4.1 拉普拉斯变换定义与收敛域09
- 格式:ppt
- 大小:1.56 MB
- 文档页数:33
拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。
左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。
以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。
如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。
z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。
作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。
拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。
FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。
拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。
但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。
Fourier 变换则随着FFT算法(快速傅立叶变换)的发展已经成为最重要的数学工具应用于数字信号处理领域。
拉普拉斯变换 1、基本定义: ⎰∞∞--=dt e t x s X st )()(2、收敛域:(1)右边信号:−→−=<0)(0t x t t 时,极点右侧 (2)左边信号:−→−=>0)(0t x t t 时,极点左侧(3)双边信号:占有整个时间域的信号−→−带状区域 (4)时限信号:有限长信号,只在某一个时间区间不等于0,在其他所有时间内全为0−→−整个s 区域(意味着变换式中没有极点)4、拉式变换的主要性质:)()()()()()(11s X t x s X t x s X t x LLL−→←−→←−→← ROC: 21R R R5、用拉普拉斯变换分析与表征LTI 系统一个LTI 系统输入和输出的拉普拉斯变换是通过乘以系统单位冲激响应的拉普拉斯变换联系起来的,即)()()(s X s H s Y =当ωj s =时,)(s H 就是这个LTI 系统的频率响应;在拉普拉斯变换范畴内,一般称)(s H 为系统函数或转移函数(1)因果性(2)稳定性6、由线性常系数微分方程表征的LTI 系统 见504P7、系统函数的代数属性与方框图表示两系统级联:单位冲激响应 )()()(21t h t h t h *=→)()()(21s H s H s H=两系统并联:单位冲激响应 )()()()()()(2121s H s H s H t h t h t h +=→+=两LTI 系统的反馈互联:)()(1)()()()(211s H s H s H s H s X s Y +==−→−+)(t x )(t y8、单边拉式变换:重要价值在于求解非零状态下的系统响应⎪⎩⎪⎨⎧==⎰⎰+-∞-ωσωσπj j st st ds e s X t x dte t x s X )(21)()()(0 收敛域:要么在极点的右半平面,要么是整个s 平面(1)单边拉普拉斯变换性质(2)利用单边拉普拉斯变换求解微分方程 见518P。
§ 4.2 拉普拉斯变换的定义、收敛域主要内容从傅里叶变换到拉普拉斯变换 拉氏变换的收敛一些常用函数的拉氏变换一.从傅里叶变换到拉普拉斯变换 1.拉普拉斯正变换[]t e et f t j td )(ωσ-+∞∞--⋅⎰te tf t j d )()(ωσ+-+∞∞-⋅=⎰则2.拉氏逆变换3.拉氏变换对:,)( ),( 依傅氏变换定义绝对可积条件后容易满足为任意实数乘以衰减因子信号σσt e t f -()[]=⋅=-tet f F F σω)(1)(ωσj F +=称为复频率。
具有频率的量纲令 , , :s j =+ωσ()()⎰∞∞--=t e t f s F t s d ()()()()()⎰⎰∞∞--∞∞-+-===+te tf s F t e t f j F t s t j d d ωσωσ()() 的傅里叶逆变换是对于ωσσj F e t f t +-()()⎰∞∞--+=ωωσπωσd 21tj t e j F e t f t e σ 以两边同乘()()()ωωσπωσd 21⎰∞∞-++=t j e j F t f ωσωσd d ; :j s j s =+=则取常数,若其中⎰⎰∞∞-∞+∞-⇒j j s σσω::对积分限:对()()⎰∞+∞-=∴j j t s s e s F j t f σσπd 21()()[]()()()[]()⎪⎪⎩⎪⎪⎨⎧====⎰⎰∞+∞--∞∞--j j t s t s s e s F j t f L t f t e t f t f L s F σσπ逆变换正变换 d 21 d 1()()te tf F t j d 0ωω-∞⎰=∴二.拉氏变换的收敛收敛域:使F (s )存在的s 的区域称为收敛域。
记为:ROC(region of convergence) 实际上就是拉氏变换存在的条件;例题及说明6.一般求函数的单边拉氏变换可以不加注其收敛范围。
拉普拉斯变换拉普拉斯变换是一种在信号与系统领域中广泛应用的数学工具。
它将一个时间域函数转换为一个复频域函数,从而可以方便地进行信号的分析和处理。
拉普拉斯变换不仅在电子工程、通信工程领域得到广泛应用,还在物理学、控制论、图像处理等领域有重要应用。
一、拉普拉斯变换的定义拉普拉斯变换的定义如下:对于给定函数f(t),它的拉普拉斯变换F(s)定义为:F(s) = L{f(t)} = ∫{0,∞} f(t)e^(-st)dt其中,s是复变量,表示变换域的频率。
f(t)是定义在非负实数轴上的函数。
拉普拉斯变换有一个重要的性质是可逆的,即给定F(s),可以通过逆变换求得原函数f(t)。
二、拉普拉斯变换的性质拉普拉斯变换有一系列的性质,这些性质可以帮助我们简化计算或者分析信号的特性。
下面介绍几个常用的性质:1. 线性性质:对于任意常数a和b,以及两个函数f(t)和g(t),有线性性质成立:L{af(t) + bg(t)} = aF(s) + bG(s)其中,F(s)和G(s)分别是函数f(t)和g(t)的拉普拉斯变换。
2. 积分性质:对于函数f(t)的积分,有以下性质成立:L{∫{0,t} f(τ)dτ} = 1/(s)F(s)其中,F(s)是函数f(t)的拉普拉斯变换。
3. 正比例性质:如果一个函数f(t)等于另一个函数g(t)乘以常数a,那么它们的拉普拉斯变换也有类似的关系:L{ag(t)} = aG(s)其中,G(s)是函数g(t)的拉普拉斯变换。
三、拉普拉斯变换的应用1. 信号系统分析:拉普拉斯变换广泛应用于信号与系统的分析。
通过将差分方程或微分方程转换成拉普拉斯域,可以简化对系统的分析和建模。
根据拉普拉斯变换的性质,可以求解系统的频域响应、稳定性、传输函数等重要特性。
2. 控制系统设计:在控制论中,拉普拉斯变换是设计和分析控制系统的重要工具。
通过将系统的传递函数转换成拉普拉斯域,可以方便地调整系统的稳定性、响应速度、抗干扰能力等参数,并进行频域设计和系统优化。
拉普拉斯变换公式总结拉普拉斯变换是一种傅里叶变换的扩展,广泛应用于信号处理和控制系统的分析。
它将时间域中的函数转换到复平面的变换域中,可以有效地处理复杂的微分和积分方程。
拉普拉斯变换有许多重要的性质和公式,下面将对其中的一些进行总结。
1.拉普拉斯变换定义F(s) = L[f(t)] = ∫[0,∞) e^(-st) f(t) dt其中,s为复变量,t为时间,e为自然常数。
2.拉普拉斯变换的收敛条件要使拉普拉斯变换存在,函数f(t)必须满足一定的收敛条件。
常见的收敛条件为:函数f(t)是因果(即f(t)在t<0时为零)和指数增长边界条件(即函数f(t)e^(-αt)在t趋于正无穷时有界)。
3.常见的拉普拉斯变换公式3.1常函数的拉普拉斯变换:L[1]=1/s3.2单位阶跃函数的拉普拉斯变换:L[u(t)]=1/s3.3单位冲激函数的拉普拉斯变换:L[δ(t)]=13.4指数函数的拉普拉斯变换:L[e^(at)] = 1/(s-a),其中a为常数3.5高斯函数的拉普拉斯变换:L[e^(-at^2)] = sqrt(π/a) × e^(s^2/4a)3.6正弦和余弦函数的拉普拉斯变换:L[sin(at)] = a/(s^2+a^2)L[cos(at)] = s/(s^2+a^2)3.7常见微分和积分公式的拉普拉斯变换:L[df(t)/dt] = sF(s) - f(0)L[∫[0,t]f(τ)dτ]=1/s×F(s)4.拉普拉斯反变换公式f(t) = L^(-1)[F(s)] = 1/(2πj) × ∫[-j∞,j∞] e^(st)F(s) ds5.拉普拉斯变换的性质5.1线性性:L[af(t) + bg(t)] = aF(s) + bG(s),其中a、b为常数5.2微分性:L[df(t)/dt] = sF(s) - f(0)5.3积分性:L[∫[0,t]f(τ)dτ]=1/s×F(s)5.4积分定理:∫[0,∞) f(t) dt = F(0+)5.5初值定理:lim(s→∞) sF(s) = f(0+)5.6终值定理:lim(t→0+) f(t) = lim(s→0) sF(s)6.拉普拉斯变换在信号处理中的应用拉普拉斯变换在信号处理领域有广泛的应用。