谷氨酸产生菌生产谷氨酸的原理
- 格式:docx
- 大小:28.85 KB
- 文档页数:4
谷氨酸产生菌生产谷氨酸的原理谷氨酸(Glutamic acid)是一种重要的氨基酸,广泛应用于食品、医药和化妆品等领域。
而谷氨酸的生产主要依靠谷氨酸产生菌(Glutamic acid-producing bacteria)进行,这些菌类具有独特的环境适应能力和代谢特点。
在本文中,我们将探讨谷氨酸产生菌生产谷氨酸的原理。
一、菌类的选择谷氨酸产生菌主要包括大肠杆菌、枯草芽胞杆菌和谷糖激酶杆菌等。
这些菌类具有较高的谷氨酸产量和生长速率,且可在不同环境条件下生存繁殖。
其中,大肠杆菌是最常用的谷氨酸产生菌之一,其在发酵过程中能够高效地转化底物为谷氨酸。
二、底物的利用在谷氨酸的生产过程中,菌类利用底物进行代谢并产生谷氨酸。
底物主要有葡萄糖、乳糖和淀粉等,其中葡萄糖是最常用的底物之一。
菌类通过发酵作用将底物转化为有机酸和酶,进而产生谷氨酸。
三、酶的作用谷氨酸产生菌在代谢底物的过程中产生多种酶,其中谷氨酸合成酶是关键的催化剂。
谷氨酸合成酶能够有效地将底物转化为谷氨酸,并通过多重反应途径提高谷氨酸的产生效率。
此外,谷氨酸氨基转移酶也参与了谷氨酸的生产过程,促进了反应的进行。
四、环境条件的调控谷氨酸产生菌的生长和代谢活动受到环境因素的影响。
适宜的温度、pH值和氧气含量等因素有助于提高菌株的生长速率和谷氨酸产量。
此外,营养物质的浓度和微量元素的供应也对谷氨酸产生起到重要的调控作用。
五、代谢途径的优化为了提高谷氨酸的产量,科研人员进行了一系列的研究,并优化了菌株的代谢途径。
通过基因工程和突变育种等手段,改造或选择出高效的菌株,提高了谷氨酸的合成速率和产量。
同时,控制底物的供应和代谢产物的积累,避免不必要的能量消耗,也有助于提高谷氨酸的生成效率。
综上所述,谷氨酸产生菌通过代谢底物和产生特定的酶,在适宜的环境条件下,利用谷氨酸合成酶等关键酶催化,最终实现了谷氨酸的生产。
科研人员通过优化代谢途径和改造菌株,不断提高谷氨酸的产量和合成效率,为谷氨酸的工业化生产做出了重要贡献。
生物工程专业综合实训(2016 年 11 月谷氨酸生产工艺摘要:谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。
不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。
现代生产谷氨酸的工艺主要是利用微生物发酵提取而来.不同的发酵方法和不同的发酵条件会造成产量的很大不同.本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。
通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法. 关键词:谷氨酸;发酵;工艺;等电点。
引言谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义.不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应.医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。
过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产.不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。
谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。
用于食品内,有增香作用。
甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。
谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用.一、谷氨酸简介谷氨酸一种酸性氨基酸。
分子内含两个羧基,化学名称为α-氨基戊二酸.谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
谷氨酸生产的培养基和发酵工艺控制的主要技术参数摘要:谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,谷氨酸能与血氨结合生成谷酰胺,接触组织代谢过程中所产生的氨毒害作用,另外谷氨酸单钠盐有很强烈的鲜味,是重要的调味品。
关键词:谷氨酸发酵影响因素工艺控制谷氨酸发酵主要原料有淀粉、甘蔗蜜糖、甜菜蜜糖等,国内多以淀粉为原料生产谷氨酸。
谷氨可通过谷氨酸生产菌在代谢过程中合成,这是一个复杂的过程,第一步是将原料淀粉水解成糖,即糖化作用,第二步是将糖在谷氨酸菌的作用下发酵成谷氨酸。
由葡萄糖生物合成谷氨酸的代谢途径:一、谷氨酸的生物合成途径主要有EMP途径、HM途径、TCA途径、乙醛酸循环、伍德—沃克反应等。
谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸。
α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。
当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。
因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。
二、谷氨酸生产菌的生化特征有:1、有催化固定CO2的二羧酸合成酶;2、a—酮戊二酸脱氢酶的活性很弱,这样有利于a—酮戊二酸的蓄积;3、异柠檬酸脱氢酶活力很强,而异柠檬酸裂解酶的活性不能太强,这样有利于谷氨酸前提物a—酮戊二酸的合成,满足合成谷氨酸的需要;4、谷氨酸脱氢酶的活力高,这样有利于谷氨酸的合成;5、谷氨酸生产菌经呼吸链氧化的能力要求弱;6、菌体本身进一步分解转化和利用谷氨酸的能力低下,利于谷氨酸的蓄积。
三、谷氨酸发酵工艺谷氨酸生产菌能在菌体外大量积累谷氨酸是由于菌体代谢调节处于异常状态,只有具特异性生理特征的菌体才能大量积累谷氨酸,这样的菌体对环境条件是敏感。
谷氨酸发酵是建立在容易变动的代谢平衡上,是受多种条件支配的。
第四章谷氨酸发酵的代谢与控制⏹氨基酸是生物体不可缺少的营养成分之一,因此,氨基酸的生产和应用受到了人们的重视。
⏹氨基酸发酵是典型的代谢控制发酵,也就是说发酵的关键在于其控制机制是否能被解除,能否打破微生物的正常代谢调节,人为地控制发酵。
⏹谷氨酸参与许多代谢过程,具有较高的营养价值。
谷氨酸发酵目前研究得较为透彻。
4.1谷氨酸合成途径谷氨酸产生菌菌体内形成谷氨酸的方式:(1)还原氨基化作用NH4+和供氢体存在的条件下,α-酮戊二酸在谷氨酸脱氢酶的催化下形成谷氨酸(2)氨基转移作用在氨基转移酶的催化作用下,除甘氨酸外,任何一种氨基酸都可与α-酮戊二酸作用,使α-酮戊二酸转化成谷氨酸。
4.2谷氨酸生物合成的调节机制4.2.1 优先合成与反馈调节4.2.2生物素的调节⏹生物素是羧化和转羧化反应的辅酶,在代谢过程中起CO2载体的作用。
⏹生物素充足: 糖酵解速度显著提高,打破了糖降解速度与丙酮酸氧化速度之间的平衡,丙酮酸趋于生成乳酸的反应,因而会引起乳酸的溢出。
生物素限量:丙酮酸的有氧氧化减弱,则乙酰辅酶A的生成量减少,乙酸浓度降低,琥珀酸氧化能力降低而积累。
导致乙醛酸循环基本上封闭。
4.3谷氨酸发酵的代谢控制育种⏹菌体生长期:为获得能量和产生生物合成反应所需的中间产物,需要异柠檬酸裂解酶反应,走乙醛酸循环途径。
⏹谷氨酸生成期:为了积累谷氨酸,最好没有异柠檬酸裂解酶反应,封闭乙醛酸循环。
⏹依据谷氨酸生物合成途径及代谢调节机制,谷氨酸发酵的代谢控制育种可从如下五个方面着手:进、通、节、堵、出。
4.3.1 “进”(1)选育耐高渗透压的菌株1)耐高糖选在20-30%葡萄糖的平板上生长好的突变株2)耐高谷氨酸选育在15-20%谷氨酸的平板上生长好的突变株3)耐高糖、高谷氨酸选育在20%葡萄糖加15%谷氨酸的平板上生长好的突变株。
4.3.2“通”⏹选育解除α-酮戊二酸到谷氨酸反馈调节的突变株1)选育抗谷氨酸结构类似物突变株,如抗谷氨酸氧肟酸等2)选育抗谷氨酰胺的突变株⏹选育强化CO2固定反应的突变株强化二氧化碳固定反应能提高菌种的产酸率1)选育以琥珀酸或苹果酸为唯一碳源的培养基上生长快、大的菌株2)选育氟丙酮酸敏感性突变株⏹选育强化三羧酸循环中从柠檬酸到α-酮戊二酸代谢的突变株1)选育抗氟乙酸、氟化钠、氟柠檬酸等突变株2)选育强化能量代谢的突变株抗呼吸链抑制剂突变株,如抗丙二酸的突变株抗氧化磷酸化解偶联剂突变株,如抗2,4-二硝基苯酚的突变株。
题目谷氨酸生产菌的代谢机理和研究现状谷氨酸(Glutamic acid),是人体非必须氨基酸。
里索逊于1856年发现谷氨酸,至今已成为世界上氨基酸产量最大的品种。
其用途非常广泛,尤其是其下游产品的开发应用。
食品行业主要用于味精,增鲜剂的生产,还可与其他氨基酸并用增强功能;医药行业,多用于预防和治疗肝性昏迷,保护肝脏,是肝病患者的辅助药物。
而谷氨酸在改善儿童智力发育,维持大脑机能,治疗脑震荡或神经损伤等都有一定疗效;在日常用品中,洗发水、生发剂、香皂、牙膏、香波、泡沫浴液、洗洁净等都可以见到谷氨酸的踪影;农业,谷氨酸还可以用于柑桔增甜剂、微肥的载体、杀菌剂(氨基酸铜)。
1 谷氨酸发酵生产及现状谷氨酸是第一个成功用于发酵生产的氨基酸。
氨基酸的制取始于1820年,而直到1866 年德国化学家里豪森才从小麦面筋里水解物里提取到一种碱性氨基酸-谷氨酸。
1957年,日本率先用微生物发酵法生产谷氨酸,从而结束了由水解或化学合成法而制取谷氨酸的时代[1] 利用发酵法生产,有原料成本低,反应条件温和,可大规模生产等优点,是目前氨基酸生产的主要方法。
我国虽然发酵法生产谷氨酸稍晚,但现已成为世界产量和消费最大的国家。
以味精生产为例,其主要生产流程如下:目前,我国的味精相关产品发展迅速,产量高居世界首位。
据调查,2000-2006 年味精行业平均每年增长17%我国味精年需求量为119万t,味精年人均占有量为769g,而台湾和港澳地区人均占有量为2500g,两者相差甚远。
农村味精市场发展较快,各类小食品、食品加工业冷藏盐渍食品和方便食品等不断增加,味精出口逐年扩大,销路日旺。
据调查预测,未来10年,中国味精相关产品产量将达到160万t。
味精市场空间较大,很有发展前景。
2 谷氨酸生产菌发酵机理2.1 谷氨酸生物合成途径谷氨酸代谢途径包括糖酵解途径(EMP)、磷酸己糖途径(HMP)三羧酸循环(TCA循环)、乙醛酸循环、伍德-沃克曼反应(CQ固定反应)等。
谷氨酸产生菌生产谷氨酸的原理谷氨酸是一种重要的氨基酸,在生物体内具有多种生理功能。
谷氨酸可以通过微生物发酵来进行生产,其原理涉及谷氨酸合成途径、微生物的选择和培养条件等方面。
谷氨酸的合成途径主要有六个步骤:1.氨基酸途径:谷氨酸的合成通常从谷氨酸和丙氨酸开始,通过谷氨酰酶催化谷氨酰胺的形成。
谷氨酰胺再通过转氨酶催化生成谷氨酸。
2.置换途径:谷氨酸可以通过谷氨酰胺一==缩素酶催化转化为谷氨酰胺乙酯,然后通过转移氨基团的方式产生谷氨酸。
3.酸碱反应途径:谷氨酰胺可以通过半酮酸和异烟酸一氧化酶的作用生成谷氨酸和甲酰胺。
4.脱羧途径:谷氨酰胺通过谷氨酰胺脱羧酶作用生成一氨基戊二酸。
一氨基戊二酸通过戊二酰胺酶的作用生成谷氨酸。
5.氨基化途径: 6.缩合途径:在微生物世界中,产谷氨酸的微生物种类较为丰富,常用的包括大肠杆菌、枯草杆菌、澳〜芽黴菌等。
这些微生物在制备谷氨酸过程中,通常以批次发酵或者连续发酵的方式进行。
在微生物的选种上,常规方法是在自然界中选择产谷氨酸的微生物株,并通过筛选和改良来提高其产谷氨酸的能力。
此外,还可以通过对遗传物质的改造来提高谷氨酸的产量。
例如,通过筛选产谷氨酸能力强的菌株,并通过杂交、基因重组等手段获取高产菌株。
还可以通过诱变技术来提高菌株的遗传稳定性和谷氨酸生产能力。
除了选择合适的菌株,培养条件对谷氨酸的产量也有很大的影响。
常用的培养基包括碳源、氮源、无机盐、维生素和培养基的pH等。
碳源主要是葡萄糖和淀粉,它们为微生物提供能量和生长的基础;氮源则是微生物合成氨基酸的必要条件,常用的氮源包括氨盐、尿素和蛋白质等;无机盐则是微生物生长和代谢的必需物质,对于提高谷氨酸产量也有重要的影响;维生素也是微生物生长过程中必不可少的物质,它们参与微生物的代谢反应,提高酶的活性和产酶能力;培养基的pH值也对微生物的生长和代谢有很大的影响。
除了基本的培养要素外,还需要采用适当的发酵技术和方法来进行谷氨酸的生产。
谷氨酸摇瓶发酵生物工程xxx xxx xxxxxxxxx摘要根据谷氨酸的发酵机理,本实验通过摇瓶补料发酵生产谷氨酸,并对发酵过程中产谷氨酸量、发酵液OD值、残糖量进行连续的测定。
试验结果表明:四瓶发酵培养基中,只有添加有玉米浆的发酵培养基产谷氨酸,另外3瓶以酵母膏代替玉米浆成分的发酵液都不产谷氨酸。
关键词:谷氨酸发酵摇瓶培养前言1.1 谷氨酸发酵机制在谷氨酸发酵中,生成谷氨酸的主要酶反应有三种:(1)谷氨酸脱氢酶(GHD)所催化的还原氨基化反应;(2)转氨酶(AT)催化的转氨反应;(3)谷氨酸合成酶(GS)催化的反应。
谷氨酸的合成主要途径是α—酮戊二酸的还原性氨基化,是通过谷氨酸脱氢酶完成的。
α—酮戊二酸是谷氨酸合成的直接前体,它来源于三羧酸循环,是三羧酸循环的一个中间代谢产物。
由葡萄糖生物合成谷氨酸的代谢途径如下图1所示,至少有16步酶促反应。
图1 由葡萄糖生物合成谷氨酸的代谢途径当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。
因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。
1.2 谷氨酸生产菌种的选择目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。
我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌、天津短杆菌等。
为革兰氏阳性菌,菌体为球形、短杆状和棒状,不同形状芽孢,没有鞭毛,不能运动,需要生物素作为生长因子,在通气条件下才能生产谷氨酸。
本实验选择天津短杆菌来摇瓶发酵生产谷氨酸。
1.3谷氨酸发酵过程控制谷氨酸发酵过程中,产生菌种的特性、生物素、发酵温度、pH值、通风和发酵产生的泡沫都是影响谷氨酸积累的主要因素。
在实际生产中只有针对存在的问题,严格控制工艺条件,才能达到稳产、高产的目的。
发酵初期,菌体生长迟滞,约2~4h后即进入对数生长期,代谢旺盛,糖耗快,这时必须流加尿素以供给氮源并调节培养液的pH 值至7.5~8.0,同时保持温度为30~32℃。
谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。
我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。
谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α 酮戊二酸。
α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。
当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。
因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。
在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。
研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。
因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,如生物素缺陷型菌种的选育。
生物素是不饱和脂肪酸合成过程中所需的乙酰CoA的辅酶。
生物素缺陷型菌种因不能合成生物素,从而抑制了不饱和脂肪酸的合成。
而不饱和脂肪酸是磷脂的组成成分之一。
因此,磷脂的合成量也相应减少,这就会导致细胞膜结构不完整,提高细胞膜对谷氨酸的通透性。
在发酵过程中,氧、温度、pH和磷酸盐等的调节和控制如下:①氧。
谷氨酸产生菌是好氧菌,通风和搅拌不仅会影响菌种对氮源和碳源的利用率,而且会影响发酵周期和谷氨酸的合成量。
尤其是在发酵后期,加大通气量有利于谷氨酸的合成。
②温度。
菌种生长的最适温度为30~32 ℃。
当菌体生长到稳定期,适当提高温度有利于产酸,因此,在发酵后期,可将温度提高到34~37 ℃。
③pH。
谷氨酸产生菌发酵的最适pH在7.0~8.0。
但在发酵过程中,随着营养物质的利用,代谢产物的积累,培养液的pH会不断变化。
如随着氮源的利用,放出氨,pH会上升;当糖被利用生成有机酸时,pH会下降。
④磷酸盐。
它是谷氨酸发酵过程中必需的,但浓度不能过高,否则会转向缬氨酸发酵。
发酵结束后,常用离子交换树脂法等进行提取。
谷氨酸产生菌生产谷氨酸的原理谷氨酸是一种重要的氨基酸,在蛋白质合成、能量代谢以及氨基酸代谢中具有重要作用。
谷氨酸产生菌是一类能够通过代谢途径合成谷氨酸的微生物。
它们通过不同的途径将简单的原料转化为谷氨酸,并且还可以从复杂的废弃物中合成谷氨酸。
以下将详细介绍谷氨酸产生菌生产谷氨酸的原理。
1.谷氨酸产生菌的分类和特征:
谷氨酸产生菌包括大肠杆菌、酵母菌、放线菌等,它们在合成谷氨酸的途径和机制上存在一定的差异。
不同的菌株和菌种具有不同的特征和优势,例如抗性强、高效产谷氨酸、适应性强等。
2.利用基因工程改造菌株:
利用基因工程技术改造谷氨酸产生菌株,通过改造代谢途径中的关键酶或调节元件,提高合成谷氨酸的效率。
例如,通过引入外源基因,增加或改善某些限制步骤的作用酶的功能,提高产量和速度。
3.谷氨酸产生菌的代谢途径:
谷氨酸产生菌通过将简单的原料转化为谷氨酸。
其代谢途径分为几个阶段:首先是途径的起始物质,通常是糖类、氨基酸或某些有机酸,然后将这些物质通过一系列的酶催化反应,逐步转化为谷氨酸。
4.谷氨酸产生菌的合成途径:
谷氨酸产生菌的合成途径可以分为两个主要方向:一个是从糖类合成谷氨酸的途径,另一个是从氨基酸合成谷氨酸的途径。
这两个途径在不同的菌株中可能以不同的方式存在。
从糖类合成谷氨酸的途径一般包括以下几个主要步骤:
(1)糖酵解:
糖类会被谷氨酸产生菌中的酵解酶分解为糖酵解产物,例如丙酮酸、乳酸、酒精等。
(2)酮酸的转化:
糖酵解产物通过转化酶的作用,将丙酮酸、乳酸等酮酸转化为苹果酸、柠檬酸等酮酸。
(3)酮酸的转变为α-酮酸:
酮酸通过转氨酶的作用,将酮酸转化为α-酮酸,使得氨基酸与α-酮酸发生反应生成谷氨酸。
从氨基酸合成谷氨酸的途径主要包括以下几个主要步骤:
(1)氨基酸的降解:
氨基酸通常会通过氨解酶的作用,将氨解离出来,生成氨。
进而通过特定路径生成谷氨酸。
(2)氨的转化:
菌株中的某些酶可以将氨转化为丙酮酸或柠檬酸等中间产物。
(3)途径的合成:
丙酮酸或柠檬酸等中间产物再进一步被合成酶催化反应,生成谷氨酸。
5.废弃物利用:
某些谷氨酸产生菌可以利用废弃物合成谷氨酸。
例如,利用稻草浸泡水,获得水解液,再利用谷氨酸产生菌将其中的碳源转化为谷氨酸。
总结:
谷氨酸产生菌通过不同的代谢途径将简单的原料转化为谷氨酸,并且可以从废弃物中合成谷氨酸。
通过基因工程技术改造菌株,提高谷氨酸的产量和速度,对谷氨酸的生产具有重要的意义。
谷氨酸产生菌因其特殊的代谢途径和机制,在工业生产中得到了广泛的应用。