离散数学命题符号
- 格式:docx
- 大小:37.33 KB
- 文档页数:4
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(⌝P⇄Q)∧(P⇄R∨S)b)我今天进城,除非下雨。
设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:⌝Q→P或⌝P→Qc)仅当你走,我将留下。
设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P2.用谓词逻辑把下列命题符号化a)有些实数不是有理数设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:∃x(R(x) ∧⌝Q(x)) 或⌝∀x(R(x) →Q(x))b)对于所有非零实数x,总存在y使得xy=1。
设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:∀x(R(x) ∧⌝E(x,0) →∃y(R(y) ∧E(f(x,y),1))))c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧∀c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)(P→(Q→R))↔(R→(Q→P))⇔(⌝P∨⌝Q∨R)↔(P∨⌝Q∨⌝R)⇔((⌝P∨⌝Q∨R)→(P∨⌝Q∨⌝R)) ∧ ((P∨⌝Q∨⌝R) →(⌝P∨⌝Q∨R)).⇔((P∧Q∧⌝R)∨ (P∨⌝Q∨⌝R)) ∧ ((⌝P∧Q∧R) ∨(⌝P∨⌝Q∨R))⇔(P∨⌝Q∨⌝R) ∧(⌝P∨⌝Q∨R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧R)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)a) T b) F3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学-----命题逻辑逻辑:是研究推理的科学。
公元前四世纪由希腊的哲学家亚里斯多德首创。
作为一门独立科学,十七世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符号, 又称为数理逻辑(或符号逻辑)。
逻辑可分为:1. 形式逻辑(是研究思维的形式结构和规律的科学,它撇开具体的、个别的思维内容,从形式结构方面研究概念、判断和推理及其正确联系的规律。
)→数理逻辑(是用数学方法研究推理的形式结构和规律的数学学科。
它的创始人Leibniz,为了实现把推理变为演算的想法,把数学引入了形式逻辑中。
其后,又经多人努力,逐渐使得数理逻辑成为一门专门的学科。
)2. 辩证逻辑(是研究反映客观世界辩证发展过程的人类思维的形态的。
)一、命题及其表示方法1、命题数理逻辑研究的中心问题是推理,而推理的前提和结论都是表达判断的陈述句,因而表达判断的陈述句构成了推理的基本单位。
基本概念:命题:能够判断真假的陈述句。
命题的真值:命题的判断结果。
命题的真值只取两个值:真(用T(true)或1表示)、假(用F(false)或0表示)。
真命题:判断为正确的命题,即真值为真的命题。
假命题:判断为错误的命题,即真值为假的命题。
因而又可以称命题是具有唯一真值的陈述句。
判断命题的两个步骤:1、是否为陈述句;2、是否有确定的、唯一的真值。
说明:(1)只有具有确定真值的陈述句才是命题。
一切没有判断内容的句子,无所谓是非的句子,如感叹句、祁使句、疑问句等都不是命题。
(2)因为命题只有两种真值,所以“命题逻辑”又称“二值逻辑”。
(3)“具有确定真值”是指客观上的具有,与我们是否知道它的真值是两回事。
2、命题的表示方法在书中,用大写英文字母A,B,…,P,Q或带下标的字母P1,P2,P3 ,…,或数字(1),*2+, …,等表示命题,称之为命题标识符。
命题标识符又有命题常量、命题变元和原子变元之分。
命题常量:表示确定命题的命题标识符。
命题变元:命题标识符如仅是表示任意命题的位置标志,就称为命题变元。
数理逻辑命题逻辑命题p,q,r,s……非真即假的陈述句命题的真值0 1命题的陈述句所表达的判断结果原子命题(简单命题)不能被分解成更简单的命题简单命题通过联结词联结而成的命题,称为复合命题命题的符号化p:4是素数用小写英文字母(如p:4是素数)表示命题。
用小写英文字母(如p:4是素数)表示原子命题,用联结词联结原子命题表示复合命题。
联结词否定连接词¬否p为真当且仅当p为假合取联结词∧p合取q为真当且仅当p,q同时为真(复合命题“p并且q”称为p与q的合取式)析取联结词∨p析取q为假当且仅当p,q同时为假(复合命题“p或q”称为p与q的析取式)蕴含连接词→p蕴含q为假当且仅当p为真,q为假。
(复合命题“如果p,则q”(因为p所以q,除非q 才p)称为p与q的蕴含式,p是蕴含式的前件,q是蕴含式的后件)q是p的必要条件。
等价联结词↔p等价q当且仅当,同时为真或假。
(复合命题“p当且仅当q”称作p与q的等价式)真值表命题公式及其赋值命题常项原子命题(简单命题)的另一称呼,由于其真值确定命题变项真值可以变化的陈述句合式公式(命题公式)A,B……命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式赋值(解释)给公式A中的每个命题变项各指定一个真值。
这组值使A为1,则称为成真赋值。
含n个命题变项的公式有2的n次方个不同赋值。
含n个命题变项的公式有2的2的n次方个不同真值表情况。
重言式(永真式)命题公式A在各种赋值下取值均为真矛盾式(永假式)命题公式A在各种赋值下取值均为假可满足式命题公式A至少存在一个成真赋值哑元对公式A和B进行比较讨论,可知A和B共含有n个命题变项,其中A不含有的命题变项称为A的哑元,其取值不影响A的值命题逻辑等值演算等值式⇔如果命题A和B有相同的真值表,则有命题A↔B为重言式,这种情况下称A与B是等值的,记作A⇔B(重要)等值式模式常用的16条命题间的等值模式,书p18析取范式与合取范式文字命题变项及其否定的统称简单析取式,简单合取式由有限个文字构成的析取式,合取式析取范式,合取范式由有限个简单合取式的析取构成的命题公式,称为析取范式。
离散数学(一)知识梳理逻辑和证明部分命题逻辑题型命题符号化问题将自然语言转为符号化逻辑命题用命题变量来表示原子命题用命题联结词来表示连词命题公式的类型判断判断命题公式是否是永真式、矛盾式、可能式利用真值表判断利用已知的公式进行推理判断利用主析取和合取范式判断定理:A为含有n个命题变元的命题公式,若A的主析取范式含有2^n个极小项,则A为重言式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为矛盾式;若A的主合取范式含有2^n个极大项,则A为矛盾式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为重言式翻译:一个命题公式化成主范式后,若所有项都分布在主析取范式中(主合取范式为1)则为重言式;若所有项都分布在主合取范式中(主析取范式为0)则为矛盾式;若均有分布,则为可满足式。
【思想来源:真值表法求主范式】一个质析取式是重言式的充要条件是其同时含有某个命题变元及其否定式;一个质合取式是矛盾式的充要条件是其同时含有某个命题变元及其否定式一个析取范式是矛盾式当且仅当它的每项都是矛盾式;一个合取范式是重言式当且仅当它的每项都是重言式求(主)析取或合取范式等值演算法1. 利用条件恒等式消除条件(蕴含和双条件)联结词,化简得到一个范式2. 在缺项的质项中不改变真值地添加所缺项,化简得到一个主范式3. 找出包含所有命题变元排列中剩余项,凑出另一个主范式(思想上类似于真值表法)真值表法1. 画出命题公式真值表2. 根据真值表结果求出主范式主析取范式:真值为1的所有项,每一项按对应01构成极小项主合取范式:真值为0的所有项,每一项按对应01构成极大项形式证明与命题推理利用推理规则构造一个命题公式的序列,证明结论形式证明:命题逻辑的论证是一个命题公式的序列,其中每个公式或者是前提,或者是由它之前的公式作为前提推得的结论,序列的最后一个是待证的结论,这样的论证也称为形式证明。
核心方法把非条件语句全部转为条件语句利用条件的逆否命题和双条件的拆分利用重言式/矛盾式来不改变真值地添项蕴含证明规则:A1,A2, …, An⇒ A → B 等价于A1,A2, …,An,A⇒ B【意义:使用结论的前提时应标为附加前提】(适用:结论为条件语句)反证法:若要证A1,A2, …, An⇒ B,将ØB加入前提,通过证明:A1,A2, …, An, ØB⇒ C, ØC完成证明。
离散数学命题的定义离散数学是一门研究离散结构的数学学科,它涉及离散对象、逻辑推理、集合论、图论等内容。
在离散数学中,命题是一个重要的概念,它是可以判断为真或者为假的陈述句。
本篇文章将详细介绍离散数学中命题的定义及其相关概念。
一、命题的定义在离散数学中,命题是一个陈述句,它要么是真(True),要么是假(False),而不能既真又假。
命题可以用文字、符号或语言描述,并且必须具有确定的意义。
例如,以下是一些例子:1."2+2=4"是一个命题,它是真命题。
2."今天下雨"是一个命题,具体取决于当天的天气情况。
3."x>5"是一个命题,但需要给出变量x的具体值才能确定它是真还是假。
二、命题的特点在离散数学中,命题具有以下特点:1.确定性:命题必须具有确定的意义,不会有歧义或模棱两可的解释。
2.真值性:命题要么为真,要么为假,不存在其他情况。
在逻辑符号中,通常用T表示真命题,用F表示假命题。
3.可否定性:每个命题都可以被否定。
如果一个命题是真的,它的否定是假的;反之亦然。
命题的否定通常用逻辑符号"¬"表示。
4.可联结性:多个命题可以通过逻辑运算符(如与、或、非等)进行联结,构成复合命题。
三、命题的表示和符号为了方便研究和表达,离散数学中使用一些特定的符号来表示命题及其关系。
以下是一些常见的符号:1.命题变量:用字母P、Q、R等表示命题变量。
这些变量代表一个命题,可以根据需要替换为具体的陈述句。
2.逻辑运算符:-否定(Negation):用¬P表示P的否定。
-合取(Conjunction):用P∧Q表示P和Q的合取(与运算)。
-析取(Disjunction):用P∨Q表示P和Q的析取(或运算)。
-条件(Implication):用P→Q表示若P则Q(蕴含关系)。
-双条件(Biconditional):用P↔Q表示P当且仅当Q(等价关系)。
离散数学符号∀全称量词∃存在量词├ 断定符(公式在L中可证)╞ 满足符(公式在E上有效,公式在E上可满足)﹁命题的“非”运算,如命题的否定为﹁p∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算↔ 命题的“双条件”运算的p<=>q命题p与q的等价关系p=>q命题p与q的蕴涵关系A* 公式A的对偶公式wff 合式公式iff 当且仅当↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□ 模态词“必然”◇模态词“可能”∅空集∈属于A∈B,即“A属于B”∉不属于P(A) 集合A的幂集|A| 集合A的点数R²=R○R [R=R○R] 关系R的“复合”א阿列夫⊆包含⊂(或下面加≠)真包含∪集合的并运算∩ 集合的交运算-或\ 集合的差运算〡限制集合关于关系R的等价类A/R集合A上关于R的商集[a] 元素a产生的循环群I环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系R的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:x→y f是x到y的函数(x,y) x与y的最大公约数[x,y] x与y的最小公倍数aH(Ha) H关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(A,B),|AB|,或AB点A与点B间的距离d(V) 点V的度数G=(V,E) 点集为V,边集为E的图GW(G) 图G的连通分支数k(G) 图G的点连通度Δ(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C复数集I 虚数集N 自然数集(包含0在内)N*(N+)正自然数集,正整数集(*表示从集合中去掉元素“0”)P素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴R ing 有单位元的(结合)环范畴R ng 环范畴C R ng 交换环范畴R-mod 环R的左模范畴mod-R环R的右模范畴Field 域范畴Poset 偏序集范畴部分希腊字母数学符号。
离散数学试卷及答案离散数学试卷(二)一、填空20%1、将“除非你努力,否则你将失败”翻译为命题符号:P→Q;将“虽然你努力了,但还是失败了”翻译为命题符号:P∧¬Q。
2、由P(1,1)=T,P(1,2)=T,P(2,1)=F,P(2,2)=F可得,∀x∃yP(y,x)的真值为T。
3、B31表示S的第3个元素和第1个元素组成的子集,即{a3.a1}。
4、R={⟨2,3⟩,⟨2,4⟩,⟨2,5⟩,⟨2,6⟩,⟨3,4⟩,⟨3,5⟩,⟨3,6⟩,⟨4,5⟩,⟨4,6⟩,⟨5,6⟩},MR为5*5的矩阵,其中1表示真,0表示假,矩阵如下:0 0 0 0 01 0 0 0 01 1 0 0 01 1 1 0 01 1 1 1 05、R={⟨1,2⟩,⟨2,1⟩}是对称的,不是反对称的;R=∅既不是对称的也不是反对称的。
6、幺元是c;没有幂等性;有对称性。
7、必是群。
8、下面偏序格是分配格的:9、n个结点的无向完全图Kn的边数为n(n-1)/2,欧拉图的充要条件是所有结点的度数均为偶数。
10、公式(P∨(¬P∧Q))∧((¬P∨Q)∧¬R的根树表示为:二、选择20%(每小题2分)1、重言式为B.(P Q)((P Q)(Q P));2、极小项的个数为C.2,成真赋值的个数为B.1;3、2有D.8个元素;4、由R产生的S S上一个划分共有D.9个分块;5、R具有A.自反性、对称性、传递性。
二、简答30%1、什么是图的同构?(6分)2、什么是完全图?(6分)3、什么是有向无环图?(6分)4、什么是格?(6分)5、什么是欧拉图?(6分)三、证明46%1、证明若R是A上一个等价关系,则S也是A上的一个等价关系。
(9分)2、用逻辑推理证明:所有的舞蹈者都很有风度,XXX是个学生且是个舞蹈者。
因此有些学生很有风度。
(11分)3、证明函数g:B2是单射,若f是A到B的满射。
(10分)4、证明若无向图G中只有两个奇数度结点,则这两个结点一定连通。
离散数学一、逻辑和证明命题逻辑命题:是一个可以判断真假的陈述句。
联接词:∧、∨、→、↔、¬。
记住“p仅当q”意思是“如果p,则q”,即p→。
记住“q除非p”意思是“¬p→q”。
会考察条件语句翻译成汉语。
构造真值表语句翻译系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。
命题等价式逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。
证逻辑等价是通过p推导出q,证永真式是通过p推导出T。
量词谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如∀x>0P(x)。
当论域中的元素可以一一列举,那么∀xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。
同理,∃xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。
两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如∀x(P(x)∧Q(x))和(∀xP(x))∧(∀xQ(x))。
量词表达式的否定:¬∀xP(x) ⇔∃x¬P(x),¬∃xP(x) ⇔∀x¬P(x)。
量词嵌套我们采用循环的思考方法。
量词顺序的不同会影响结果。
语句到嵌套量词语句的翻译,注意论域。
嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。
推理规则一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。
但有效论证不代表结论正确,因为也许有的前提是假的。
命题和量化命题的组合使用。
二、集合、函数、序列、与矩阵集合∈说的是元素与集合的关系,⊆说的是集合与集合的关系。
常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。
A和B相等当仅当∀x(x∈A↔x∈B);A是B的子集当仅当∀x(x∈A→x∈B);A是B的真子集当仅当∀x(x∈A→x∈B)∧∃x(x∉A∧x∈B)。
离散数学命题符号
一、离散数学命题符号的定义
在离散数学中,命题是一个陈述句,可以判断为真或为假。
为了准
确地表示命题,在离散数学中引入了命题符号。
命题符号主要用于表
示命题的逻辑关系,以及对命题的运算。
1. 命题变量和命题符号
离散数学中,命题变量被表示为字母,常用的命题变量包括p、q、
r等。
命题符号则用来表示对命题变量的操作和运算关系。
常用的命题
符号包括逻辑与(∧)、逻辑或(∨)、非(¬)等。
2. 逻辑连接词
离散数学中,逻辑连接词用于将多个命题连接起来,形成复合命题。
常见的逻辑连接词有:
- 逻辑与(∧):表示两个命题都为真时,复合命题为真;否则为假。
- 逻辑或(∨):表示两个命题至少一个为真时,复合命题为真;
否则为假。
- 非(¬):表示对命题的否定。
3. 命题符号的优先级
为了保证命题的运算顺序和结果的准确性,在离散数学中,命题符
号有一定的优先级。
常见的命题符号优先级从高到低依次为:- ¬(非)
- ∧(逻辑与)
- ∨(逻辑或)
二、离散数学命题符号的应用
1. 命题的合取和析取
在离散数学中,逻辑与(∧)和逻辑或(∨)的运算被广泛应用于
命题的合取和析取。
- 合取:当多个命题同时为真时,可以使用合取运算符(∧)将这
些命题合并成为一个复合命题。
例如,当p表示“今天下雨”、q表示“今天天气阴沉”时,合取命题p∧q表示“今天同时下雨并且天气阴沉”。
- 析取:当多个命题至少一个为真时,可以使用析取运算符(∨)
将这些命题合并成为一个复合命题。
例如,当p表示“今天下雨”、q表
示“今天天气阴沉”时,析取命题p∨q表示“今天下雨或者天气阴沉”。
2. 命题的否定
在离散数学中,非(¬)运算符常用于对命题的否定。
如果p为真,则¬p为假;如果p为假,则¬p为真。
例如,若p表示“今天下雨”,则
¬p表示“今天不下雨”。
3. 命题的复合运算
通过组合使用逻辑连接词和命题符号,可以对多个命题进行复合运算。
例如,当p表示“小明学习勤奋”,q表示“小明考试成绩优秀”,r
表示“小明课外活动丰富”时,可以使用逻辑连接词∧和∨以及命题符
号进行复合运算,如(p∧q)∨r,表示“小明学习勤奋并且考试成绩优秀,或者小明课外活动丰富”。
三、离散数学命题符号的推理和证明
1. 命题逻辑推理
在离散数学中,命题逻辑推理是一种基于命题符号和逻辑规则的推
理方法。
通过命题符号和逻辑连接词,可以进行逻辑关系的推导和论证。
例如,可以使用蕴含(→)运算符进行推理,当给定p→q为真、
p为真时,可以推导出q为真。
2. 命题的等价关系
在离散数学中,命题的等价关系描述了两个命题具有相同的真值。
通过等价运算符(↔),可以表示命题的等价关系。
例如,p↔q表示“p和q具有相同的真值”。
3. 命题的证明
离散数学中,命题的证明是一种基于逻辑推理和推导的过程,用于
证明命题的真假。
通过运用命题符号和逻辑规则,可以进行对命题的
证明。
常见的证明方法包括直接证明、间接证明(反证法)和数学归
纳法等。
四、总结
离散数学中的命题符号在逻辑推理、复合命题的表示以及命题的证明等方面起着重要的作用。
通过命题符号的运用,可以准确地表示命题的逻辑关系,进行推理和证明。
在学习离散数学的过程中,熟练掌握命题符号的定义和应用是十分重要的。