生可能与铸造工艺、材料选择等因素有关,因此在进行射线评定时,还需要综合考虑这些因素,以找出缺陷产生的原因,并提出改进措施,以避免类似缺陷再次发生。
总的来说,射线评定是一种重要的质量检测方法,对于评定海绵状疏松缺陷具有重要意义,通过科学的检测和评定,可以保证铸件的质量和安全性。
射线检测典型缺陷
缺陷名称:裂纹
焊接裂纹是指金属在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区金属结合力遭到破坏,形成的新界面所产生的缝隙, 有尖锐的缺口和长宽比大的特征, 是焊接结构(件)中最危险的缺陷。
裂纹缺陷X射线底片
缺陷名称:气孔
焊接时熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴称为气孔。
气孔有时以单个出现,有时以成堆的形式聚集在局部区域,其形状有球形、条虫形等。
密集气孔缺陷X射线底片
缺陷名称:夹渣
焊后残留在焊缝中的熔渣称为夹渣,形状较复杂,一般有线状、长条状、颗粒状等。
主要发生在坡口边缘和
每层焊道之间非圆滑过渡的部位,焊道形状发生突变或存在深沟的部位也容易产生夹渣。
条状夹渣缺陷X射线底片
缺陷种类:未熔合
在焊缝金属和母材之间或焊道金属与焊道金属之间末完全熔化结合的部分称为未熔合,常出现在坡口的侧壁、多层焊的层间及焊缝的根部。
这种缺陷有的间隙很大,与熔渣难以区别,未熔合区末端易产生微裂纹。
未熔合缺陷X射线底片
缺陷种类:未焊透
焊接时,母材金属之间应该熔合而末焊上的部分称为末焊透。
出现在单面焊的坡口根部及双面焊的坡口钝边处。
末焊透易造成较大的应力集中,往往从端部产生裂纹。
未焊透缺陷X射线底片中心指示器未收起造成的底片错误曝光,如下图所示。
铝铸件常见缺陷及分析--------------------------------------------------------------------------------一氧化夹渣缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。
断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现产生原因:1.炉料不清洁,回炉料使用量过多2.浇注系统设计不良3.合金液中的熔渣未清除干净4.浇注操作不当,带入夹渣5.精炼变质处理后静置时间不够防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低2.改进浇注系统设计,提高其挡渣能力3.采用适当的熔剂去渣4.浇注时应当平稳并应注意挡渣5.精炼后浇注前合金液应静置一定时间二气孔气泡缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。
表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色产生原因:1.浇注合金不平稳,卷入气体2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等)3.铸型和砂芯通气不良4.冷铁表面有缩孔5.浇注系统设计不良防止方法:1.正确掌握浇注速度,避免卷入气体。
2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量3.改善(芯)砂的排气能力4.正确选用及处理冷铁5.改进浇注系统设计三缩松缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。
在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现产生原因:1.冒口补缩作用差2.炉料含气量太多3.内浇道附近过热4.砂型水分过多,砂芯未烘干5.合金晶粒粗大6.铸件在铸型中的位置不当7.浇注温度过高,浇注速度太快防止方法:1.从冒口补浇金属液,改进冒口设计2.炉料应清洁无腐蚀3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用4.控制型砂水分,和砂芯干燥5.采取细化品粒的措施6.改进铸件在铸型中的位置降低浇注温度和浇注速度四裂纹缺陷特征:1.铸造裂纹。
焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析樊星明一.单个气孔(分散气孔)1.特征和分布状态单个气孔缺陷在焊接内部多呈单一状态均匀分布,在焊缝上部,气孔体积不大,呈球状或椭圆形,表面光滑。
2. X射线检测单个气孔与X射线底片上能清晰地显示出气孔的球状,椭圆状轮廓,由于经常采用射线方向与焊缝纵向垂直的透照方法,我们在底片上看到的都是气孔的正投影图象,所以,在X射线底片上都不能反映单个气孔缺陷在焊缝横向所处位置,即不能说明单个气孔是在焊缝的上部、中部或下部。
3.形成原因A焊接前未将焊缝坡口处金属上的铁锈、油污和油漆等清理干净。
B电焊条潮湿,水分在电弧高温作用下分解成氢气和氧气等气体,溶解于液态金属中,此时若焊缝中液态金属凝固过快,熔解气休不能及时自焊缝中逸出。
C由于电弧加热母材温度不够高,焊接速度又过快等不合理工艺因素影响。
二.链式气孔缺陷1.特征与分布状态链式乞孔在焊缝中呈一直线分布,气孔边沿相互衔接,状如链条,链的中心与焊缝轴线平行。
在埋弧焊中带出现在母材与焊缝之间。
在单面对接焊缝中常出现在焊接底部,链式乞孔缺陷很容易和未焊透缺陷混淆。
为了与未焊透缺陷区别,链状乞孔又称细线气孔。
在焊缝边沿的纵剖面上可以看到链状气孔,在母材与焊缝分界面上呈链环状影像。
在焊缝横剖面上链状气孔是呈单个分布,并有一定距离。
链状气孔之所以有以上所述的分布状态是由于母材与焊缝边界处冷却速度大,液态金属在此处受母材激冷,首先在此处凝固。
而氢气泡在固相表面上形成时消耗的功又小,因此氢气在熔池中析出即在此处元集形成气泡,来不及逸出。
2. X射线检测链式气孔缺陷在X射线底片上能清晰地显示出来,有的链环状分布,连续长度有30mm以上有的则呈断链状。
一段一段分布在焊缝与母材边沿部位底片上呈暗色图像,在链的边沿可清楚扯到气孔圆形轮廓。
3.形成原因主要是由氢引起的,氢来源于潮湿的助熔剂和没有充分干燥的焊条涂料中的水分。
焊条地程中在电弧高温作用下水被分解成氢和氧。
金属铸件的X射线缺陷
金属铸件的X射线缺陷主要有以下几种:
1. 气孔:在铸件中出现的圆形、椭圆形或不规则形状的孔洞,有时多个气孔会形成气团。
气孔可能是由于模具预热温度过低,液态金属通过浇注系统冷却太快,模具排气设计不良,涂层不好等因素造成的。
2. 缩松:铸件表面或内部的一种粗糙的孔洞,通常发生在铸件的流道附近、冒口的根部、厚壁部分、壁厚过渡部分以及大平面的厚薄部分之间。
这可能是由于模具的工作温度控制不满足定向凝固的要求,涂层选择不当,铸件在模具中位置的设计不当等因素造成的。
3. 渣孔:铸件中的开孔或黑洞,孔完全或部分充满熔渣。
渣孔主要由合金熔炼过程和浇注过程(包括浇注系统设计不当)引起。
4. 裂纹:铸件中出现的直线或不规则曲线状的缺陷,可能是由于不合理的结构设计和制作工艺不达标,或者热处理不当等原因造成。
裂纹在X射线检测图像中呈浅色线条状。
5. 气泡:由于铸件在铸造过程中通气不顺,掺杂了空气或杂质等原因造成的。
工件表面的气泡/气孔可以通过喷砂处理发现,工件内部的气泡/气孔可采用X射线透视检测发现。
这些缺陷的存在会严重影响铸件的质量和性能,因此在生产过程中应通过优化工艺、加强质量控制等措施避免这些缺陷的产生。