平行四边形与特殊平行四边形中的折叠型问题
- 格式:doc
- 大小:124.50 KB
- 文档页数:1
第60期特殊平行四边形中的折叠问题上期微专题探讨了勾股定理与折叠问题的不解之缘,本期我们将一起来探究特殊平行四边形中的折叠问题。
透过现象看本质如图,在矩形ABCD中,把ΔADE沿AE折叠,点D与点F重合,且点F落在BC 边上.我们不难发现,折叠问题的本质其实就是轴对称,折叠的性质就是轴对称的性质。
性质1.图形的全等性:重合部分是全等图形,对应边、对应角相等.(由折叠性质1可得:ΔADE≌ΔAEF)性质2.点的对称性:对称点连线被对称轴(折痕)垂直平分.(由折叠性质2可得: AE是DF的垂直平分线)特殊平行四边形中的折叠问题,既要用到折叠的性质,又要用到特殊平行四边形本身的性质,有时还需要借助勾股定理和图形的相似等知识建立有关线段、角之间的联系。
接下来,我们通过3个例题来探究特殊平行四边形中的折叠问题。
类型一、折叠性质1的应用例1.如图,菱形纸片ABCD中,AM⊥CD于点M,将△ADM沿直线AM折叠后,点D落在点E处,AE交BC于点N,且AE⊥BC.(1)求证:△AME≌△ANB;(2)求∠CBE的度数.分析:本题的已知条件有1. △ADM沿直线AM折叠为△AME2. 菱形ABCD3. AM⊥CD, AE⊥BC那么我们便利用折叠性质和菱形的性质及垂直的特殊条件来寻找线段和角之间的关系。
解:(1)∵四边形ABCD是菱形∴AB=AD,∠ABC=∠D∵AM⊥CD,AN⊥BC∴∠AMD=∠ANB∴△ADM≌△ABN由折叠得△ADM≌△AEM∴△AME≌△ANB(2)由(1)得∠EAB=∠EAM,AE=AB∵CD//AB,AM⊥CD∴∠MAB=∠AMD = 90°∴∠EAB=∠EAM = 45°∴∠ABE=∠AEB = 67.5°∵AN⊥BN∴∠ABN =90°–∠EAB = 45°∴∠CBE=∠ABE–∠ABN = 67.5°–45° = 22.5°类型二、折叠性质2的应用例2.如图,已知矩形ABCD中,E是AB边的中点,连接CE,将△BCE沿直线CE折叠后,点B落在点B?处,连接AB?并延长交CD 于点F.(1)求证:四边形AECF是平行四边形;(2)若AB = 6,BC=4,求tan∠CB?F的值.情景再现:本题第(2)问并不困难,难点在第(1)问。
解决特别平行四边形中折叠问题的4种方法►方法一用方程思想解决特别平行四边形中的折叠问题1、如图1-ZT-1,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上、若AB=6,BC=9,则BF的长为()图1-ZT-1A、4 B、3 2C、4、5D、52、把一张矩形纸片(矩形ABCD)按如图1-ZT-2所示的方式折叠,使顶点B和点D重合,折痕为EF、若AB=3 cm,BC=5cm,则重叠部分△DEF的面积是________cm2、:学*科*网Z*X*X*K]图1-ZT—23。
如图1-ZT—3,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且点D落在对角线D′处、若AB=3,AD=4,则ED的长为()图1—ZT-3A、\f(3,2)B、3C。
1D。
\f(4,3)[来源:1]4。
如图1-ZT-4,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知折痕AE=5 5 cm,且EC∶FC=BF∶AB=3∶4、那么矩形ABCD的周长为________cm、图1—ZT-45、如图1-ZT—5,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG、(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值。
图1-ZT-5►方法二用数形结合思想解决特别平行四边形中的折叠问题6。
如图1—ZT—6,在矩形ABCD中,AB=4,BC=6,E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()图1-ZT-6A、95B。
\f(12,5)C、\f(16,5)D、\f(18,5)7。
如图1—ZT-7,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处、若点D的坐标为(10,8),则点E的坐标为________、图1-ZT-78、如图1-ZT-8,在矩形ABCD中,AB=6 cm,E,F分别是边BC,AD上一点,将矩形ABCD沿EF折叠,使点C,D分别落在点C′,D′处、若C′E⊥AD,则EF的长为________cm。
第07讲专题1平行(特殊)四边形中的折叠问题类型一:平行四边形中的折叠问题类型二:矩形中的折叠问题类型三:菱形中的折叠问题类型四:正方形中的折叠问题类型一:平行四边形中的折叠问题1.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△AB′C,B′C交AD于点E,连接B′D,若∠B=60°,∠ACB=45°,AC=,则B′D的长是()A.1B.C.D.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∠ADC=60°,∴∠CAE=∠ACB=45°,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB=45°,∠AB′C=∠B=60°,∴∠AEC=180°﹣∠CAE﹣∠ACB′=90°,∴AE=CE=AC=,∵∠AEC=90°,∠AB′C=60°,∠ADC=60°,∴∠B′AD=30°,∠DCE=30°,∴B′E=DE=1,∴B′D==.故选:B.2.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A=65°.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.4.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.5.如图,P是平行四边形纸片ABCD的BC边上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在C′P边上B′处,折痕与AB边交于点N.若∠MPC=74°,则∠NPB′=16°.【解答】解:∵点C,D落在纸片所在平面上C′,D′处,折痕与AD边交于点M,∴∠MPC′=∠MPC=74°,∴∠BPB′=180°﹣∠CPC′=180°﹣2∠PMC=180°﹣148°=32°,∵∠BPN=∠B′PN,∴∠NPB′=∠BPB′=16°,故答案为:16.类型二:矩形中的折叠问题6.如图,矩形ABCD沿对角线BD折叠,已知长BC=8cm,宽AB=6cm,那么折叠后重合部分的面积是()A.48cm2B.24cm2C.18.75cm2D.18cm2【解答】解:∵四边形ABCD是矩形,∴AD∥CB,∴∠ADB=∠DBC,∵∠C′BD=∠DBC∴∠ADB=∠EBD,∴DE=BE,∴C′E=8﹣DE,∵C′D=AB=6,∴62+(8﹣DE)2=DE2,∴DE=,=DE×CD÷2=18.75cm2.∴S△BDE故选:C.7.如图,长方形纸片ABCD,E为CD边上一点,将纸片沿BE折叠,点C落在点C'处,将纸片沿AE折叠,点D落在点D'处,且D'恰好在线段BE上.若∠AEC'=α,则∠CEB=()A.B.C.D.【解答】解:由折叠的性质得:∠AED=∠AED',∠CEB=∠C'EB,∵∠AED'=180°﹣∠CEB﹣∠AED,∠AED'=∠AEC'+∠C'EB=α+∠C'EB,∴∠AED'=180°﹣∠CEB﹣∠AED',∴2∠AED'=180°﹣∠CEB,∴2(α+∠CEB)=180°﹣∠CEB,∴3∠CEB=180°﹣2α,∴∠CEB=60°﹣α,故选:A.8.数学老师要求学生用一张长方形的纸片ABCD折出一个45°的角,甲、乙两人的折法如下,下列说法正确的是()甲:如图1,将纸片沿折痕AE折叠,使点B落在AD上的点B'处,∠EAD即为所求,乙:如图2,将纸片沿折痕AE,AF折叠,使B,D两点分别落在点B',D'处,AB'与AD'在同一直线上,∠EAF即为所求,A.只有甲的折法正确B.甲和乙的折法都正确C.只有乙的折法正确D.甲和乙的折法都不正确【解答】解:甲:将纸片沿折痕AE折叠,使B点落在AD上的B'点,得到∠EAB=∠EAD=45°;乙:将纸片沿折痕AE,AF折叠,使B,D两点落在AC上的点B',D',得到∠EAF=∠EAB'+∠FAB'=(∠DAC+∠BAC)=×90°=45°;故选:B.9.如图,在矩形ABCD中,M是BC上一点,将△ABM沿AM折叠,使点B落在B'处,若∠AMB=α,则∠B'AD等于()A.α﹣90°B.α﹣45°C.90°﹣2αD.90°﹣α【解答】解:∵四边形ABCD为矩形,∴∠ABC=90°,AD∥BC,∴∠DAM=∠AMB=α,∠BAM=90°﹣α,根据折叠可知,∠B'AM=∠BAM=90°﹣α,∴∠B'AD=∠B'AM﹣∠DAM=90°﹣α﹣α=90°﹣2α,故C正确.故选:C.10.如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFG=37°点H和点G分别是边AD和BC上的动点,现将纸片两端分别沿EF,GH折叠至如图所示的位置,若EF∥GH,则∠KHD 的度数为()A.37°B.74°C.96°D.106°【解答】解:∵EF∥GH,∴∠HGC=∠EFG=37°,∵四边形ABCD是长方形,∴AD∥BC,∴∠GHD+∠HGC=180°,∴∠GHD=143°,根据折叠的性质可得:∠KHG=∠DHG=143°,∴∠KHD=360°﹣∠KHG﹣∠DHG=360°﹣143°﹣143°=74°.故选:B.11.如图,将长方形纸片ABCD沿EF折叠后,点A,D分别落在A1,D1的位置,再将△A1EG沿着AB对折,将△GD1N沿着GN对折,使得D1落在直线GH上,则下列说法正确的是()①GN⊥DC;②GH⊥GD1;③当MN∥EF时,∠AEF=120°.A.①②B.①③C.②③D.①②③【解答】解:由折叠可知:∠A1GE=∠EGH,∠D1GN=∠MGN,∠GMN=∠D1=90°,∠A1=∠EHG=90°,∠AEF=∠A1EF,∴EH∥MN,∵∠A1GE+∠EGH+∠D1GN+∠MGN=180°,∴∠EGN=90°,∴GN⊥DC;故①正确;∵∠D1GN=∠MGN不一定为45°,∴GH不一定垂直GD1,故②错误;∵MN∥EF,EH∥MN,∴EH与EF共线,∴∠AEF=∠A1EF=2∠GEF,∵∠AEF+∠GEF=180°,∴∠AEF=120°,故③正确;故选:B.类型三:菱形中的折叠问题10.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C′,且DC′是AB的垂直平分线,则∠DEC的大小为()A.30°B.45°C.60°D.75°【解答】解:连接BD,如图所示:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵DC′是AB的垂直平分线,∴P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:D.11.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD上的点F,那么∠BFC的度数是75°.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=(180°﹣30°)÷2=75°,故答案为:75°.12.如图,菱形ABCD中,∠D=120°,点E在边CD上,将菱形沿直线AE翻折,使点D恰好落在对角线AC上,连接BD′,则∠AD′B=75°.【解答】解:∵四边形ABCD是菱形,∴AD=DC=BC=AB,CD∥AB,∴∠DAC=∠DCA,∵∠D=120°,∴∠DAC=∠DCA=(180°﹣∠D)=30°.∵CD∥AB,∴∠BAD′=∠DCA=30°.∵将菱形沿直线AE翻折,使点D恰好落在对角线AC上,∴AD=AD′,∴AB=AD′,∴∠AD′B=∠ABD′=(180°﹣∠BAD′)=75°.故答案为75.13.如图,在菱形ABCD中,∠A=120°,AB=2,点E是边AB上一点,以DE为对称轴将△DAE折叠得到△DGE,再折叠BE使BE落在直线EG上,点B的对应点为点H,折痕为EF且交BC于点F.(1)∠DEF=90°;(2)若点E是AB的中点,则DF的长为.【解答】解:(1)由翻折可得∠AED=∠DEG,∠BEF=∠HEF,∴∠DEG+∠HEF=∠AED+∠BEF,∵∠DEG+∠HEF+∠AED+∠BEF=180°,∴∠DEG+∠HEF=90°,即∠DEF=90°.故答案为:90°.(2)∵四边形ABCD为菱形,∴AD∥BC,∴∠A+∠B=180°,由翻折可得AE=EG,BE=EH,∠A=∠EGD,∠B=∠EHF,∵点E是AB的中点,∴AE=BE,∴EG=EH,即点G与点H重合.∵∠EGD+∠EHF=∠A+∠B=180°,∴点D,G,F三点在同一条直线上.过点D作DM⊥BC,交BC的延长线于点M.∵∠A=120°,AB=2,∴∠DCM=60°,CD=2,∴CM=CD=1,DM=CD=,由翻折可得BF=FG,AD=DG=2,设BF=x,则MF=2﹣x+1=3﹣x,DF=2+x,由勾股定理可得,解得x=,∴DF=.故答案为:.类型四:正方形中的折叠问题14.如图,在正方形ABCD中,点E,F分别在边AB,CD上,∠EFC=120°,若将四边形EBCF沿EF 折叠,点B恰好落在AD边上,则∠AEB′为()A.70°B.65°C.30°D.60°【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∴∠BEF+∠EFC=180°,∵∠EFC=120°,∴∠BEF=180°﹣∠EFC=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,故选:D.15.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若FN=3,则正方形纸片的边长为2.【解答】解:设正方形纸片的边长为x,则BF=AB=x,BN=BC=x,∴Rt△BFN中,NF==x=3,∴x=2,故答案为:2.16.如图,在正方形ABCD中,E为边BC上一点,将△ABE沿AE折叠至△AB'E处,BE与AC交于点F,若∠EFC=69°,则∠CAE的大小为()A.10°B.12°C.14°D.15°【解答】解:∵∠EFC=69°,∠ACE=45°,∴∠BEF=69+45=114°,由折叠的性质可知:∠BEA=∠BEF=57°,∴∠BAE=90﹣57=33°,∴∠EAC=45﹣33=12°.故选:B.17.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,折痕BF与AE交于点H,点F在AD上,若DE=5,则AH的长为.【解答】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF===13,=AB•AF=BF•AH,∵S△ABF∴12×5=13AH,∴AH=,故答案为:.18.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A.100°B.110°C.120°D.130°【解答】解:四边形CDMN与四边形C′D′MN关于MN对称,则∠DMN=∠D′MN,且∠AMD′=90°﹣∠AD'M=40°,∴∠DMN=∠D′MN=(180°﹣40°)÷2=70°由于∠MD′C′=∠NC′D′=90°,∴∠MNC'=360°﹣90°﹣90°﹣70°=110°故选:B.。
平行四边形中的折叠问题课件.一、教学内容本节课我们将探讨《几何》教材第四章第三节“平行四边形中的折叠问题”。
内容详细涉及平行四边形的性质,尤其是通过折叠操作来探讨平行四边形对角线的性质、对边关系以及角的关系。
二、教学目标1. 理解并掌握平行四边形的基本性质,尤其是通过折叠操作呈现的性质。
2. 学会运用折叠方法解决平行四边形中的相关问题,提高空间想象力和逻辑思维能力。
3. 能够将平行四边形的折叠问题与其他几何知识相结合,形成综合解决问题的能力。
三、教学难点与重点教学难点:通过折叠操作推导出平行四边形对角线的性质以及与角度的关系。
教学重点:平行四边形的基本性质及其在折叠问题中的应用。
四、教具与学具准备教具:多媒体课件、平行四边形模型、剪刀、尺子、量角器。
学具:每组一份平行四边形纸张模型、剪刀、尺子、量角器。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中常见的平行四边形折叠实例,如包装盒、纸飞机等,引导学生观察并思考折叠后的性质变化。
2. 知识讲解(15分钟)通过课件和模型,讲解平行四边形的基本性质,以及折叠操作对平行四边形的影响。
3. 例题讲解(10分钟)选取一道典型例题,讲解如何运用折叠方法解决平行四边形中的问题。
4. 随堂练习(10分钟)学生独立完成两道练习题,巩固折叠问题的解法。
5. 小组讨论(10分钟)学生分组讨论解题过程中遇到的问题,分享解题心得。
六、板书设计1. 平行四边形的性质2. 折叠操作对平行四边形的影响3. 例题及解题步骤4. 练习题及答案七、作业设计1. 作业题目:(1)已知平行四边形ABCD,对角线AC、BD相等,求证:四边形ABCD是矩形。
(2)将一个平行四边形沿对角线折叠,得到一个三角形,求证:这个三角形的面积等于原平行四边形面积的一半。
2. 答案:(1)根据平行四边形性质,对角线相等,故四边形ABCD是矩形。
(2)设平行四边形ABCD的面积为S,折叠后得到的三角形面积为S',则S' = 1/2 S。
人教版八年级下第十八章平行四边形专题4 特殊平行四边形中的折叠问题姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,直线BC与⊙A相切于点C,过B作CB的垂线交⊙O于D,E 两点,已知AC=,CB=a,则以BE,BD的长为两根的一元二次方程是()A.x2+bx+a2=0B.x2﹣bx+a2=0C.x2+bx﹣a2=0D.x2﹣bx﹣a2=02 . 如图,在四边形ABCD中,AD∥BC,∠C=90°,△BCD与△BC′D关于直线BD轴对称,BC=6,CD=3,点C 与点C′对应,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.3 . 现有边长AB=10,BC=5的矩形纸片ABCD,对角线BD.在AB上取一点G,以DG为折痕,使DA落在DB上,则AG的长是:()A.B.C.D.二、填空题4 . 一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_____________cm.三、解答题5 . 如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm,将AC沿AE折叠,使得点C与AB上的点D重合.(1)证明:△ABC是直角三角形;(2)求△AEB的面积.6 . 四边形ABDF中,点C、E分别在AF、DF上,且AB=AC,BD=DE,∠BDF=2∠ABC,M为CE的中点.(1)画出△ACM关于点M成中心对称的图形;(2)求证:AM⊥DM;(3)若AM=DM,求∠ABC的度数.7 . 综合与实践:问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点A.特例探究实验小组的同学发现:(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;(2)当AB=BC=4时,求CG的长;延伸拓展:(3)实知小组的同学在实验小组的启发下,进一步探究了当AB∶BC=∶2时,线段AG,BC,CG之间的数量关系,请你直接写出实知小组的结论:___________.参考答案一、单选题1、2、3、二、填空题1、三、解答题1、2、3、。
平行四边形中的折叠问题课件.一、教学内容本节课我们将探讨人教版八年级数学上册第四章《平行四边形》中的折叠问题。
具体内容包括:平行四边形的性质,折叠后图形的特点,以及如何通过折叠解决问题。
重点章节为4.3节“平行四边形的判定”。
二、教学目标1. 让学生掌握平行四边形的基本性质,并能运用这些性质解决折叠问题。
2. 培养学生空间想象力和逻辑思维能力,提高解决实际问题的能力。
3. 通过折叠实践活动,让学生体会数学与生活的联系,激发学习兴趣。
三、教学难点与重点难点:平行四边形折叠后图形的形状变化,以及如何利用性质解决问题。
重点:平行四边形的性质及判定方法,折叠问题的解决方法。
四、教具与学具准备教具:平行四边形模型、折叠示例图、多媒体课件。
学具:剪刀、彩纸、直尺、圆规。
五、教学过程1. 实践情景引入(5分钟)让学生动手折叠一张平行四边形纸片,观察折叠后的形状变化,引导学生发现数学问题。
2. 例题讲解(15分钟)讲解折叠问题中涉及到的平行四边形性质,并通过例题演示解题方法。
例题:一个平行四边形沿着一条对角线折叠,求折叠后图形的周长。
3. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。
练习题:一个平行四边形沿着一条高折叠,求折叠后图形的面积。
4. 小组讨论(5分钟)分组讨论折叠问题的解题方法,促进学生交流与合作。
6. 知识拓展(5分钟)介绍平行四边形折叠在生活中的应用,激发学生兴趣。
六、板书设计1. 平行四边形的性质2. 折叠问题的解决方法3. 例题及解答步骤七、作业设计1. 作业题目:(1)一个平行四边形沿着一条对角线折叠,求折叠后图形的周长和面积。
(2)一个平行四边形沿着一条高折叠,求折叠后图形的周长和面积。
2. 答案:(1)周长:原平行四边形的周长;面积:原平行四边形面积的一半。
(2)周长:原平行四边形的周长;面积:原平行四边形面积的一半。
八、课后反思及拓展延伸本节课通过折叠实践活动,让学生掌握了平行四边形性质在折叠问题中的应用。
专题01特殊平行四边形中的折叠问题全梳理目录【方法归纳】 (1)【考法一、三角形翻折问题】 (1)【考法二、四边形翻折问题】 (16)【课后练习】 (28)【方法归纳】1.折叠的基本性质:翻折前后对应的边与角相等;2.对于翻折都不确定的情况,注意分类讨论,避免漏掉解;3.方程思想:灵活设未知数,通过勾股定理建立方程,解出答案4.综合性:把折叠性质与四边形性质相结合,建立边角之间的关系。
【考法一、矩形翻折问题】例.如图,在矩形OABC 中8AB =,4BC =,点D 为对角线OB 中点,点E 在OC 所在的直线上运动,连结DE ,把ODE 沿DE 翻折,点O 的对应点为点F ,连结BF .(1)当点F 在OC 下方时(如图1),求证:DE BF ∥.(2)当点F 落在矩形的对称轴上时,求EF 的长.(3)是否存在点E ,使得以D ,E ,F ,B 为顶点的四边形是平行四边形?若存在,求OE 的长;若不存在,请说明理由.当四边形△中,在Rt ABO222=+=OB AB AO8BC OC⊥∴∥,且D为OBDM BC中位线,DM∴为OCBOE EF BD DO ∴==,,25OE OD ∴==;如图,当四边形DEBF 为平行四边形时,DF OD BE ∴=,25BE ∴=,在Rt BEC △中,EC =826OE ∴=-=;DF OD BD DF == ,25BE OD ∴==,在Rt BCE 中,2CE BE =-在矩形ABCD 中,8AB =,6AD =,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原.【初步思考】(1)若点P落在矩形ABCD的边AB上(如图①)当点P与点A重合时,DEF∠=_____︒,当点E与点A重合时,DEF∠=______︒;【深入探究】(2)若点P落在矩形ABCD的内部(如图②),且点E、F分别在AD、DC边上,AP的最小值是______;【拓展延伸】(3)若点F与点C重合,点E在AD上,射线BA与射线FP交于点M(如图③)在各种不同的折叠位置中,是否存在某一情况,使得线段AM与线段DE的长度相等?若存在,请求出线段AE的长度;若不存在,请说明理由.【答案】(1)90;45(2)2(3)存在某一情况,使得线段AM与线段DE的长度相等,线段AE的长度为65或4211【分析】(1)当点P与点A重合时,画出图形可得结论;当点E与点A重合时,则EF平分DAB∠,即可得出答案;(2)当F与C重合,点P在对角线AC上时,AP有最小值,根据折叠的性质求8CD PC==,由勾股定理求10AC=,即可得出结果;(3)分两种情况根据全等三角形的判定和性质以及勾股定理解答即可.【详解】解:(1)四边形ABCD是矩形,90DAB D∴∠=∠=︒,当点P与点A重合时,EF是AD的中垂线,90DEF∴∠=︒,当点E与点A重合时,如图,则EF平分DAB∠,==,则AF=设DF PF x当A,P,F在一直线上时,当x最大为8时,AP最小值为四边形ABCD是矩形,A ADC B∴∠=∠=∠=90∠由折叠的性质得:EPM ,AM DE=∴=,AM EP四边形ABCD是矩形,∴∠=∠=∠=︒,DAM ADC B90∠=∠由折叠的性质得:EPC ADC ∴∠=∠=︒,GAM GPE90变式2.【问题情境】折纸操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘,下面是折纸过程.【动手操作】步骤1:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,展平纸片;步骤2:点M 为边AD 上任意一点(与点A ,D 不重合),ABM 沿BM 折叠得到A BM '△,折痕BM 交EF 于点N .【问题探究】(1)如图1,当点A 的对称点A '落在EF 上时,连接AN .求证:四边形ANA M '为菱形;(2)已知2BC AB =,继续对折矩形纸片ABCD ,使AB 与DC 重合,折痕GH 与EF 交于点O .将ABM 沿BM 折叠,连接MO ,若点A 的对称点A '恰好落在线段MO 上,此时2AM =.①尺规作图:请在图2中用直尺和圆规,作点A 的对称点A '(保留作图痕迹,不写作法);②求AB 的长度;【拓展迁移】如图3,在矩形纸片ABCD 的边AB 上取一点P ,折叠纸片,使P ,B 两点重合,展平纸片,得到折痕EF ;点B '为EF 上任意一点(与点E ,F 不重合),折叠纸片使B ,B '两点重合,得到折痕l 及点P 的对应点P ',折痕l 交EF 于点K ,展平纸片,连接BP ',KP '.(3)猜想P B K ∠'与BC P '∠的数量关系,并证明.【答案】(1)见解析;(2)①见解析;②6AB =;(3)3P BC BP K ''∠∠=,理由见解析【分析】(1)根据折叠可得出NA NA '=,MA MA '=,AMB A MB '∠=∠,,证明AD EF ∥,利用平行线的性质得出AMB MNA '∠=∠,则A MB MNA ''∠=∠,利用等角对等边得出MA NA ''=,即可得证;(2)①以M 为圆心,MA 为半径画弧交MO 于A '即可;②利用折叠的性质,矩形的判定与性质可得出2BH AB A B AG OG '====,证明()HL OA B OHB ' ≌,得出OA OH OG '==,在Rt MGO △中,根据勾股定理,可求出OG ,进而求出AB ;(3)连接PK ,BK ,延长BK 交P B ''于点M ,可证明EB B MBB ''≌ ,得出BE B M '=,90FEB BMB '∠=∠=︒,由折叠可得BK PK P K B K ''===,利用等边对等角和三线合一的性质可得出P BK BP K ''∠=∠,KBB KB B ''∠=∠,MB MP ''=,利用线段垂直平分线的性质BP BB ''=,利用三线合一性质可得出P BK KBB ''∠=∠,则P BK BP K KBB KB B ''''∠=∠=∠=∠,由(1)中BC EF ∥,可得出B BC KB B ''∠=∠,即可得证.【详解】(1)证明:连接AA ',∵ABM 沿BM 折叠,得到A BM '△,∴BM 垂直平分AA ',∴NA NA '=,MA MA '=,AMB A MB '∠=∠,由折叠可知:AEF BEF ∠=∠,∵180AEF BEF ∠+∠=︒,∴90BEF ∠=︒,∵四边形ABCD 为矩形,∴90DAB ∠=︒,∴90BEF DAB ∠=∠=︒,∴AD EF ∥,∴AMB MNA '∠=∠,∴A MB MNA ''∠=∠,∴MA NA ''=,∴MA NA NA MA ''===,∴四边形ANA M '为菱形;点A'即为所求,解:连接BO,由折叠可知:AB A B'=,MA 由(1)得90∠=∠=︒GHB HGA∵l为折痕,∴P B B PBB'''∠=∠,BP B P''=,l ∴KP KP'=,=,KB KB'∴KBB KB B''∠=∠,∵B B BB''=,∴BE B M '=,90FEB BMB '∠=∠=︒,由折叠可知:KP KB =,EP EB =,90FEB ∠=︒,∴KP KB '=,KP KB ''=∴P BK BP K ''∠=∠,MB MP ''=∴BP BB ''=,∴P BK BP K KBB KB B ''''∠=∠=∠=∠,由(1)可知BC EF ∥,∴B BC KB B ''∠=∠,∴3P BC BP K ''∠=∠.【点睛】本题考查了矩形与折叠,等腰三角形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,明确题意,灵活运用所学知识解决问题是解题的关键.变式3.如图1,在矩形ABCD 中,点E 是边AB 上的一点,连接DE .(1)若DE 平分ADC ∠,点G 是CD 上的一点,连接EC ,EG ,且EC EG =.过点C 作CQ EG⊥于Q ,CQ 延长线交ED 于H ,过点H 作HP CD ⊥于P ,如图.①填空:AED △的形状是______三角形;②求证:PHC BEC△△≌(2)将图1的矩形ABCD 画在纸上,若DE 平分ADC ∠,沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,如图.求证:MC ME '=.(3)如图,延长DE 交CB 的延长线于点K 使得AB BK =,此时恰好BE BC =,连接AC 交DK 于点J ,连接BJ .请证明:KJ AJ BJ >+.【答案】(1)①等腰直角;②见解析(2)见解析(3)见解析【分析】(1)①根据矩形的性质和角平分线的性质可得45AED ADE ∠=∠=︒,进而得出结果;②可证得BCE PCH ∠=∠,EC HC =,90HPC B ︒∠=∠=,进而得出结论;(2)连接C E ',可证得Rt Rt EC A C EB ''' ≌,可得C EA EC B '''∠=∠,根据等角对等边即可得出结论;(3)在线段EK 上取点I ,使得KI AJ =,连接BI ,可证KBE ABC ≌△△,得BKE BAC ∠=∠,在证KBI ABJ ≌△△,得KBI ABJ ∠=∠,90IBJ KBA ︒∠=∠=,得出IJ BJ >,进一步得出结论.【详解】(1)① 四边形ABCD 是矩形,∴90A ADC ∠=∠=︒,DE 平分ADC ∠,∴1452ADE ADC ∠=∠=︒,∴9045AED ADE ∠=︒-∠=︒,∴AED ADE ∠=∠,∴AE DE =,∴AED △等腰直角三角形,故答案为:等腰直角②证明:如图,过点E 作EW CD ⊥于W .EC EG = ,EGC ECG ∴∠=∠,CH EG ⊥ ,90HCP EGC ∴∠+∠=︒,90BCE ECG ∠︒∠+= ,BCE PCH ∴∠=∠,45EDW DEW ∠︒∠== ,45EHC EDW PCH PCH ∴∠=∠︒+∠=+∠,DEC DEW CEW ∠=∠+∠,EW BC ∥,BCE CEW PCH ∴∠=∠=∠,DEC EHC ∴∠=∠,EC HC ∴=,90HPC B ∠=∠=︒PHC BEC ∴△△≌.(2)证明:如图,连接C E ',由(1)知,AED △为等腰直角三角形,AD AE ∴=,四边形ABCD 是矩形,AD BC ∴=,90EAC B '∠=∠=︒,由折叠知,B C BC ''=,B B '∠=∠,AE B C ''∴=,EAC B ''∠=∠,又EC C E ''=,在Rt EC A '△和Rt C EB ''△中,EC C E ''=,AE B C ''=,∴Rt Rt EC A C EB ''' ≌,C EA EC B '''∴∠=∠,MC ME '∴=.(3)如图,在线段EK 上取点I ,使得KI AJ =,连接BI ,在AJB 与KIB △中,BK AB =,ABC ABK ∠=∠,BE BC =,KBE ABC ∴△△≌,BKE BAC ∴∠=∠.KI AJ = ,BK AB =,BKE BAC ∠=∠,KBI ABJ ∴△△≌,KBI ABJ ∴∠=∠,90IBJ IBA ABJ IBA KBI KBA ∴∠=∠+∠=∠+∠=∠=︒,IBJ ∴△为直角三角形,IJ BJ ∴>,KJ AJ BJ ∴>+.【点睛】本题是四边形综合题,考查了等腰直角三角形的判定和性质,矩形的性质,全等三角形的判定和性质,轴对称的性质,准确添加常用辅助线,构造特殊三角形和证明全等三角形是解本题的关键。
特殊平行四边形中的折叠问题——透过现象看本质—轴对称教学目标:1.理解折叠问题的本质—轴对称变换,回顾轴对称变换的概念和性质。
2.学会利用轴对称的知识以及勾股定理求折叠问题中的线段长。
3.学会利用轴对称的知识解决特殊平行四边形中的若干几何问题。
4.体会方程思想在解决线段长度类问题中的作用;经历角平分线、平行线、等腰三角形三者之间的转化,学会用联系的角度看问题。
重点与难点:本节课重点是利用勾股定理列方程求线段长,会用折痕是角平分线证明等腰三角形。
难点是利用勾股定理列方程求线段长,涉及折叠的几何综合题的证明。
教学过程教学环节学生活动教师活动设计意图一、激趣导入如图,将矩形ABCD沿线段AE折叠,使D落在BC上的点F处。
(1)找出图中折叠前后能够互相重合的线段和角(2)若连接DF,AE与DF有什么关系?题后反思:学生口答点评学生的答案,总结知识点,归纳题后反思。
回顾知识的同时引入折叠的本质,为后面例题的讲解提供了一般思路。
二、例题解析例1. 如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE 折叠,使点D落在边BC上的点F处(1)若AD=10,AB=8,求CE的长(2)过点F作FG∥CD,交AE于点G,连接DG.求证:四边形DEFG为菱形题后反思:(1)折叠得对应边相等(2)长度计算——找Rt△(不能直接求出时,设未知数,利用勾股定理列方程)(3)折痕为角平分线,结合平行线间内错角的转化,往往可以得到一个等腰三角形观察口答学生思考,口述,答案呈现。
教师及时点评,引导学生回答,并利用多媒体技术展示答案。
引出折叠类问题中长度计算的一般方法:利用勾股定理直接或间接的求线段长,利用折痕是角平分线,解决与角平分线、平行线、等腰三角形三者之间的若干证明三、变式拓展变式一:如图,矩形ABCD中,AB=2,AD=4,将矩形沿EF折叠使B 与D重合,A位于图中G处(1)求证:△DEF为等腰三角形题后反思:证明两条线段相等,在不同三角形中可考虑全等,若放在同一三角形中可考虑证等腰,即两底角相等。
专题02特殊平行四边形中的折叠问题正方形 MCD 中∙ AB=6. G 是BC 的中点・将ZUBG 沿/G 对折至MFG.延长GF 交DC 于点E,则DE 的长是()【解析】连接血,-AB=AD=AF y ZD=ZAFE=90 ,由折拄的性质得:Rr 厶ABG 空RIdiFG 、 在ZUFE 和ZUDE 中,9∕AE=AE. AD=AF.ZD=ZAFE. :.Rt^AFE^Rt∕∖ADE. :.EF=DE.设 DE=FE P ,则 CG=3, £C=6-x.在直角△ ECG 中,根据勾股定理,得:(6^)2∙9=C Y ÷3)% 解得x=2•则 DE=2.2. (2019 •全国初三单•元测试)如图,在菱形ABCD /E 丄BC 于E,将△磁沿所在宜线翱折得厶城尺 若AB=I. ZB=45° •则ZU £F 与菱形MCD 重叠部分(阴影部分)的面积为()・D 2√2-2【解析】•••在边长为2的菱形MCD 中,∠5=45o ,应为BC 边上的1⅛∖ Λ-4∑=√2>由折叠的性质可知,△曲F 为等腰直角三角形∙ ∙∙∙S.m 尸丄M ∙zlF=2, Sqm ∙∙∙CF=BF-BO2迈-2, ∖9AB∕∕CD. .9.ZGCF=ZB=45a ,又由折叠的性质知,ZF=ZB=45° , :∙CG=GF=2-【典型例题】B. 1.5C. 2D. 2.51.(2020 •河北定州初三二模)如图, A. 2∙∙∙Sg尸'G C∙GF=3-2迈,重徨部分的面积为:2・1- (3-2 ) =2 JJ-2.故选D 3・(2020 •全国)如图.把矩形纸片MCD沿EF折叠后•使得点D与点Big合•点C落在点C'的位宜上.(1)折證后∙ DC的对应线段是_, CF的对应线段是_: (2)若Z 1=50° ,求Z2、Z3的度数:(3)若AB=S. D£=10,求CF的长度・【答案】(1)由折叠的性质可得:折叠后∙ DC的对应线段是BC ∙ CF的对应线段是C尺故答案为:BC . C F.(2)由折叠的性质可得:Z2=ZBEF. e:AD//BC.ΛZl=Z2=50o・ΛZ2=ZBΓF=50o, ΛZ3=lS0o -50° -50° =80° ;故答案为:50° , SO:.BE=IQ t:.AE= y JBE2 -AB2 =6∙ΛJZ>=5C=6∙10=16. VZl=ZBΣF=50c , ABF=B£=10,(3)VJB=Sf DE=I0,:.CF=BC-BF=I6 • 10=6.故答案为:6【专题训练]一、选择题1.(2020 •海南临扁)如图.在矩形纸片MCQ中.曲=3•点E在边BC上,将皿朋沿直线/E折迄点B恰好落在对角线ZIC上的点F处,若ZEAOZECA.则AC的长是()戏 ------------------- DB. 6C. 4D. 5【解析】•••将△磁沿直线应折叠,点B恰好落在对角线FC上的点F处,:.AF=AB t ZM民Z民90。
折叠问题1.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′为 度.2.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF ,若∠ABE =20°,那么∠EFC ′的度数为 度.3.如图,把一个长方形纸片对折两次,然后剪下一个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为 度.4.如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,︒>∠60BEG ,现沿直线EG 将纸片折叠,使点B 落在约片上的点H 处,连接AH ,则与BEG ∠相等的角有 个。
A.4B. 3C.2D.1EDBC′FCD ′A5.如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且C B '=3,则AM 的长是6.如图,在梯形ABCD 中,AD ∥BC ,AD =2,AB =3,BC =6,沿AE•翻折梯形ABCD ,使点B 落在AD 的延长线上,记为B ′,连结B ′E 交CD 于F ,则DE:FC=A. 13B. 14C. 15D. 167.如图,在梯形ABCD 中,∠DCB =90°,AB ∥CD ,AB =25,BC =24. 将该梯形折叠,点A 恰好与点D 重合,BE 为折痕,那么AD 的长度为_______.8.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是 . 9.如图2是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD 的长是A B CDMNA 'B ' F E DB A C①② 3 410.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长 是11.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则A'G 的长是 。
(7题图)
A B
C
D F
E
平行四边形与特殊平行四边形中的折叠型问题
折叠型问题就是把一个图形一部分沿某条直线折叠后,所形成的问题。
这类问题既是对称问题的应用,又可考查空间想象能力。
此类问题可以涵盖三角形的全等、三角形的性质、勾股定理、图形变换、垂直、平行等很多知识。
今天我们就一起学习折叠型问题在平行四边形与特殊平行四边形中的应用。
一、平行四边形中的折叠问题
例1:如图1,把一张平行四边形纸片ABCD 沿BD 对折,使C 点落在E 处。
BE 与AD 相交于点O ,若∠DBC=15°,则∠BOD=________.
图1 图2
例2:如图2,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为_________. 二、矩形中的折叠问题
例3 :如图3,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH =90°,PF =8,PH =6,则矩形
ABCD 的边BC 长为( )A.20 B.22 C.24 D.30? 例4:如图4,将一张矩形纸片ABCD 的角C 沿着GF 折叠(F 在BC
边上,不与B 、C 重合)使得C 点落在矩形ABCD 内部的E 处,FH 平分∠BFE ,则∠GFH 的度数为_________度
图4
三、正方形中的折叠问题
例5 :如图5,四边形ABCD 为正方形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =8,则CF 等于( )A .3 B .5 C .4 D .8
图5 图6
例6:如图6,已知正方形纸片ABCD ,M 、N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ=_____度。
四、直角坐标系中关于特殊平行边形的折叠问题
例7:将一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA=6,OC=10。
如图7,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;
图7 图8
例8:图8在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA=3,AB=1,则点A 1的坐标是( )
A. 13(,
)22 B.3(,3)2 C.33(,)22 D. 33
(,)22
小 结:1.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 从而把折叠问题转化为轴对称问题,
2.利用三角形(或多边形)全等可以得到对应线段、对应角相等,要善于挖掘翻折前后所提供的相等线段与角度,从而将所给条件进行转移(集中在一起)。
3.利用勾股定理既可以计算线段的长度,又可以将已知、未知结合一起列出方程来求解(方程思想)。
检测题:
1.把一张矩形纸片ABCD 沿EF 折叠后,点C ,D 分别落在C′,D′的位置上,EC′交AD 于点G .则△EFG 为 三角形. 2.如图长方形纸片ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,点C 至点C′, 折痕为EF.求AE 的长.
3如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中 点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm
4如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A.3 B.4 C.5 D.6
O E
A B D
C N M
E
A (第7题。