第三章固定化酶催化反应动力学
- 格式:ppt
- 大小:6.48 MB
- 文档页数:41
《酶工程》课后知识题目解析第一章酶工程基础1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。
②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。
③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。
其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。
④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。
⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。
2.说说酶的研究简史酶的研究简史如下:(1)不清楚的应用:酿酒、造酱、制饴、治病等。
(2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科医生Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。
1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国科学家K?hne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。
(3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。
3.说说酶工程的发展概况I.酶工程发展如下:①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949年,用微生物液体深层培养法进行-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960年,法国科学家Jacob和Monod 提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971年各国科学家开始使用“酶工程”这一名词。
天津市高等教育自学考试课程考试大纲课程名称:生化反应工程课程代码:3283第一部分课程性质与目标一、课程性质与特点《生化反应工程》是高等教育自学考试生物技术(生物制药方向)专业的一门专业课,是在完成生物化学、微生物学、物理化学和化工原理等课程后开设的必修课程之一。
本课程的学习对全面掌握生物技术进行生化工程的研究开发起着重要的作用。
本课程重点论述了生化反应过程动力学和生化反应器两个方面。
前者着重论述了均相酶催化反应、固定化酶催化反应和细胞反应过程的基本动力学规律,并重点探讨了传递因素对反应动力学的影响及处理方法;对于生化反应器的设计和分析,则重点讨论了三种理想反应器,并适当介绍了对非理想流动反应器的处理方法。
通过学习可以使学生对于生化反应工程有较系统的认识,达到熟悉并掌握该课程的基本任务、内容、研究对象和研究方法。
本大纲是根据国家教育部制定的高等教育自学考试生物技术专业本科生培养目标编写的,立足于培养高素质人才,适应生物制药专业的培养方向。
本大纲叙述的内容尽可能简明,便于自学。
二、课程目标与基本要求本课程的目标和任务是使学生通过本课程的自学和辅导考试,进行有关生化反应工程的基础理论、基本知识的考察和训练,并了解现代生化反应的进展,为今后的学习和工作打下坚实的基础。
课程基本要求如下:1、了解生化反应工程的特点、任务、研究的对象及研究的内容和方法。
2、掌握均相酶催化反应、固定化酶催化反应动力学的规律和动力学方程、传递因素对反应动力学的影响及其处理方法。
3、掌握细胞反应过程计量学、细胞反应过程动力学的规律及动力学方程。
4、了解生化反应器的种类、基本设计方程和动物细胞培养反应器的种类。
掌握三种理想生化反应器、半间歇半连续反应器的设计式和相关的计算。
5、学习生化反应器的流动模型与放大,了解停留时间的定量描述和理想流动模型。
掌握停留时间分布密度、分布密度函数及统计特征值的计算,熟悉三种非理想流动模型及相应的计算。