人教版七年级上数学教案角的大小比较
- 格式:doc
- 大小:40.76 KB
- 文档页数:3
6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。
角与角的大小比较教学目标:1、理解角及角的有关概念,巩固平角及周角的认识。
2、学会比较角的大小,能估计一个角的大小,在操作活动中认识角平分线,能画出一个角的平分线。
3、能用符号语言叙述角的大小关系,解决实际问题,能通过角的测量、折叠等体验数、符号和图形是描述现实世界的重要手段。
教学重点:角的大小的比较方法教学难点:对角的有关概念的理解,比较角的大小的方法。
课前准备:三角板教学过程一、引入:小明家新买了一台电冰箱,包装箱上标明:将冰箱向后倾斜可推动冰箱,但倾斜角不能走过30度。
什么叫角?什么叫角的度数呢?二、观察P44的图形1、讲解角的概念:一条射线绕着它的端点旋转到另一位置时所成的图形叫角。
画图示意2、角的有关概念角的顶点、角的始边、角的终边、角的边、角的内部3、平角、周角当射线绕端点旋转到与原来的位置在同一直线上但方向相反时,所成的角叫平角。
当射线绕端点旋转一周,又重新回到原来的位置时,所成的角叫周角。
画图示意4、角的大小由角的始边绕顶点旋转至终边位置时旋转量的大小决定。
5、角的表示方法∠BAC ∠A ∠1 等6、角也可以看成是具有公共端点的两条射线组成的图形。
7、说一说我们生活中的角三、比较角的大小1、画出P46的几个图形,说明角的大小的不同情况2、P47做一做,折出一个角的平分线以一个角的顶点为端点的一条射线,如果把这个角分成两个相等的角,这条射线叫做这个角的平分线。
3、学生画一个角,然后再画出它的平分线 D四、练习及小结 C1、练习P46的练习1-3 B2、补充练习(1)根据图形填空:O A①∠D OB=∠D OC+ _______ ②∠D O C=∠D OA-_____ =∠D OA- _____③∠D OB+∠A OB-∠A OC= ______(2)写出图形中的所有的角。
3、通过本节课的学习,你学到了哪些知识?(学生回答)五、作业P50 A组2题补充:从一个顶点A引出五条射线,AB、AC、AD、AE、AP,写出所有的角,并说明最大的角。
人教版七年级数学上册第四章《角的比较与运算》教案一、教学目标【知识与技能】1.知道角的大小的含义,会通过观察或用量角器比较角的大小.2.知道角的和、差的意义,会用一副三角尺通过和差画出特殊角.3.知道角平分线的意义,会画一个角的平分线.4.会结合图形进行角度的运算.【过程与方法】实际观察、操作,体会角的大小,培养学生的观察思维能力;【情感态度与价值观】角的测量和折叠等,体验数、符号和图形是描述现实世界的重要手段.二、课型新授课三、课时1课时四、教学重难点【教学重点】 1.角的大小比较方法2.角平分线的意义,角度的运算. 【教学难点】1.从图形中观察角的和、差关系 2.结合图形进行角度的运算.五、课前准备教师:课件、圆规、量角器、三角尺、角的纸片数张等。
学生:三角尺、圆规、量角器、三角尺、角的纸片数张、铅笔。
六、教学过程(一)导入新课有一天学生小明和小华各带了一把折扇(如图所示),下面是他们的一段对话:小明:我的折扇张开大一些,所以我的折扇的角也大一些. (出示课件2-3)小华:我的折扇长一些,所以我的折扇的角也大一些. 同学们有办法帮他们进行判断吗?怎样比较∠ABC 和∠DEF的大小?(二)探索新知1.师生互动,探究角的大小与比较教师问1:我们知道,线段可以比较大小,观察下图,说一说谁长谁短?(出示课件5-6)线段长短的比较:学生回答:AB>CD 学生回答:AB=CD 学生回答:AB<CD教师讲解:线段的和、差:AB=BC+ACBC=AB–ACAC=AB–BC线段中点:若点 C 是线段AB 的中点,则AC = BCAC = BC = ( 1 )/2ABAB = 2 AC = 2 BC教师问2:类比线段长短的比较,你认为该如何比较两个角的大小?(出示课件7)师生共同解答如下:可以用度量法,量角器直接测量出角度再比较大小教师问3:还有其他方法吗?教师引导学生回答:叠合法。
将两个角放在同一个顶点进行比较。
4.3.2 角的比较与运算【知识与技能】1.会比较角的大小,能估计一个角的大小,在操作活动中认识角的平分线.2.会进行度、分、秒的换算,并能解决角的运算题.【过程与方法】1.实际观察、操作,体会角的大小,培养学生的观察思维能力.2.动手计算,熟练解决有关角的运算题,培养学生的计算能力.【情感态度】1.角的测量和折叠等,体验数、符号和图形是描述现实世界的重要手段.2.帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣.【教学重点】角的大小比较方法.【教学难点】从图形中观察角的和、差关系.一、情境导入,初步认识问题1如图(1),已知线段AB和线段CD,如何比较这两条线段的大小呢?【教学说明】教师提出上面的问题,让学生回顾前面所学有关线段大小的比较方法,并请一名同学发言,再让其他同学补充.问题2如图(2)已知∠ABC和∠DEF,如何比较角的大小?【教学说明】教师紧接问题1提出问题2,让学生分组讨论角的比较方法,提醒学生可类比问题1中的方法.在学生讨论过程中,教师深入学生中间巡视,观察并听取他们解决问题的方法和建议.注意教师不要急于给出结论,当学生自己说出方法时,教师提出这就是我们要研究的新内容,调动学生的积极性,吸引其注意力.二、思考探究,获取新知【教学说明】在上一栏目中给出了两个问题让学生思考,它实际上引出了一个新问题——如何比较角的大小,一般地,学生一般会提出两种方法:一是度量法,即用量角器量出角的度数,然后比较它们的大小,二是叠合法,即把两个角叠合在一起比较大小,前一种方法,小学时学过,教学时重点探究第二种方法.探究1 如图所示,平面有三组角,请用叠合法比较它们的大小.演示:移动∠DEF,使其顶点E与∠ABC的顶点B重合,一边ED和BA重合,出现以下三种情况,如图所示:【教学说明】观察演示后,教师让学生可以利用两副三角板演示以上过程,帮助理解比较两角的大小,回答教师提出的问题.①EF与BC重合,∠DEF等于∠ABC,记作∠DEF=∠ABC.②EF落在∠ABC的内部,∠DEF小于∠ABC,记作∠DEF<∠ABC.③EF落在∠ABC的外部,∠DEF大于∠ABC,记作∠DEF>∠ABC.以上探究过程最好通过投影显示的方式进行,因为通过直观的实物演示和投影(电脑)显示,既加强了角的比较的直观性,又可提高学生的兴趣.注意再次强调角的大小只与开口大小有关,与边的长短无关,以及角的符号与小于号、大于号书写时的区别.对于用度量法比较角的大小,教师可让学生自己动手量一量,但应让学生注意三点:对中、重合、读数.探究2 如图∠1>∠2,把∠2移到∠1上,使它们的顶点重合,一边重合,会有几种情况?由此可以对角如何运算?【教学说明】教师让学生在练习本上画出.你如何把∠2移到∠1上,才能保证∠2的大小不变呢?讨论∠2如何移到∠1上,移动后有几种情况,在练习本上画出图形(有小学测量的基础,学生不会感到困难,可放手让学生自己动手操作),量角器可起移角的作用,先测量∠2的度数然后以∠1的顶点为顶点,其中一边为边作一个角等于∠2,出现两种情况如图所示:(1)∠2在∠1内部时,如图1,∠ABC是∠1与∠2的差,记作:∠ABC=∠1-∠2;(2)∠2在∠1外部时,如图2,∠DEF是∠1与∠2的和,记作:∠DEF=∠1+∠2.在学生表述过程中注意提醒语言的简洁性和准确性,注意训练学生的看图能力和几何语句表达能力,如∠1与∠2的和、差所得到的两个图形中,还可让学生观察得到图中存在的其他结论.【归纳结论】角的和差倍分的度数等于它们度数的和差倍分.探究3 在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?【教学说明】教师让学生动手操作,如图所示,一般学生可得出∠1=∠2这一结论,教师此时应适时提出角的平分线的概念:从角的顶点出发,把一个角分成相等的两个角的一条射线,叫这个角的平分线.教师可让学生归纳出其他结论,如∠1=∠2=1/2∠AOB,∠AOB=2∠1=2∠2等.教师要及时纠正学生的表述问题,初步渗透推理过程,培养学生的逻辑推理能力.三、典例精析,掌握新知【教学说明】在上一栏目我们探究了本课时的知识点,这一栏目我们将举例予以巩固.例1 如图,∠AOC=∠BOD=90°,∠AOB=60°32′,求∠COB和∠AOD的度数.解:因为∠AOC=90°,所以∠AOB+∠BOC=90°,所以∠BOC=90°-60°32′=29°28′,又因为∠BOD=90°,所以∠AOB+∠AOD=90°,所以∠AOD=90°-60°32′=29°28′.【教学说明】教师要逐步向学生要求用规范的几何语言进行表述,本题关键是结合前面的知识点找到适当的关系进行转化.例 2 射线OC把平角∠AOB分成两个角,这两个由角的平分线所组成的角是______.(填度数)【分析】本题是对角平分线概念的考查,平角AOB为180°,射线OC把平角AOB 分成两个角,这两个由角的平分线所组成的角应是平角的一半,即90°.【答案】90°例3 ~例4 教材第136页例1 、例2 .【教学说明】教材上的这两道例题主要是让学生掌握如何用度、分、秒的换算,进行相关运算,教师教学时应强调分秒相加时逢60要进位,相减时要借1作60.四、运用新知,深化理解1~3.教材第136页练习.【教学说明】以上题目学生自主完成,教师巡视,有针对性进行评讲.【答案】1.略2.45°24份3.解:因为∠AOB=180°,且OC平分∠AOB,所以∠AOC=90°,又因为∠COD=31°28′,所以∠AOD=∠AOC-∠COD=90°-31°28′=58°32′.五、师生互动,课堂小结师生共同归纳本节课所学的内容,然后教师向学生提问:通过本节课的学习,你还有什么困惑和疑问?1.布置作业:从教材习题4.3中选取.2.完成练习册中本课时的练习.本课时教学过程应体现:1.善于从图形中发现角与角之间的关系,转化为数学式子进行计算.特别是像角平分线这些特殊几何元素.2.角的计算要根据问题适时进行分类讨论.3.结合已有的线段计算认知,来类比角的计算规律和方法.作者留言:非常感谢!您浏览到此文档。
初中数学角的比大小教案教学目标:1. 让学生理解角的概念,掌握角的度量方法。
2. 培养学生观察、分析、解决问题的能力。
3. 培养学生合作学习、交流分享的良好学习习惯。
教学重点:1. 角的度量方法。
2. 比较大小的方法。
教学难点:1. 角的度量。
2. 角的比较大小。
教学准备:1. 教师准备一些角的大小不同的图片,用于引导学生观察和分析。
2. 学生准备尺子和量角器。
教学过程:一、导入(5分钟)1. 教师出示一些角的大小不同的图片,引导学生观察和分析。
2. 学生分享观察到的角的大小不同的情况。
二、新课讲解(15分钟)1. 教师讲解角的概念,让学生理解角是由一点引出的两条射线所围成的图形。
2. 教师讲解角的度量方法,让学生掌握用尺子和量角器测量角的大小。
3. 教师通过示例,讲解如何比较大小的方法。
三、课堂练习(15分钟)1. 学生分组合作,用尺子和量角器测量每个角的大小,并记录下来。
2. 学生互相比较测量结果,讨论哪个角更大或更小。
3. 教师巡回指导,解答学生的疑问。
四、总结与反思(5分钟)1. 教师引导学生总结本节课所学的内容,让学生明确角的比大小的方法。
2. 学生分享自己的学习收获和体会。
3. 教师对学生的表现进行评价,给予鼓励和指导。
教学延伸:1. 让学生课后找一些角的大小不同的图片,进行观察和分析,进一步巩固所学知识。
2. 教师可以设计一些角的大小不同的题目,让学生进行练习,提高学生的解题能力。
教学反思:本节课通过引导学生观察、分析、实践,让学生掌握了角的比大小的方法。
在课堂练习环节,学生分组合作,互相交流,提高了学生的合作意识和团队精神。
在总结与反思环节,学生分享了自己的学习收获,增强了学生的自信心。
但同时也存在一些问题,如部分学生对角的度量方法掌握不够熟练,需要在今后的教学中加强练习和指导。
总体来说,本节课达到了预期的教学目标,学生对角的比大小有了更深入的理解和掌握。
角的比较教学目标知识与技能:1.类比线段长短的比较方法,会用估测、测量、叠合的方法比较两个角的大小;2.能用尺规做一个角等于已知角;3.了解角平分线的概念.通过折纸进一步理解角平分线的意义。
过程与方法:1.经历两角比较大小的过程,体会类比的思想方法;2.经历做一个角等于已知角的过程.情感态度与价值观:通过角的比较培养学生科学治学的态度.教学重点:1.角的大小比较;2.角平分线的概念.教学难点:作一个角等于已知角.教材分析:本节是在对几何图形初步认识的基础上,借助于实际情境进一步认识角,并用几何图形表示后学习角的比较,以学生的教学活动为主线设计。
通过观察思考、动手操作、合作交流、一起探究等数学活动使学生掌握角的比较方法以及作一个角等于已知角的方法。
因此这节课将掌握角的比较方法作为重点进行教学。
培养学生良好的情感态度和主动参与、合作交流的意识。
提高观察和分析等能力,为以后的几何知识的学习打下必要的基础。
教学方法:类比联想法教学用具:圆规、三角板、电脑、投影仪课时安排:1课时环节教师活动学生活动设计意图创设情境引入:〔多媒体展示中国政区图〕(1)请同学们把地图中的任何两个城市之间用线段连结,并用字母标出各个城市。
学生动手完成问题(1),并回答。
通过学生活动激发学习兴趣,使学生很快进入本(2)教师任选两个角提问:你能比较出这两个角的大小吗?你是怎样比较的?今天我们就来学习角的大小比较。
刚才同学已经探讨出测量法和估测法。
(板书)探讨出角的比较方法与线段类似——测量法和估测法课的教学。
通过学生活动激发学习兴趣,使学生很快进入本课的教学。
引导自学请同学们回忆我们比较线段的大小有哪些方法?学生回答,教师点评,并给予鼓励.为角的比较做准备.1、请看课本124页,图4-16中的三个角,我们能类似于线段长短的比较方法来比较他们的大小吗?2、我们怎样使两个角叠合呢?(1)当用重叠法比较两个角的大小时,应做到_______重合与_______重合。