消弧消谐
- 格式:docx
- 大小:17.87 KB
- 文档页数:4
消弧消谐原理
《消弧消谐原理》
消弧消谐原理是应用振动与控制理论的一个重要研究方向,是一种可以有效抑制或减弱机械系统受到外力激励而引起的振动反应的
一种方法。
它具有高效率、低损耗、准确控制振动、携带质量低的特点,是近几十年来振动控制领域发展迅猛的一个新技术。
本文主要介绍消弧消谐原理的定义、技术原理以及产品应用等内容。
一、定义
消弧消谐原理又叫噪声及振动消弧原理,它是指利用控制力抑制振动及噪声的一种理论,属于振动与控制技术的一种应用。
它是利用控制力和抗振动驱动力抑制机械系统振动反应的一种技术,其被控制的系统需要具有可控的习性和可激活的抗振动力。
二、技术原理
消弧消谐原理是在主动反馈技术基础上发展起来的一项新技术,其原理如下:
1、对控制被激振物体的输入力量作出相应的抑制力,使其不加大物体本身的振动强度;
2、采用增大抗振动力的方法,能够有效抑制物体的振动;
3、可以有效减弱机械系统中传导出的振动信号;
4、可以有效地削减机械系统中的振动噪声。
三、应用
消弧消谐原理在电子、机械、汽车、船舶、飞机等行业有着广泛的应用,可以有效减弱机器的振动、噪声等。
比如,用消弧消谐原理可以有效减少工程机械的振动,比如挖掘机、搅拌机等;可以有效削减汽车、船舶、飞机等的振动、噪声,使行驶中的乘客得到非常愉悦的体验;可以有效抑制电器、电子元件等发出的噪声,使它们的机能正常发挥。
总之,消弧消谐原理是一项先进的有效技术,在抑制噪声及振动方面有着重要的应用,为工业发展贡献了重要的一份力量。
消弧消谐装置原理及选型要求消弧消谐选线及过电压保护综合装置YHXG消弧消谐选线及过电压保护综合装置适用于3~35中压电力系统,该产品广泛适用于3~35KV中性点不接地、中性点经消弧线圈接地或中性点经高阻接地的电力系统,能对上述系统中的各类过电压加以限制,有效地提高了上述系统的运行安全性及供电可靠性。
一、现行消弧技术概述长期以来,我国3~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类电网在发生单相接地时,非故障相的对地电压将升高到线电压(UL),但系统的线电压保持不变,所以我国国家标准规定,3~35KV(66KV)的电网在发生单相接地故障后允许短时间带故障运行,因而这类电网的各类电气设备,如变压器、电压/电流互感器、断路器、线路等一次设备的对地绝缘水平,都应满足长期承受线电压而不损坏的要求。
传统观念认为,3~35KV(含66KV)电网属于中低压的变压配电网,此类电网中的内部过电压的绝对值不高,所以危及电网绝缘安全水平的主要因素不是内部过电压,而是大气过电压(即雷电过电压),因而长期以来采取的过电压保护措施仅是以防止大气过电压对设备的侵害。
主要技术措施仅限于装设各类避雷器,避雷器的放电电压为相电压的4倍以上,按躲过内部过电压设计,因而仅对保护雷电侵害有效,对于内部过电压不起任何保护作用。
然而,运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性弧光接地时产生的弧光接地过电压及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。
随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日夜严重起来。
为了解决上述问题,不少电网采用了谐振接地方式,即在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障点残流减小,从而达到自然熄弧。
WXHK系列控制器参数说明之一型号:调匝(调容)一控一一、主界面(运行界面)参数解释1)位移电压:系统中性点即消弧线圈首端对地电压,显示值为一次侧电压,即屏后端子排a、x处电压乘以互感器变比。
6kV、10kV系统,投运后该值一般在5~300V之间,35kV系统一般在5~600V之间。
如超过对应相电压15%,说明系统位移电压过高,控制器会显示位移电压过限,并报警,超过20%相电压,说明系统线路有接地或产生了谐振。
如无位移电压,需检查以下项目:(a)是否加上了参考电压;(b)档位信号是否回读,即档位显示值不能为0;(c)档位变比设定处是否正确;(d)调试屏二里U0调试设定值,默认值为100。
(e)是否已经加上位移电压。
2)电感电流:消弧线圈处于目前档位时,能补偿的电流,I L=U相/X L ,I L表示电感电流,U相表示相电压,X L为消弧线圈所在档位感抗。
3)电容电流:系统发生金属性接地时,流过接地点的电容电流,Ic=U相/Xc,该值为控制器通过多种方法测量计算所得值(自动状态下才会计算)。
如电容电流显示为0,需检查以下项目:(a)是否自动状态,如是,可将“自动”开关分合一次,重新测量一次;(b)是否显示调档失败,调档失败状态下,无法测量出电容电流;(c)是否为并联状态,且该控制器设置为“副机”,如果是副机,且已并联,显示为0,是正常现象。
4)调档次数:记录自动运行时,有载开关调档的次数,手动升降不记录。
该次数可以进入“调试屏一”界面,通过将“记录删除”项设置为“2”删除。
5)残流:电感电流与电容电流之差。
6)档位:显示消弧线圈当前所在档位,若档位信号未回读,即显示为“0”,“位移电压”也会同时显示为“0.0”。
因位移电压显示值需乘以所在档位变比。
7)自动状态:“yes”表示控制器当前工作在自动状态;“No ”表示工作在手动调档状态。
可通过控制器右下角“自动”船型按钮切换。
置“1”为自动,置“0”为手动。
消弧和消谐的工作原理详解消弧和消谐的工作原理是不一样的。
消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。
消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感可用改变接入绕组的匝数加以调节。
在正常运行状态下,由于系统中性点的电压是三相不对称电压,数值很小,所以通过消弧线圈的电流也很小,电弧可能自动熄灭。
一般采用过补偿方式,就是电感电流略大于电容电流消弧线圈是一种带铁芯的电感线圈。
它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。
因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。
现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。
消弧消谐柜的原理作用说的直白一点就是:当电路出现短路发生电弧接地时,迅速转化为金属接地。
金属性接地后,非故障相上的过电压立即稳定,系统中的设备可以在这个电压下安全运行;由于电弧被熄灭,过电压被限制在安全水平,故障不会再继续发展。
过电压的能量降低到过电压保护器允许的能量指标以内,避免了过电压保护器爆炸事故;母线过电压被限制在较低的水平,可避免激发铁磁谐振过电压。
消弧和消谐的工作原理是不一样的。
消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。
消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
JZXH消弧消谐选线及过电压保护装置使用说明书一、概述我国3~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类电网在发生单相金属性直接接地时,非故障相的对地电压将升高到线电压,三相线电压量值不变,且仍具有120。
的相位差,三相用电设备的工作并未受到影响,因而不影响电能的正常传输。
所以国家标准规定这类电网在发生单相接地故障后允许短时间带故障运行,提高了该类电网的供电的可靠性。
现有的运行规程规定,中性点非有效接地系统发生单相接地故障时,允许运行两小时,但规程未对“单相接地故障”的概念加以明确界定。
如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。
但是,如果单相接地故障为间歇性弧光接地,则会在系统中产生达3.5倍相电压峰值的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,在健全相的绝缘薄弱环节造成绝缘对地击穿,进而发展成为相间短路事故。
消弧消谐装置。
又名(微机消弧消谐选线及过电压保护装置),是电力行业中用于3-35KV 中性点不接地、中性点经消弧线圈接地或中性点经高阻接地的电力系统中,能对系统中的各类过电压加以限制,有效地提高了系统运行安全性及供电可靠性。
2产生原因随着现在电网的发展,架空线路逐步被固体绝缘的电缆线路所取代是一种必然趋势。
由于固体绝缘击穿的积累效应,其内部过电压,特别是电网发生单相间歇性弧光接地时产生的弧光接地过电压及由此激发的铁磁谐振过电压,己成为这类电网安全运行的一大威胁,其中以单相弧光接地过电压最为严重。
弧光接地过电压会使电压互感器发生饱和,激发铁磁谐振,导致电压互感器严重过载,造成熔断器熔断或互感器烧毁。
同时由于弧光接地过电压持续时间长,能量极易超过避雷器的承受能力,导致避雷器爆炸。
再就是弧光接地产生的高幅值的过电压加剧了电缆等固体绝缘的积累性破坏甚至击穿放炮。
3主要部件柜体、微机控制器(核心装置,包含微机消谐装置,小电流选线等功能)、高压互感器中的PT、过电压保护器、熔断器、隔离开关、零序互感器等等。
4装置原理在系统3—35KV线路中一旦发生弧光接地过电压,微机消弧控制器向故障相真空接触器发出合闸命令,故障相真空接触器快速动作,在2个周波内将弧光接地转化为金属性接地。
故障点因弧光过电压为零而立即熄弧,非故障相过电压稳定在倍的额定相电压,可以长时间安全运行(国家规程要求2小时)。
此时由值班人员对故障线路进行处理,或由微机选线装置自动处理。
本装置中的微机消弧消谐控制器还设置了PT断线、装置故障报警等功能;当系统发生接地故障时可发出动作信号,显示故障性质(弧光接地或金属接地或谐振)并显示故障相别;本装置设有RS485微机通讯接口,可实现与计算机联网,与综保厂家后台实现通讯。
5作用1.可在2个周波内熄灭弧光,有效地消除弧光接地过电压,从而可避免弧光接地引起的各种绝缘事故。
2.由于各类相对地及相对相之间的操作过电压均被限制到较低的水平,这就大大降低了激发铁磁谐振的可能性。
消弧线圈和消弧消谐及过电压保护装置是现代电力系统中非常重要的设备。
它们在电力系统中起着保护设备和人员安全的作用。
本文将详细介绍消弧线圈和消弧消谐及过电压保护装置的工作原理、应用领域以及相关技术。
一、消弧线圈消弧线圈是一种用于保护电力设备的设备,在电力系统中广泛应用。
它的主要作用是将发生故障时产生的电弧消除,防止电弧引起的进一步损坏。
1. 工作原理消弧线圈通过产生额外的磁场干扰电弧的起弧过程,使电弧得到消除。
它通常由弧抑制线圈和控制线圈组成。
当故障发生时,电弧开始形成,此时通过弧抑制线圈产生强烈的磁场,干扰电弧的燃烧过程,从而使电弧失去能量,最终被熄灭。
控制线圈用于检测故障电流,并快速控制弧抑制线圈的工作。
2. 应用领域消弧线圈主要用于高压电力设备,如变压器、断路器、隔离开关等。
它能有效地保护设备免受电弧损害,提高设备的使用寿命和可靠性。
3. 技术发展随着电力系统的发展,消弧线圈的技术也在不断进步。
目前,有一些新型的消弧线圈已经出现,如共振电弧线圈、电流型消弧线圈等。
这些新技术的出现,使消弧线圈的性能和可靠性得到了进一步提高。
二、消弧消谐及过电压保护装置消弧消谐及过电压保护装置是一种用于保护电力设备的先进装置。
它能够对电力系统中的谐波和过电压进行检测和处理,从而保护设备不受谐波和过电压的影响。
1. 工作原理消弧消谐及过电压保护装置通过对电力系统中的电压和电流进行采样和分析,检测电力系统中的谐波和过电压。
一旦检测到谐波和过电压,装置会立即采取相应的措施,如切断电源或调整系统参数,以保护设备免受谐波和过电压的损害。
2. 应用领域消弧消谐及过电压保护装置广泛应用于电力系统中的各种设备,如发电机、变压器、电力电子设备等。
它能够保护设备不受谐波和过电压的影响,提高设备的可靠性和安全性。
3. 技术发展随着电力系统中的电子设备和非线性负载的增加,谐波和过电压问题变得越来越严重。
消弧消谐及过电压保护装置的技术也在不断发展。
消弧消谐PT柜原理消弧消谐柜(PT柜)原理GYXH消弧、消谐及过电压保护装置我国现有的运行规程规定,对3~35kV中性点非直接接地的电网,发生接地故障时,允许继续运行两小时,如经上级有关部门批准,还可以延长。
但规程对于“单相接地故障”的概念未做明确界定,如单相接地故障为金属性接地,故障相电压降为零,其余两相的对地电压将升高至线电压U L,因而这类电网的电气设备如变压器、电压/电流互感器、断路器及电缆等的对地绝缘水平,都能满足长期承受线电压作用而不损坏的要求。
但是,如果单相接地故障为弧光接地,则其过电压一般为3.15~3.5倍的相电压,在这样高的过电压持续作用下,势必造成固体绝缘的积累性损伤,在健全相形成绝缘的薄弱环节,进而发展为相间短路事故。
传统观念认为,3~35kV电网属于中压配电网,此类电网中内部过电压幅值不高,所以,危及电网绝缘安全的主要因素不是内部过电压,而是大气过电压,因而长期以来采取的过电压保护措施仅仅针对防止大气过电压,主要技术措施仅限于装设各种类型的避雷器,其保护值较高,对于内部过电压起不到限制作用。
随着电网的发展,架空线路逐步被固体绝缘的电缆线路所取代。
由于固体绝缘击穿的积累效应,其内部过电压,特别是电网发生单相间歇性弧光接地时产生的弧光接地过电压及由此激发的铁磁谐振过电压,已成为这类电网安全运行的一大威胁。
其中以单相弧光接地过电压最为严重。
弧光接地过电压会使电压互感器发生饱和,激发铁磁谐振,导致电压互感器严重过载,造成熔断器熔断或互感器烧毁。
由于弧光接地过电压持续时间长,能量极易超过避雷器的承受能力,导致避雷器爆炸。
目前国内大多采用消弧线圈补偿或自动跟踪补偿式消弧线圈接地方式解决弧光接地过电压问题,其优点是:1、降低了故障点的残流,有利于接地电弧的熄灭;2、避免了长时间燃弧而导致相间弧光短路。
3、对于金属性接地,系统可带故障运行两小时,减少了跨步电压差。
缺点是:1、容易产生串联谐振过电压和虚幻接地现象;2、放大了变压器高压侧到低压侧的传递过电压;3、使小电流选线装置灵敏度降低甚至无法选线;4、用电感电流去抵消电容电流时,对于弧光接地时的高频分量部分无法抵消,因而不能有效地限制弧光接地过电压。
电力系统常见消谐方案什么是消弧消谐?消弧和消谐一般都针对中性点不接地系统。
在中性点不接地系统中,当零序电容过大时(主要由线路和电缆的对地电容形成)使单相接地电流增加,当对地发生间歇性故障时,不容易息弧,造成弧光接地,引起过电压,危及系统的安全,同时也使人体触电伤亡的几率增高。
因此一般当接地电流超过10A时就需要装设消弧线圈,以补偿接地电流。
当不接地系统中相对地之间存在非线性感性负载时(如电压互感器),系统的扰动极可能引发零序电容与感抗的谐振,随着谐振电压的提高,非线性感抗会减小,并使振荡加剧,最后维持在一个叫高的电压水平下,引起很高的对地过电压,这个谐振也叫铁磁谐振。
这个谐振可以在电压互感器的二次侧安装消谐设备来消除或减弱。
下面我们来看看电力系统中常见的几种消谐方案。
(1)微机消谐装置微机消谐装置也称二次消谐器,被安装在电压互感器(PT)的开口三角绕组上。
正常运行或者发生单相接地故障时装置不动作,而一旦判定电网发生铁磁谐振时,便会使正反并联在开口三角两端的 2 只晶闸管交替过零触发导通以限制和阻尼铁磁谐振,当谐振消除后晶闸管自行截止,必要时可以重复动作。
装置起动消谐期间,晶闸管全导通,呈低阻态,电阻为几 mΩ至几十 mΩ。
如此小的电阻值足以阻尼高频、基频及分频 3 种谐振,而且对整个电网有效,即一个系统中只需选择 1 台互感器安装消谐装置即可。
微机消谐装置的主要缺点是难以正确区分基波谐振和单相接地。
目前,对基波谐振和单相接地故障判据的主要区别在于零序电压 U0 的高低。
通常,基频谐振定为当 U0≥150V 时;当 30V≤U0<145V 时定为单相接地故障。
为了防止在单相接地时由于装置误动使 PT 长时间过负荷而烧毁的情况发生,通常将该装置基频谐振的判据电压定得比较高。
这样,在工频位移电压不是很高的情况下(如空母线合闸)装置将无法动作,就可能使某些励磁特性欠佳、铁心易饱和 PT 的熔丝熔断。
而且这种装置当电网对地电容较大时,它对防止间歇性接地或接地消失瞬间互感器因瞬时饱和涌流而造成熔丝熔断的事故无能为力。
消弧和消谐
消弧————阻止电弧增大,或不让电弧发生;
消谐————消除谐振,不是消除谐波(成份)。
电弧——绝缘物被一定场强的电场力击穿。
那么有电弧产生的地方,一定不是连续导体。
这种正常让其发生的部位叫火花间隙。
这间隙一般并接在过电压保护元件(避雷器)上,当系统发生接地故障时,中性点电位变高,使火花间隙击穿(产生电弧)。
如果中性点(可以是另外一台与其并列的主变)经消弧线圈接地,控制了中性点的电位,使火花间隙电位不击穿(或火花减到很小),这就是消弧的过程。
(当然,不用消弧线圈,也有用电阻接地的,原理是一样的)
消谐是防止系统谐振的一种措施,6~35KV系统对地呈容性,而电压互感器且需要中性点直接接地的感性元件,在系统电压稍有波动或投切过程,极易在PT上发生谐振。
所以,一般消谐装置都装在PT柜上。
普通消谐是在其谐振回路增加电阻(元件),使阻尼增大,达到减弱和消除谐振的目的。
(这与系统上存在谐波是两回事,消谐装置不能消除系统上的多次谐波!)。
消弧线圈和消弧消谐及过电压保护装置范本消弧线圈和消弧消谐及过电压保护装置是电力系统中常见的一种保护装置,用于保护电力设备和人身安全。
在本文中,将详细介绍消弧线圈和消弧消谐及过电压保护装置的原理、结构和使用方法。
一、消弧线圈1. 原理消弧线圈是一种电流互感器,它通过电感效应将电流减小到安全范围内,从而避免高电流引起的火花和弧光。
消弧线圈通常由高导磁材料制成,可以有效抑制电弧产生。
2. 结构和工作方式消弧线圈由磁芯、绕组和外壳等组件构成。
磁芯通常采用高导磁性能的材料,如硅钢片,以增强磁场的传导效果。
绕组则是将高电流通入线圈,经过磁芯,输出的电流变小,从而达到消弧的目的。
在使用过程中,消弧线圈通常与断路器或隔离开关等设备配合使用。
当电流超过安全范围时,消弧线圈会将电流减小,从而防止电弧和火花的产生。
3. 使用方法使用消弧线圈时,需要注意以下几点:- 正确选择消弧线圈的规格和型号,以适应具体的电流和电压要求。
- 定期检查消弧线圈的绝缘状况,确保其工作正常。
- 避免将消弧线圈与高电压设备放置在相同的位置,以免产生电磁干扰。
- 在安装和维护消弧线圈时,必须按照相关标准和要求进行操作,确保安全可靠。
二、消弧消谐及过电压保护装置1. 原理消弧消谐及过电压保护装置是一种能够对电源系统中的过电压和谐波进行保护和补偿的装置。
其工作原理是通过电感和电容等元件,将电源系统中的谐波和过电压滤除,从而达到保护电力设备和提高电能质量的目的。
2. 结构和工作方式消弧消谐及过电压保护装置通常由电容、电感、继电器等组件构成。
其中,电容用于滤除电源系统中的谐波,电感用于消除过电压,继电器则用于监测电源系统中的状态,并控制保护装置的开关。
在使用过程中,消弧消谐及过电压保护装置通常安装在电源系统的入口处,以确保整个系统的电能质量。
当电源系统中出现过电压或谐波时,装置会自动启动,将这些并不稳定的信号滤除或压制,从而保护设备和电网的安全。
3. 使用方法使用消弧消谐及过电压保护装置时,需要注意以下几点:- 正确选择装置的规格和型号,以适应具体的电源系统的需求。
消弧消谐原理消弧消谐原理是指在电气设备中,通过采用特定的装置和措施,有效地消除电弧和谐波,从而保障设备的安全运行和电能质量。
消弧和消谐是电气工程中非常重要的环节,对于设备的可靠性和电能质量有着直接的影响。
首先,我们来看看消弧原理。
在电气设备中,电弧是一种非常危险的现象,它会导致设备的损坏甚至引发火灾。
因此,消弧是电气设备中必须解决的重要问题。
消弧的原理是通过特定的装置,如消弧线圈、消弧室等,将电弧的能量消耗掉,从而使电弧迅速熄灭,保障设备和人员的安全。
消弧原理的应用可以大大提高设备的可靠性和安全性。
接下来,我们来讨论消谐原理。
在电气系统中,谐波是一种频率不同于基波的电压或电流成分,它会导致电能质量下降,影响设备的正常运行。
消谐的原理是通过谐波滤波器、谐波抑制器等装置,将谐波成分有效地消除或抑制,从而保障电能质量,防止对设备的影响。
消谐原理的应用可以提高电能质量,减少设备的损坏,保障电气系统的稳定运行。
在实际工程中,消弧消谐原理的应用非常广泛。
例如,在变电站中,为了防止高压开关操作时产生电弧,会采用消弧线圈或消弧室;在工业生产中,为了保障设备的正常运行,会采用谐波滤波器或者主动谐波抑制器来消除谐波成分。
这些装置和措施的应用,有效地保障了电气设备的安全运行和电能质量。
总之,消弧消谐原理是电气工程中非常重要的环节,它关系到设备的可靠性和电能质量。
通过采用消弧线圈、消弧室、谐波滤波器、主动谐波抑制器等装置和措施,可以有效地消除电弧和谐波,保障设备的安全运行。
在实际工程中,我们需要根据具体的情况,合理地选择和应用这些装置和措施,以达到最佳的效果。
消弧消谐原理的研究和应用,将为电气工程的发展和电能质量的提高提供重要的支撑。
1.EAT的和四柱有间隙四柱避雷器相比优点是什么?有没有什么缺点?答:无间隙环氧浇注结构简单可靠,能保护相间和相对地,响应速度快,无放电延迟,陡波响应特性好,无截波2.无中性点的优势是什么?答:不会因为三相不平衡存在悬浮对地电位,单只避雷器荷电率比三相四柱无间隙上只避雷器荷电率低很多。
3.如果在EAT上加上间隙会怎么样?答:加上间隙荷电率低,但是采用六柱式荷电率不会高很多4.为什么EAT不允许做工频放电试验?答:将工频电压全部加在阀片上,非常大的电流将使阀片击穿,造成避雷器损坏5.EAT能消除相间和谐振过电压吗?答:可以消除相间过电压,EAT采用六个独立单元结构设计,相间和相对地由独立的阀片承担,谐振过电压是有补偿源的过电压,如果它长时间的作用在EAT上可能会使EAT崩溃,须使用消谐装置消除谐振消弧消谐6.消弧消谐柜和消弧线圈各自优缺点?答:消弧柜灭弧可靠性很高,但不限制金属接地电流,消弧线圈可以限制金属接地电流。
7.消弧柜能不能消除谐波?答:可以,能消除全频0-300HZ谐振8.消弧柜的专利零序闭锁功能是什么?答:备用发电机定子接地,如果投入使用的话,消弧柜也有一个接地点,会烧坏发电机,当备用发电机投入使用时,闭锁消弧柜9.消弧柜工作原理是什么?答:消弧柜是将弧光接地瞬间转化为金属接地,将弧光接地故障点的工频电弧电流和高频电弧电流都转移至金属接地点,有效迅速熄灭电弧,使非故障相相电压稳定在√3倍,限制母线电压在较低水平。
10.什么的母联闭锁功能?答:当用户有两段及以上线路供电时,一段母线带两段运行时,防止我们装置重复使用重复动作,所以闭锁一台不让其动作11.聚优柜聚优是指什么?答:聚合各类过电压保护装置的保护特性,优化了过电压保护装置的保护曲线,弥补了系统过电压保护装置的保护盲区和死区,物理特性好,动作时间纳秒级,能够抑制过电压尖峰,吸收系统过电压(弧光、谐振等),降低过电压幅值,并且能够吸收系统过电压时所产生的能量。
消弧和消谐的工作原理详解消弧和消谐的工作原理是不一样的。
消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。
消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感可用改变接入绕组的匝数加以调节。
在正常运行状态下,由于系统中性点的电压是三相不对称电压,数值很小,所以通过消弧线圈的电流也很小,电弧可能自动熄灭。
一般采用过补偿方式,就是电感电流略大于电容电流消弧线圈是一种带铁芯的电感线圈。
它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。
因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。
现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。
消弧消谐作用在中低压配电系统中一般都要安装(中性点一般点不直接接地),如在变电站的10kV或是6kV配电室内安装。
原因:近几年,随着城网的迅速发展,电缆线路的比例逐年增多,导致对地电容电流剧增。
单相接地时,常会发生弧光接地过电压(接地不可靠),这会导致CT 等设备绝缘击穿,引发事故。
故需安装消弧装置,在系统出现弧光接地时,迅速熄灭电弧,避免出现弧光接地过电压。
同样,在中性点不直接接地系统中,在单相接地等故障的激发下,系统可能出现谐振,既而导致过电压,使设备绝缘击穿,PT铁芯出现过饱和引发过热甚至爆炸等。
一、应用概述XHB消弧消谐及过电压保护装置是本公司针对市场同类产品的不足,结合实际使用要求而研制开发出来的新型消弧消谐及过电压保护装置,该装置广泛应用于6-35kV三相非直接接地电力系统中,用来快速熄灭接地弧光,限制因非直接接地而产生的各类过电压,以及系统运行中产生的各类操作过电压、大气过电压等,可有效提高电网运行的安全性和可靠性。
当前我国6-66kV的配电网大多采用中性点不接地运行方式。
运行经验表明,系统中60%以上的故障是单相接地故障。
如果电网小、线路不太长,接地电容电流将很小,当故障原因消失后,电弧一般可以自行熄灭,系统会很快恢复正常。
但随着国民经济的不断发展和民用电的不断提高,架空线路逐步被固体绝缘的电缆线路取代,间隙性电弧接地出现的概率增加。
而系统对地电容电流也急剧增加,一般6-10kV电网的接地电流超过30A,35-66kV电网的接地电流超过10A,这样系统发生故障时流经故障点的电流较大,电弧就很难熄灭,引起电网运行状态的瞬时变化,导致电压互感器电磁能量饱和,产生电磁谐振,并使系统健全相电压升高,引起弧光过电压及铁磁谐振过电压。
弧光过电压可达相电压峰值的3.5倍,系统在这种过电压持续作用下极易形成绝缘损伤,甚至发生相间短路。
弧光接地激发铁磁谐振会导致电压互感器严重过载,使电压互感器烧毁。
消弧消谐柜存在的严重技术缺陷与消弧线圈相比,采用故障相接地法的消弧装置具有造价低、占地面积小等优点,对线路发生的单相接地也能够消弧。
但是,该技术的存在严重的技术缺陷,会对安全供电产生严重危害,甚至造成大面积停电,应禁止使用。
1、故障相判断不能做到100%⑴没有100%的判相理论支持。
中性点不接地系统,由于消弧线圈的长期应用,无须对故障相判断,因而故障相判断的研究仅限于经验归纳。
110kV以上中性点直接接地系统,由于重合闸的要求,故障相判断研究比较成熟,由于故障接地的复杂性,也不能做到100%的准确判断。
故障相接地消弧装置判相错误就会引起相间短路,故障相接地消弧装置无法做到100%的故障相判断,从而给系统产生严重的安全隐患。
⑵消弧柜中的高压熔断器,正是为防止判相错误而设。
故障相接地消弧装置为防止判相错误,均设置高压熔断器,来防止其判相错误产生的相间短路。
高压熔断器最重要的缺陷就是开断大电流的能力较低,这正是制约高压熔断器广泛使用的原因。
因此配电系统依然使用断路器,而不使用熔断器。
故障相消弧装置使用高压熔断器来开断因其判相错误造成的相见短路,显然是非常不可靠的,一旦高压熔断器不能正确开断,电弧在高压熔断器熔管中产生大量的热量,造成高压熔断器爆炸。
2、一旦判相错误将造成相间短路⑴高压熔断器正常开断,系统将失去消弧保护,弧光接地有可能造成事故。
⑵高压熔断器不能开断,将造成两方面的严重后果:A、要么消弧柜中的高压熔断器爆炸。
B、要么母线进线开关跳闸,造成母线停电,如化工等对供电可靠性要求特别高的企业,等于饮鸩止渴。
3、非总降变电所的开闭所、末端变母线段应严禁使用消弧柜非总降变电所任何出线发生单相接地,开闭所、末端变母线上的消弧柜都会动作,造成多点接地,总降变电所无法判断那条出线故障,超过2小时,总降变电所母线必须停电,造成大面积停电。
5、造成小容量变压器绕组发生单相接地时损坏如果变压器绕组发生单相接地,本来油浸式变压器的拉弧可自愈,不会造成事故,但采用故障相接地法的消弧装置动作后,短接一部分变压器绕组,被短接的这部分变压器绕组切割铁芯中的磁力线,产生电动势,等于故障相接地消弧装置短接一部分电源,短路电流也可达几千安乃至几十千安,从而烧坏变压器绝缘造成事故。
消弧线圈和消弧消谐及过电压保护装置1. 引言在电力系统中,消弧线圈、消弧消谐装置以及过电压保护装置是非常重要的组成部分。
它们的作用是保护电力设备免受过电压和弧光的影响,确保电力系统的正常运行。
本文将对消弧线圈和消弧消谐装置以及过电压保护装置进行详细介绍。
2. 消弧线圈消弧线圈是一种用于消除电器设备中产生的弧光和过电压的装置。
它由一个简单的线圈组成,通过将电流引导到地线上来防止电弧的产生。
消弧线圈可以广泛应用于各种电气设备中,如变压器、开关设备等。
消弧线圈的工作原理是基于磁场的感应和电流的引导。
当电气设备中发生电弧时,弧光产生的高温会使得消弧线圈中的磁场发生变化,从而感应出一定的电流。
这个电流会被消弧线圈引导到地线上,从而将电流与电气设备隔离开来,防止电弧的产生。
3. 消弧消谐装置消弧消谐装置是一种用于消除电气设备中的弧光和谐振的装置。
它通过调节电路参数来消除电气设备中的谐振现象,并通过引导电流来消除电弧。
消弧消谐装置可以提高电气设备的稳定性和可靠性。
消弧消谐装置的工作原理与消弧线圈类似,但它的功能更为复杂。
它可以通过调节电路的电感、电容和电阻等参数来抑制谐振,并通过引导电流来消除电弧。
消弧消谐装置通常应用于对电气设备的保护性能要求更高的场合,如变电站、发电厂等。
4. 过电压保护装置过电压保护装置是一种用于保护电力设备免受过电压的影响的装置。
过电压通常是由电力系统中的突发故障或外部干扰引起的,它可能对电力设备造成损坏或故障。
过电压保护装置通过检测电压的变化并及时采取措施来保护电力设备。
过电压保护装置可以分为两大类:过电压保护装置和过压保护装置。
过电压保护装置主要用于检测和保护电气设备免受过电压的侵害,它通常包括电压传感器、比较器以及断路器等。
过压保护装置用于保护电气设备免受超过额定电压的侵害,它通常包括电压监测器和断路器等。
5. 总结消弧线圈、消弧消谐装置以及过电压保护装置是电力系统中非常重要的组成部分。
消弧消谐培训
一、消弧线圈的主要作用:
在电网发生单相接地时产生电感电流以补偿电网电容电流,使故障点残流变小,达到自行熄弧、消除故障的目的。
消弧线圈的使用,对抑制稳定电弧过电压,消除电磁式压变饱和引起的铁磁谐振过电压,降低线路故障跳闸率方面起到明显效果。
二、消谐装置的工作原理:
电网中存在大量储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容、断路器断口的电容等电容元件,这些元件组成了许多串联或并联振荡回路。
在正常情况下不可能产生振荡,但当系统发生故障或某种原因引起电网参数变化(如接地短路、线路跳闸、空载线路合闸、三相不同期合闸等),就可能引起谐振。
电压互感器等一类的电感元件在正常工作电压下,通常铁芯刺痛密度不高,铁芯不饱和,如在过电压情况下铁芯饱和,电感会迅速降低,从而与电容产生谐振,这时谐振称为铁磁谐振。
正常运行时,电压互感器开口三角的电压3U0理论上为0V,在实际中一般也不会超过10V,但系统发生单相接地时,3U0迅速升高到30V,甚至更高,达120V,形成过压。
在形成的谐波中含量比重最大的为16.67HZ,25HZ,150HZ三种谐波,其他分量比较小,一般忽略。
因此消谐装置一般都是通过检测这三种频率的谐波电压值判断是否发生谐振。
三、系统谐振过电压事故的处理方法:
1、发生谐振过电压时,应先检查以下项目,并汇报调度及领导。
1)保护动作情况、后台电压参数、特别是3UO 值、信号、仪表指示、开关跳闸情况。
2)PT 柜上消谐装置记录情况。
2、处理谐振过电压事故的关键是破坏谐振条件,值班人员应根据系统情况、操作情况做出正确判断,不经调度按以下方法处理,然后将处理结果汇报调度。
1)由于操作而产生的谐振过电压,一般可立即恢复到操作以前的运行状态。
2)运行中发生的谐振过电压,可以试断开一条不重要负荷的线路,消除谐振。
3)接地后发生的谐振,应立即断开接地线路。
四、谐振现象:
基波谐振:发生基波谐振时,相对地电压有以下两种现象:
1) 一相电压下降(不为零),两相电压升高超过线电压或电压表顶表;
2) 两相电压下降(不为零),一相电压升高或电压表顶表;
其相对地电压的过电压小于或等于3倍相电压;
2、高频谐振:发生高频谐振时,其相对地电压的过电压小于或等于4倍相电压,三相对地电压一起升高,远远超过线电压或电压表顶表。
3、分频谐振:发生分频谐振时,三相对地电压依相序次序轮流升高或同时升高,并在(1.2~1.4)倍相电压间做低频摆动,大约每秒一次。
由上述谐振现象可总结如下:
现象判断
发母线接地信号(开口三角有零序输出)
一相相对地电压超过线电压,二相相对地电压超过线电压。
基波谐振:三相相对地电压超过线电压。
高频谐振:三相对地电压依次轮流升高,但不超过线电压三相对地电压同时升高,但不超过线电压分频谐振。
谐振的处理:
1、基波或高频谐振的处理:
1) 有运行电容器时,切除运行电容器;没有运行电容器时,投入一组电容器;
2) 以上措施无法消谐时,切除该母线所有电容器,向调度申请切除部分馈线,最好是先切长线路。
2、分频谐振的处理:
1) 切除该母线所有电容器;
2) 谐振仍无法消除时,向调度申请切除该母线上的线路,直至谐振消除;
3) 若所有线路全部切除后仍无法消谐,向调度申请切除变低开关,将母线停电;
4) 恢复母线及线路送电。