热力学基本方程与t-s
- 格式:ppt
- 大小:212.50 KB
- 文档页数:8
习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。
气他的热力学性质均不同。
3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。
(F ) ② 理想气体的H 、S 、G 仅是温度的函数。
(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。
(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。
(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。
(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。
至今讨论中常应用的八个热力学函数--p、V、T、U、H、S、A、G。
其中 U 和 S 分别由热力学第一定律和第二定律导出;H、A、G 则由定义得来。
而 U、H、A、G 为具有能量量纲的函数。
这些热力学函数间通过一定关系式相互联系着。
基本热力学关系式共有十一个(以下分别用公式左边括弧中的数字标明)。
从这十一个基本关系式出发,可以导出许多其它衍生关系式,它们表示出各不同物理量间的相互关系,利用它们可以帮助我们由易于直接测量的物理量出发以计算难于直接测量的物理量的数值。
由定义可得如下三个关系式:(1) (3-136)(2) (3-137)(3) (3-138)又由热力学第一定律、第二定律联合公式,在无非膨胀功条件下:将它和式(3-136)、(3-137)、(3-138)联系起来:即可得以下四个一组被称为恒组成均相封闭系统的热力学基本方程。
又称 Gibbs 方程。
(4) (3-139)(5) (3-140)(6) (3-141)(7) (3-142)这四个基本方程均不受可逆过程的限制,因为 U、H、A、G 等随着相应两个独立的状态函数变化而变化,因而与变化的具体途径(可逆或不可逆)无关,自然亦可用于不可逆过程。
公式虽然是四个,但式(5)、(6)、(7)实际上是基本公式(4)在不同条件下的表示形式。
根据全微分定义可有如下关系:(3-143)(3-144)(3-145)(3-146)式(3-139)与式(3-143)对比、式(3-140)与式(3-144)对比、式(3-141)与式(3-145)对比、式(3-142)与式(3-146)对比,可得如下关系(或称"对应系数式"):(3-147)(3-148)(3-149)和 (3-150)如分别将尤拉(Euler)定则:应用于热力学基本方程(4)、(5)、(6)、(7)可得如下四式:(8) (3-151)(9) (3-152)(10) (3-153)(11) (3-154)这四式常称为"麦克斯威关系式"。
第二章热力学第一定律一、热力学基本概念1.状态函数状态函数,是指状态所持有的、描述系统状态的宏观物理量,也称为状态性质或状态变量。
系统有确定的状态,状态函数就有定值;系统始、终态确定后,状态函数的改变为定值;系统恢复原来状态,状态函数亦恢复到原值。
2.热力学平衡态在指定外界条件下,无论系统与环境是否完全隔离,系统各个相的宏观性质均不随时间发生变化,则称系统处于热力学平衡态。
热力学平衡须同时满足平衡(△T=0)、力平衡(△p=0)、相平衡(△μ=0)和化学平衡(△G=0)4个条件。
二、热力学第一定律的数学表达式1.△U=Q+W或dU=ΔQ+δW=δQ-p amb dV+δW`规定系统吸热为正,放热为负。
系统得功为正,对环境做功为负。
式中p amb为环境的压力,W`为非体积功。
上式适用于封闭系统的一切过程。
2.体积功的定义和计算系统体积的变化而引起的系统和环境交换的功称为体积功。
其定义式为:δW=-p amb dV(1)气体向真空膨胀时体积功所的计算W=0(2)恒外压过程体积功W=p amb(V1-V2)=-p amb△V对于理想气体恒压变温过程W=-p △V=-nR △T (3) 可逆过程体积功 W r =⎰21p V V dV(4)理想气体恒温可逆过程体积功 W r =⎰21p V V dV =-nRTln(V 1/V 2)=-nRTln(p 1/p 2)(5)可逆相变体积功 W=-pdV三、恒热容、恒压热,焓 1.焓的定义式 H def U + p V 2.焓变(1)△H=△U+△(pV)式中△(pV)为p V 乘积的增量,只有在恒压下△(pV)=p(V 2-V 1)在数值上等于体积功。
(2)△H=⎰21,T T m p dT nC此式适用于理想气体单纯p VT 变化的一切过程,或真实气体的恒压变温过程,或纯的液、固态物质压力变化不大的变温过程。
3. 内能变 (1)△U=Qv式中Qv 为恒热容。