第三章流体动力学
- 格式:ppt
- 大小:13.61 MB
- 文档页数:43
第三章流体动力学积分形式的基本方程§3-1 系统和控制体一、系统系统定质量的流体组成的定体积的物系系统:一定质量的流体组成的一定体积的物系特点:系统可以变形,但质量不变;系统与外界有能量交换,即作功和热传递。
交换即作功和热传递二、控制体控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积控制体表面是封闭表面,称为控制面。
特点:体积和控制面不变(血管除外),控制面上既有质量交换又有能量交换。
D 00d DDt Dt τρτ==∑∫∫∫K V F 000d d n A A τρτ =+∫∫∫∫∫f p()()000d d n A A τρτ =×+×∫∫∫∫∫r f r p●热辐射总辐射热0d R q τρτ∫∫∫2Dt 0τ⎝⎠时刻也,系统体积为,也是控制体体积0τt ()()00t =A t ττΑ= 时刻,系统体积为,t t +Δ0τ′′相应表面为。
为公共部分Α01τ0300102001ττττττ′=− , =−为与交界面010102A ττ ′02001A A A =−A ′′′为与交界面020103A ττ 02001A A =−()t ⎢⎥Δ()()020323ττ⎢⎥⎣⎦由微分中值定理由微分中值定理:()0100A d tdA τ≈Δ∫∫V n i(t ADt t ∂0()ττ——输运公式,即系统导数的欧拉表达式⎛⎞D 0D d Dtτρρτ+∇•=⎜⎟⎝⎠∫∫∫V Dt ρρ+∇•V =0若代入(ρφΦ=D D d ρ()00d Dt Dt ττφρφττ=∫∫∫∫∫∫——3∫∫∫∫∫ A t τ∂⎣⎦⎣⎦单位时间由控制面流入控制体的总能量单位时间控制体中总能量的增量例:写出理想流体作绝热定常流动,且质量力有势情况下能量方程定常流动,则连续性方程为()0A dA=d τρρτ∇=∫∫∫∫∫n V V i i ()0ρ∇=V i 理想流体n p =−p n于是,能量方程中:(dA dA)()n A AdA=pdA −∫∫∫∫i i p V n Vq =q 0=代入后⎛代入后,2A v p e U dA 02ρρ⎞+++=⎜⎟⎝⎠∫∫n V id d 00D D Dt Dt ττρτρτ=∫∫∫∫∫∫V V§3-5 欧拉型积分形式基本方程的应用一. 不可压缩流体对弯管管壁的作用力不可压缩流体流过上图所示固定弯管,设流动是定常的且质量力只有重力是定常的,且质量力只有重力。
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。