十四种不拉维格子
- 格式:doc
- 大小:40.50 KB
- 文档页数:1
材料科学基础第1 章1.3.1 十四种布拉维点阵十四种布拉维点阵一、单位平行六面体的选取二、十四种布拉维点阵三、晶胞空间点阵的划分 空间点阵是一个由无限多结点在三维空间作有规则排列的图形。
整个空间点阵就被这些平行线分割成多个紧紧地排列在一起的平行六面体有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)单位平行六面体的 选取原则 3.大小原则体积最小 1 对称性原则应能反映空间点阵对称性 2 角度原则 直角关系尽可能多4 对称性规定夹角不为直角 结点间距最小的行列做棱,夹角最接近直角的平行六面体二维平面点阵的划分(A)具有L44P的平面点阵;(B)具有L22P的平面点阵单位平行六面体在空间点阵中,选取出来的能够符合这几条原则的平行六面体称为单位平行六面体;可以用三条互不平行的棱a、b、c和棱间夹角α、β、γ来描述,如下图所示。
点阵常数棱a、b、c和棱间夹角α、β、γ的大小称为点阵常数。
晶体的点阵常数十四种布拉维点阵(格子)简单(原始)点阵(格子)(P) 结点分布在角顶,每个点阵包含一个结点体心点阵(格子)(I)结点分布在角顶和体心,每个点阵包含二个结点十四种布拉维点阵(格子)面心点阵(格子)(F) 结点分布在角顶和面心,每个点阵包含四个结点单面心点阵(格子)(A/B/C) 结点分布在角顶和一对面心,每个点阵包含2个结点根据布拉维推导,从一切晶体结构中抽象出来的空间点阵,按上述原则来选取平行六面体,只能有14种类型,称为14种布拉维点阵。
十四种空间点阵正交P(简单) C(底心) I(体心) F(面心) 点阵常数 a ≠ b ≠ cα= β= γ= 90°立方简单立方(P) 体心立方(I)面心立方(F)点阵常数 a =b =cα= β= γ= 90°如图立方为什么没有底心呢?假如有底心,将破坏立方的3L 4的对称性,只有1L 4。
立方三方(R ) 90120≠<====γβαc b a 点阵常数:六方(H )12090===≠=γβαcb a 点阵常数: 四方(P ) 四方(I )90===≠=γβαc b a 点阵常数:四方也不可能有底心,假如有,则破坏了“点阵点最少”的条件,还可画出只有一个点阵点的格子。
14种布拉维点阵的结构特征布拉维点阵是描述晶体中原子、离子或分子排列方式的一种数学模型。
有14种布拉维点阵,也被称为14种布拉维格子或14种布拉维空间群。
这些点阵通过特定的对称性元素来定义。
以下是这些14种布拉维点阵的主要结构特征:1三立方格子(Triclinic):没有垂直平面或轴的对称性。
所有晶胞边长和角度均可不同。
2单斜格子(Monoclinic):有一个垂直平面。
一个轴有对称性。
3正交格子(Orthorhombic):三个垂直的平面和三个垂直的轴。
所有晶胞角度均为90度。
4四方格子(Tetragonal):一个垂直平面和一个垂直轴。
所有晶胞边长相等,两个轴长度相等。
5六方格子(Hexagonal):六重对称性轴,垂直于平面。
六边形的基本晶胞。
6立方格子(Cubic):三个垂直平面和三个垂直轴。
所有晶胞边长相等,所有角度均为90度。
7三斜半基心格子(Triclinic P):没有垂直平面或轴的对称性。
所有晶胞边长和角度均可不同。
8单斜面心格子(Monoclinic P):有一个垂直平面。
一个轴有对称性。
9正交面心格子(Orthorhombic P):三个垂直的平面和三个垂直的轴。
所有晶胞角度均为90度。
10四方面心格子(Tetragonal P):一个垂直平面和一个垂直轴。
所有晶胞边长相等,两个轴长度相等。
11六方面心格子(Hexagonal P):六重对称性轴,垂直于平面。
六边形的基本晶胞。
12立方面心格子(Cubic P):三个垂直平面和三个垂直轴。
所有晶胞边长相等,所有角度均为90度。
13三斜体心格子(Triclinic I):没有垂直平面或轴的对称性。
所有晶胞边长和角度均可不同。
14正交体心格子(Orthorhombic I):三个垂直的平面和三个垂直的轴。
所有晶胞角度均为90度。
这些布拉维点阵描述了晶体的结构特征,是研究材料科学和晶体学的重要工具。
定义
晶体的基本性质和外形规律特征的根本原因在于它内部的空间格子构造,在理想晶体中,其内部质点均按照格子构造规律排列。
平行六面体是空间格子的最小单位,整个晶体结构可视为平行六面体(即晶胞)在三维空间平行的、毫无间隙的重复堆砌而成。
晶体的空间格子可分为以下四种类型
1、原始格子(P):结点分布于平行六面体的八个角顶上。
2、底心格子:结点分布于平行六面体的角顶及某一对面的中心。
其中又可细分为三种类型:
①、C心格子(C):结点分布于平行六面体的角顶和平行(001)一对平面的中心;
②、A心格子(A):结点分布于平行六面体的角顶和平行(100)一对平面的中心;
③、B心格子(B):结点分布于平行六面体的角顶和平行(010)一对平面的中心。
一般情况下所谓底心格子即为C心格子,对A心或B心格子,能转换成C心格子时,应尽可能地予以转换。
3、体心格子(I):结点分布于平行六面体的角顶和体中心。
4、面心格子(F):结点分布于平行六面体的角顶和三对面的中心。
十四格子
按晶系的不同,空间格子具以下十四种类别:
晶系原始格子(P)底心格子(C)体心格子(I)面心格子(F)
三斜三斜原始C=I I=F
F=P
单斜单斜原始单斜底心I=F
F=C
斜方斜方原始斜方底心斜方体心
斜方面心
四方四方原始C=P四方体心
F=I
三方三方原始与本晶系对称不符I=F
F=P
六方六方原始与本晶系对称不符与空间格子的条件不符与空间格子的条件不符
等轴等轴原始与本晶系对称不符等轴体心等轴面心。