七大晶系十四种布喇菲格子
- 格式:pptx
- 大小:2.44 MB
- 文档页数:14
-空间点阵空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。
这14种空间点阵以后就被称为布拉菲点阵。
空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。
当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。
在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如图1-8所示。
一般情况下单胞的选取有以图1-8 空间点阵及晶胞的不同取法图1-9面心立方阵胞中的固体物理原胞图1-10晶体学选取晶胞的原则下两种选取方式:1.固体物理选法在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。
如面心立方点阵的固体物理单胞并不反映面心立方的特征,如图1-9所示。
2.晶体学选法由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则(如图1-10所示):①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。
根据以上原则,所选出的14种布拉菲点阵的单胞(见图1-12)可以分为两大类。
一类为简单单胞,即只在平行六面体的 8个顶点上有结点,而每个顶点处的结点又分属于 8个相邻单胞,故一个简单单胞只含有一个结点。
另一类为复合单胞(或称复杂单胞),除在平行六面体顶点位置含有结点之外,尚在体心、面心、底心等位置上存在结点,整个单胞含有一个以上的结点。
14种布拉菲点阵中包括7个简单单胞,7个复合单胞。
图1-11 单晶胞及晶格常数根据单胞所反映出的对称性,可以选定合适的坐标系,一般以单胞中某一顶点为坐标原点,相交于原点的三个棱边为X、Y、Z三个坐标轴,定义X、Y轴之间夹角为γ,Y、Z之间夹角为α,Z、X轴之间夹角为β,如图1-11所示。
布拉维晶格在三维平面上有七大晶系,14种晶格分别为三斜晶系、单斜晶系、正交晶系、四方晶系、立方晶系、三方晶系、六角晶系。
依照简单、体心、面心及底心一、等轴晶系(立方晶系)等轴晶系的三个轴长度一样,且相互垂直,对称性最强。
这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。
如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。
此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。
请看这种晶系的几种常见晶体的理论形态:等轴晶系的三个晶轴(x轴y轴z轴)一样长,互相垂直常见的等轴晶系的晶体模型图等轴晶系的各种宝石金刚石晶体翠榴石黄铁矿萤石八面体和立方体的聚形的方铅矿二、四方晶系四方晶系的三个晶轴相互垂直,其中两个水平轴(x轴、y轴)长度一样,但z轴的长度可长可短。
通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。
再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。
请看模型图:四方晶系的晶体如果z轴发育,它就是长柱状甚至针状;如果两个横轴(x、y)发育大于竖轴z轴,那么该晶体就是四方板状常见的一些四方晶系的晶体模型符山石的晶体锡石的长柱状晶体(顶端另有斜生的小晶体)。
请注意看柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面这是短柱状锆石,柱体几乎不发育。
象个四方双锥体或假八面体三、三方晶系和六方晶系三方晶系和六方晶系有许多相似之处,一些矿物专著和科普书刊往往将二者合并在一起,或干脆就称晶体有六大晶系。
与前面讲的五个晶系最大的不同是三方/六方晶系的晶轴有四根,即一根竖直轴(z轴)三根水平横轴(x、y、u轴)。
竖轴与三根横轴的交角皆为90度垂直,三根横轴间的夹角为120度(六方晶系为60度,也可说成三横轴前端交角120度。
关于奥古斯特·布拉菲及布拉菲点阵浅析奥古斯特·布拉菲(August Bravais,1811—1863),法国物理学家,于1845年推导出了三维晶体原子排列的所有14种点阵结构,首次将群的概念应用到物理学,为固体物理学做出了重大贡献。
这是非常有意义的结论,为了纪念他,后人称这14种点阵为布拉菲点阵。
除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。
图1 奥古斯特·布拉菲在几何学以及晶体学中,布拉菲晶格(又译布拉菲点阵)是为了纪念奥古斯特·布拉维在固态物理学的贡献命名的。
法国晶体学家布拉菲(A.Bravais)于1850年用数学群论的方法推导出空间点阵只能有十四种: 简单三斜、简单单斜、底心单斜、简单正交、底心正交、体心正交、面心正交、简单六方、简单菱方、简单四方、体心四方、简单立方、体心立方、面心立方。
根据其对称特点,它们分别属于七个晶系。
空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。
这14种空间点阵以后就被称为布拉菲点阵。
空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。
当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。
在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如下图所示:其选取方式有,1.固体物理选法:在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。
如面心立方点阵的固体物理单胞并不反映面心立方的特征。
2.晶体学选法:由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则:①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。
关于奥古斯特·布拉菲及布拉菲点阵浅析奥古斯特·布拉菲(August Bravais,1811—1863),法国物理学家,于1845年推导出了三维晶体原子排列的所有14种点阵结构,首次将群的概念应用到物理学,为固体物理学做出了重大贡献。
这是非常有意义的结论,为了纪念他,后人称这14种点阵为布拉菲点阵。
除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。
图1 奥古斯特·布拉菲在几何学以及晶体学中,布拉菲晶格(又译布拉菲点阵)是为了纪念奥古斯特·布拉维在固态物理学的贡献命名的。
法国晶体学家布拉菲(A.Bravais)于1850年用数学群论的方法推导出空间点阵只能有十四种: 简单三斜、简单单斜、底心单斜、简单正交、底心正交、体心正交、面心正交、简单六方、简单菱方、简单四方、体心四方、简单立方、体心立方、面心立方。
根据其对称特点,它们分别属于七个晶系。
空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。
这14种空间点阵以后就被称为布拉菲点阵。
空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。
当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。
在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如下图所示:其选取方式有,1.固体物理选法:在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。
如面心立方点阵的固体物理单胞并不反映面心立方的特征。
2.晶体学选法:由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则:①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。
布拉维格子的名词解释布拉维格子是固体中一种特殊的晶体结构,由于其独特的构造和性质,在物理学领域中被广泛研究和应用。
本文将对布拉维格子进行详细的解释和探讨。
布拉维格子的概念最早由瑞士物理学家勃拉维(Bravais)提出,他将晶体结构的排列方式进行了系统地分类和命名。
在布拉维格子中,晶体的原胞(最小重复单位)无限重复堆积而成,形成了整体具有周期性的结构。
布拉维格子的基本单位可以是点、线或面,其分类依据是基元(基本单位)的对称性。
布拉维格子的分类有14种,分别为简单立方格子、面心立方格子、体心立方格子、六方密堆积格子、多面体格子等。
这些不同类型的布拉维格子由于原胞中基元的排列不同,因而具有不同的对称性和性质。
在布拉维格子的研究中,晶格常数是一个重要的参数,它表示了格子中基元之间的距离。
晶格常数决定了布拉维格子的结构和性质,不同的晶格常数对应着不同的晶体特征。
更进一步地,布拉维格子的点阵常数是指晶体中相邻的两个基元之间距离的最小值,它是晶格常数的一个函数。
布拉维格子的性质和应用涵盖了多个领域。
在材料科学中,人们通过研究和改变布拉维格子的结构,可以获得具有特殊功能和性能的材料。
例如,面心立方格子具有良好的可塑性和导电性,因此广泛应用于金属制品的生产中。
而六方密堆积格子被广泛应用于光纤和半导体等领域,其特殊的结构使得其具有优异的机械和光学性能。
在纳米科技领域,布拉维格子也发挥着重要的作用。
纳米颗粒可以通过控制布拉维格子的大小和形状来调控其物理和化学性质。
这对于设计和制造高性能的纳米材料尤为重要,因为纳米尺度的材料往往具有与其宏观尺度不同的独特性质。
不仅如此,布拉维格子还在凝聚态物理、量子力学和电子结构等领域起到了关键作用。
通过对布拉维格子的研究,物理学家们可以深入理解材料的电子结构和输运行为,从而发现新的物理现象和规律。
总而言之,布拉维格子作为晶体结构的基本单位,其独特的结构和对称性赋予了物质一些特殊的性质。
14种布拉维点阵的结构特征布拉维点阵是描述晶体中原子、离子或分子排列方式的一种数学模型。
有14种布拉维点阵,也被称为14种布拉维格子或14种布拉维空间群。
这些点阵通过特定的对称性元素来定义。
以下是这些14种布拉维点阵的主要结构特征:1三立方格子(Triclinic):没有垂直平面或轴的对称性。
所有晶胞边长和角度均可不同。
2单斜格子(Monoclinic):有一个垂直平面。
一个轴有对称性。
3正交格子(Orthorhombic):三个垂直的平面和三个垂直的轴。
所有晶胞角度均为90度。
4四方格子(Tetragonal):一个垂直平面和一个垂直轴。
所有晶胞边长相等,两个轴长度相等。
5六方格子(Hexagonal):六重对称性轴,垂直于平面。
六边形的基本晶胞。
6立方格子(Cubic):三个垂直平面和三个垂直轴。
所有晶胞边长相等,所有角度均为90度。
7三斜半基心格子(Triclinic P):没有垂直平面或轴的对称性。
所有晶胞边长和角度均可不同。
8单斜面心格子(Monoclinic P):有一个垂直平面。
一个轴有对称性。
9正交面心格子(Orthorhombic P):三个垂直的平面和三个垂直的轴。
所有晶胞角度均为90度。
10四方面心格子(Tetragonal P):一个垂直平面和一个垂直轴。
所有晶胞边长相等,两个轴长度相等。
11六方面心格子(Hexagonal P):六重对称性轴,垂直于平面。
六边形的基本晶胞。
12立方面心格子(Cubic P):三个垂直平面和三个垂直轴。
所有晶胞边长相等,所有角度均为90度。
13三斜体心格子(Triclinic I):没有垂直平面或轴的对称性。
所有晶胞边长和角度均可不同。
14正交体心格子(Orthorhombic I):三个垂直的平面和三个垂直的轴。
所有晶胞角度均为90度。
这些布拉维点阵描述了晶体的结构特征,是研究材料科学和晶体学的重要工具。
材料科学基础第1 章1.3.1 十四种布拉维点阵十四种布拉维点阵一、单位平行六面体的选取二、十四种布拉维点阵三、晶胞空间点阵的划分 空间点阵是一个由无限多结点在三维空间作有规则排列的图形。
整个空间点阵就被这些平行线分割成多个紧紧地排列在一起的平行六面体有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)单位平行六面体的 选取原则 3.大小原则体积最小 1 对称性原则应能反映空间点阵对称性 2 角度原则 直角关系尽可能多4 对称性规定夹角不为直角 结点间距最小的行列做棱,夹角最接近直角的平行六面体二维平面点阵的划分(A)具有L44P的平面点阵;(B)具有L22P的平面点阵单位平行六面体在空间点阵中,选取出来的能够符合这几条原则的平行六面体称为单位平行六面体;可以用三条互不平行的棱a、b、c和棱间夹角α、β、γ来描述,如下图所示。
点阵常数棱a、b、c和棱间夹角α、β、γ的大小称为点阵常数。
晶体的点阵常数十四种布拉维点阵(格子)简单(原始)点阵(格子)(P) 结点分布在角顶,每个点阵包含一个结点体心点阵(格子)(I)结点分布在角顶和体心,每个点阵包含二个结点十四种布拉维点阵(格子)面心点阵(格子)(F) 结点分布在角顶和面心,每个点阵包含四个结点单面心点阵(格子)(A/B/C) 结点分布在角顶和一对面心,每个点阵包含2个结点根据布拉维推导,从一切晶体结构中抽象出来的空间点阵,按上述原则来选取平行六面体,只能有14种类型,称为14种布拉维点阵。
十四种空间点阵正交P(简单) C(底心) I(体心) F(面心) 点阵常数 a ≠ b ≠ cα= β= γ= 90°立方简单立方(P) 体心立方(I)面心立方(F)点阵常数 a =b =cα= β= γ= 90°如图立方为什么没有底心呢?假如有底心,将破坏立方的3L 4的对称性,只有1L 4。
立方三方(R ) 90120≠<====γβαc b a 点阵常数:六方(H )12090===≠=γβαcb a 点阵常数: 四方(P ) 四方(I )90===≠=γβαc b a 点阵常数:四方也不可能有底心,假如有,则破坏了“点阵点最少”的条件,还可画出只有一个点阵点的格子。
关于奥古斯特·布拉菲及布拉菲点阵浅析奥古斯特·布拉菲(August Bravais,1811—1863),法国物理学家,于1845年推导出了三维晶体原子排列的所有14种点阵结构,首次将群的概念应用到物理学,为固体物理学做出了重大贡献。
这是非常有意义的结论,为了纪念他,后人称这14种点阵为布拉菲点阵。
除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。
图1 奥古斯特·布拉菲在以及中,布拉菲晶格(又译布拉菲点阵)是为了纪念在固态物理学的贡献命名的。
法国晶体学家()于1850年用数学群论的方法推导出空间点阵只能有十四种: 简单三斜、简单单斜、底心单斜、简单正交、底心正交、体心正交、面心正交、简单六方、简单菱方、简单四方、体心四方、简单立方、体心立方、面心立方。
根据其对称特点,它们分别属于。
空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。
这14种空间点阵以后就被称为。
空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。
当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。
在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如下图所示:其选取方式有,1.固体物理选法:在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。
如面心立方点阵的固体物理单胞并不反映面心立方的特征。
2.晶体学选法:由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则:①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。