热学教程》第三版 习题解答
- 格式:pdf
- 大小:328.85 KB
- 文档页数:41
第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。
1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
解:根据已知冰点。
1-4用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。
试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。
解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。
设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。
解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。
(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
第一章1、答:不一定。
稳定流动开口系统内质量也可以保持恒定。
2、答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3、答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4、答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5、答:温度计随物体的冷热程度不同有显著的变化。
6、答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7、答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8、答:(1)第一种情况如图1-1(a ),不作功(2)第二种情况如图1-1(b ),作功(3)第一种情况为不可逆过程不可以在p-v 图上表示出来,第二种情况为可逆过程可以在p-v 图上表示出来。
9、答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
10、答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
11、答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章1、答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空气的热力学能不变。
工程热力学第三版课后习题答案工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
《热学教程》习题参考答案习题5-1.设有如图所示的为实线界面限定的任一系统,d/^<以压强p对抗外界均匀压强p e,使系统的界面由实线膨胀到虚线的微元过程中,系统的体积增加dT,试证() 明:(1)外界对系统所作的体积功为-Pe"; (2)若过习题5-2图程是准静态过程,则此体积功又可表示为-pdf 0 习题5T F证明:(1)气体体积膨胀做功实际是抵抗外界的力做功,所以系统体积增加,系统对抗外界做功为PedT,则外界对系统做的体积功为-P e AV;(2)如果是准静态过程,则系统和外界之间的压强相差一个无穷小,即p = Pe,则此体积功为—pdf。
5-2. 一系统由如图所示的A状态沿ABC到达C态时,吸收了334.4J的热量,同时对外作126J的功。
试问:(1)若沿ADC到达C;则系统作功42J,这时系统吸收了多少热量?(2)当系统由C态沿过程线CA回到A状态时,如果外界对系统作功是84J,这时系统是吸热还是放热?其数值为多少?(答:(l)250J; (2)-292J.)解:根据热力学第一定律△°AC = Uc - UA=Q A BC-^ACB = 208( J)(1)O/DC =△"+’ADC = 250( J)(2 ) Q CA=^U CA + A CA = —292(J)系统向外界放出热量为292J o5-3,试在p-V图上画出为理想气体所完成的、以下准静态过程的曲线:(1) p^V;(2) p^kT;(3)「=灯\其中*为常数.并计算当它们体积由-变至?时所作的功.(答:⑴以_"/2 ;(2)0;(3)7?啊一儿)住•)解:画图略;由W=^PdV(1)P = V,PdV = VdV = |(^2 -^2)(2)p = kT,对比理想气体状态方程pV = vRT,可知T =—=常数,则呼2=0 k(3)V = kT ,对比理想气体状态方程pV = vRT,可知P = — =常数,贝IJ k5-4.某过程中给系统提供热量2090J和作功100J,问内能增加多少?(答:2190J)解:由热力学第一定律:AU = Q-W现:Q = 2090J , W = —100J则:△U = Q —W = 2190J5-5 .气体的摩尔定压热容随温度改变的规律服从公式:Cp=a + bT-cT~2,其中a,b,c 是常数,物质的量为“mol气体在一个等压过程中,温度从4变到:G,求气体与外界间所传递的热量。
《热学教程》习题参考答案第四章 习 题4-1. 电子管的真空度为1.333×103-Pa,设空气分子有效直径为3.0×1010-m,求27℃时空气分子的数密度n ,平均自由程λ和碰撞频率Z .(答: 3.2×1017m 3-,7.8 m ,60s 1-) 解:由nkT P =,可得)m (1021.3317-⨯==kTP n 分子平均自由程为)m (78.7212==n d πλ碰撞频率为 )s (2.6081-===λπμλRTvZ4-2. 求氦原子在其密度2.1×102-kg/m 3,原子的有效直径=d 1.9×1010-m 的条件下的平均自由程λ.(答:1.97×106-m)解:由n N mn A μρ==,可得 )m (1016.3324-⨯==μρA N n 分子平均自由程为)m (10972.12162-⨯==nd πλ 4-3. 试估算宇宙射线中的质子在海平面附近的平均自由程.(答:约m 102.16-⨯)4-4. 测得温度15℃和压强76cmHg 时氩原子和氖原子的平均自由程分别为Ar λ=6.7×108-m 和Ne λ=13.2×108-m ,试问:(1)氩原子和氖原子的有效直径各为多少?(2) 20℃和15cmHg 时Ar λ和-40℃和75cmHg 时Ne λ多大?(答(1)101063.3-⨯m,101059.2-⨯m; (2) 71045.3-⨯m, 71080.1-⨯m)解:(1)由Pd kT n d 22221ππλ==,可得 )m (1063.321021Ar Ar -⨯=⎪⎪⎭⎫ ⎝⎛=λπP kT d)m (1059.221021Ne Ne -⨯=⎪⎪⎭⎫ ⎝⎛=λπP kT d(2)由分子平均自由程与温度及压强的关系)m (1045.3107.6288157629378Ar11212Ar2--⨯=⨯⨯⨯⨯==λλT P P T )m (1008.1102.13288757623378Ne11212Ne2--⨯=⨯⨯⨯⨯==λλT P P T 4-5. 高空的一片降雨云层,单位时间通过单位面积的降雨量为Q =10cm/hour 。
1.3解:根据定压理想气体温标的定义式K 15.373732038.0K 16.273limK 16.273)(0===→trP V V V T tr1.6解:当温度不变时,C PV =,设气压计的截面积为S ,由题意可知:S P S )73474880()734(80)748768(-+⨯-=⨯-可解出:)Pa (1099.9)Pa (76010013.1)734948020(45⨯=⨯⨯+⨯=P 1.9解(1):按理想气体的等温膨胀过程处理。
)(2111V V P V P += 则)Pa (1024.241211⨯=+=P V V V P(2)两容器中气体的摩尔数分别为RT V P 111=ν,RTVP 222=ν 由混合理想气体方程RT V V P )()(2121νν+=+则)Pa (1038.6)(4221121⨯=++=RTV P RT V P V V RTP1.13解:设活塞打开前后,两容器的空气质量分别为M 1、M 2、M'1、M'2,按理想气体处理,各自的状态方程为1111RT M V P μ=,2222RT M V P μ=,111RT M PV μ'=,222RT M PV μ'=混合前后质量不变则2211222111RT PV RT PV RT V P RT V P μμμμ+=+故)Pa (1098.241221122211⨯=++=T V T V T V P T V P P1.15解:气球内的H2在温度T1、T2时的状态方程为1RT MPV μ=,2RT MM PV μ∆-=联立求解:)kg/m (089.031221=-⋅∆=T T T T V MR μρ 1.17解:由已知:抽气机的抽气速率为dtdVv =vdt RTP dV dM μρ-=-= 理想气体方程RT MPV μ=可知:vdt V P dM V RT dP -==μ⇒dt VvP dP -= 积分:⎰⎰-=t PP dt V vP dP 00 解出:)s (8.39(min)663.0ln 0===PP v V t 1.18解:气体的质量不变,由理想气体方程和混合理想气体方程1111RT V P M μ=,2222RT V P M μ=,RTPVM M μ=+21 RTPVRT V P RT V P μμμ=+222111解出:)K (9.708222111=+=T V P T V P PVT2.12解:)m (102.11331-⨯==v MV μ,1221V V = (1)等温过程:0=∆U)J (786ln12-==V V RT MA μ)J (786-=+∆=A U Q(2)绝热过程:4.1=γ0=Q)J (906])(1[11211=---=-=∆-γγμV V RT MA U(3)等压过程:)J (1099.1)(412,⨯-=-=V V P RC Q m P)J (1042.1)(412,⨯-=-=∆V V P RC U m V)J (567-=∆-=U Q A2.16解:由图可知过程方程为kV V V V P P P =--=1212根据热力学第一定律A d dU Q d +=或PdV dT C dT C m V m +=,由理想气体状态方程RT PV =,则: RdT VdP PdV =+因为kV P =,则: VdP kVdV PdV == 所以 RdT PdV VdP PdV ==+2 故RdT dT C dT C m V m 21,+= )(2121,,,m V m P m V m C C R C C +=+= 另外,由kV P =,及RT PV =,则:2V Rk T =2.19解:(1)右侧气体绝热压缩,0=Q ,0=+∆A U,100,00,0,21]1)[()1()(T C P P T C T T T C T T C U A m V m V m V m V ννννγγ=-=-=-=∆=---(2)001023)(T T P P T ==--γγ(3)左侧气体由P 0、V 0、T 0变成P 、V 、T ,其中0827P P =,V V V '-=02,式中V '是右侧气体终态体积,对右侧气体,有0000023827T V P T V P '=则: 094V V ='对左侧气体有:TV V P T V P )2(82700000'-= 故: 0421T T =(4)根据热力学第一定律0,0,0,0,,21941921)1421(21RT T C T C T C T C T C A U Q m V m V m V m V m V νννννν==+-=+∆=+∆=2.21解:根据热力学第一定律)J (208=-=-=∆acb acb a b A Q U U U(1) )J (250=+∆=adb adb A U Q (2) )J (292-=+∆=ba ba ba A U Q系统向外界放出热量为292J 。
工程热力学第三版课后习题答案工程热力学是工程学科中的重要分支,它研究能量转化和传递的原理及其应用。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
然而,由于工程热力学的内容较为复杂,课后习题往往令人感到困惑。
为了帮助学习者更好地掌握工程热力学,下面将给出《工程热力学第三版》课后习题的答案。
第一章:基本概念和能量转化原理1. 答案略。
2. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第二章:气体的状态方程和热力学性质1. 对于理想气体,状态方程为PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 对于理想气体,内能只与温度有关,与体积和压力无关。
3. 对于理想气体,焓的变化等于吸收的热量。
4. 对于理想气体,熵的变化等于吸收的热量除以温度。
5. 答案略。
第三章:能量转化和热力学第一定律1. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
2. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第四章:热力学第二定律和熵1. 答案略。
2. 答案略。
3. 答案略。
4. 答案略。
5. 答案略。
通过以上对《工程热力学第三版》课后习题的答案解析,相信读者对工程热力学的相关知识有了更深入的了解。
掌握热力学的基本概念和原理,对于工程学科的学习和实践具有重要意义。
希望读者能够通过课后习题的解答,提高自己的热力学能力,并将其应用于工程实践中,为社会发展做出贡献。
《热学教程》习题参考答案第二章 习题2-1.假若把1g 水的分子均匀地覆盖在地球表面上,问:每平方米面积能分配到多少水分子?(答:27m 1055.6-⨯)解:1g 水含有的分子数等于它的摩尔数()mol 0556.010181033=⨯--乘以阿伏伽德罗常数1-25m ol 10022.6⨯,得2210348.3⨯个分子.若取地球的半径为m 1038.66⨯=R ,则其表面积为 2142m 10115.54⨯=R π.因此,可以得到,每平方米面积能分配到71055.6⨯个分子.2-2.设有乳浊液,由水(3101.0-⨯=ηkg/m ﹒s ,293.15=T K)和半径为a 的布朗粒子所组成.实验中,每隔30 s 作一次测量,测得一个布朗粒子前20步沿x 方向所作的位移(单位是10-6 m )分别为: +2.4,+1.2,-1.6, -0.9,-4.0,-1.5,+1.7, +1.0,+0.3,+1.3,-2.9, -3.1,-0.5,+1.5,+0.7,+1.9,-0.2,+0.1,-2.7.试求布朗粒子的半径a .(答:3.83×106-m)解:先把本题给出的每个位移值平方后相加,再除以20,可得2122m 103633-⨯=.Δx ;再应用爱因斯坦扩散方程,可知布朗粒子的半径 ()23Δx πηT τk a B =,式中的B k K /J 1038123-⨯=.是玻耳兹曼常数.代入已知的数据:K 15293.T =,30=τs 和s m /kg 10013⋅⨯=-.η,可得 m 108336-⨯=.a .2-3.设有悬浮在水中的﹑半径为r 的布朗粒子,在等时间间隔30秒内,实验观测到沿x 方向的方均位移 2122m 100.3-⨯=∆x ,若已知水温为273 K,水的粘滞系数3101.0-⨯=ηkg/m ﹒s ,试问此布朗粒子的半径为多少?(答:m 1029.46-⨯)解: 应用爱因斯坦扩散方程,可知布朗粒子的半径为:()()m 1029.41031033015.2931038.1x 3k 6123222----⨯=⨯⨯⨯⨯⨯⨯=∆=ππητT r B 2-4.皮兰在实验中测得半径为0.212m μ的藤黄树脂微粒沿x 轴方向的平均平方位移2x 的数值如下:若已知温度C 13,液体介质的粘滞系数3101.2-⨯=η Pa ﹒s ,试计算阿伏加德罗常数.解: 应用爱因斯坦扩散方程,可知阿伏加德罗常数等于:()()()(),mol 1092.9102.11012.2315.28631.831-2112372B A x x x a RT k R N ∆⨯==∆⨯⨯⨯⨯⨯=∆==--τπτηπτ故应用上式结果和本题附表中所列的数据,可以分别求得阿伏加德罗常数为:2310613.6⨯、2310881.6⨯、2310377.6⨯、2310105.6⨯.取此四个结果的平均值,得123mol 10494.6-⨯=A N .2-5.一个连续的弹丸流,每个弹丸的质量为5.0×10-4 kg ,以1.0 m/s 的速度射击天平的一个盘,速度的方向与法线成30度角,射击频率是每秒40次.设弹丸与天平盘发生完全弹性碰撞,碰撞一次就离开天平盘,不再跳回.为了平衡,在天平的另一盘上应放多少质量的砝码? (答:3.54×103-kgf)解: 按题意可知,连续不断的弹丸流作用于天平盘的冲力为 N θmv cos 2,其中的4100.5-⨯=m kg ,0.1=v m/s , 30=θ,1s 40-=N ,故依据动量定理可知,为平衡冲力,应加砝码重量等于()()kgf 1054.3N 0346.040130cos 1052cos 234--⨯==⨯⨯⨯⨯⨯=∆= t mvN G θ 2-6.已知温度为27℃的气体作用于器壁上的压强为105 Pa,试求此气体单位体积里的分子数.(答:2.411910⨯3-cm )解 应用理想气体压强公式可得:25235B 1041.215.3001038.110⨯=⨯⨯==-T k p n m -3。