2012考研数学一真题及答案解析
- 格式:doc
- 大小:1.83 MB
- 文档页数:29
考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2014年]行列式=( ).A.(ad-bc)2B.一(ad-bc)2C.a2d2一b2c2D.一a2d2+b2c2正确答案:B解析:令,则此为非零元素仅在主、次对角线上的行列式,即得|A|=一(ad-bc)(ad-bc)=一(ad-bc)2.仅B入选.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:利用矩阵秩和乘积矩阵秩的两不大于法则确定正确选项.因AB为m 阶矩阵,行列式|AB|是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到m>n时,有秩(A)≤min{m,n}=n<m,秩(B)≤min{m,n}=n <m.再利用乘积矩阵秩的两不大于法则得到秩(AB)≤min{秩(A),秩(B)}<m,而AB为m阶矩阵,故|AB|=0.仅B入选.知识模块:行列式3.[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:因Q=[α1+α2,α2,α3]=[α1,α2,α2],故因而Q-1AQ 知识模块:矩阵4.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E —A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值.可知,它们均可逆.知识模块:矩阵填空题5.设n阶矩阵,则|A|=______.正确答案:(一1)n-1(n一1)解析:|A|是行和与列和都相等的行列式.将各列加到第1列,提取公因式n一1,去掉与第1列成比例的分列,化为下三角形行列式,得=(一1)n-1(n 一1).知识模块:行列式6.[2015年] n阶行列式=______.正确答案:2n+1-2解析:按第1行展开得到递推关系式:=2Dn-1+2(一1)n+1(一1)n-1=2Dn-1+2.依此递推,得到Dn=2Dn-1+2=2(2Dn-2+2)+2=22Dn-2+22+2=22(2Dn-3+2)+22+2=23Dn-3+23+22+2 =…=2n-1D1+2n-1+2n-2+…+22+2=2n-1·2+2n-1+2n-2+…+22+2=2n+2n-1+2n-2+…+22+2=2(1+2+22+…+2n-1).由等比级数求和的公式a1+a1q+a1q2+…+a1qn-1=,令a1=2,q=2,得到Dn=2(1+2+22+…+2n-1)==(一1)(2—2n+1)=2n+1-2.知识模块:行列式7.[2016年]行列式=______.正确答案:λ4+λ3+2λ2+3λ+4解析:=λ[λ·λ·(λ+1)+0·2·0+3(-1)(一1)一0·λ·3一(一1)·2·λ—(λ+1)(一1)·0]+4=λ4+λ3+2λ2+3λ+4.知识模块:行列式8.设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.正确答案:一22n-1/3解析:由|kA|=kn|A|.A*=|A|A-1,|A*|=|A|n-1,|B-1|=1/|B|,有|2A*B-1|=|2A*||B-1|=2n|A*|(1/|B|)=2n|A|n-1一/|B|=2n2n-1/(一3)=一22n-1/3.知识模块:行列式9.[2005年] 设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·正确答案:2解析:B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC.其中为三阶范德蒙行列式,则|C|=(2—1)×(3—1)×(3—2)=2,故|B|=|A||C|=2×1=2.知识模块:行列式10.[2006年]设矩阵,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.正确答案:2解析:由BA=B+2E得|B(A—E)|=|2E|=22=4,故|B||A—E|=4,|B|=4/|A—E|=4/2=2.知识模块:行列式11.[2004年]设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______.正确答案:1/9解析:在所给方程的两边同时右乘A,利用A*A=|A|E,得到ABA*A=2BA*A+A,即|A|AB=2|A|B+A,移项即得|A|(A一2E)B=A.两边取行列式,得到|A|(A-2E)B|=|A|,即|A|3|(A-2E)B|=|A|,|A|2|A一2E||B|=1,再由|A|=3,|A一2E|=1得到所求行列式|B|=1/|A|2=1/9.知识模块:行列式12.设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=______.正确答案:3解析:所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=diag(1,2,2)=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4PΛ-1P-1一PEP-1=P(4Λ-1一E)P-1.两端取行列式有|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,1/2)一E|=3.知识模块:行列式13.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=______.正确答案:-1解析:由aij=一Aij,则(aij)T=一(Aij)T=一(Aji),即AT=一A*,从而|A|=|AT|=|—A*|=(一1)3|A|3-1=一|A|2.即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=一1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=一(ai12+ai22+ai32)=0 (i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵.这与假设矛盾,故|A|=一1. 知识模块:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是______.正确答案:λ≠1解析:因方程个数与未知数的个数相同,又该方程组只有零解,可知,|A|≠0.而于是当λ≠1时,|A |≠0,即该方程组只有零解.知识模块:行列式15.设α为三维列向量,αT是α的转置.若ααT=,则αTα=______.正确答案:3解析:由ααT= 知,于是αTα=3.知识模块:矩阵16.设,而n≥2为整数,则An一2An-1=______.正确答案:O解析:先求出n=2和n=3时A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A.当n=3时,A2=A2·A=2A·A=2A2=2·2A=22A.设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak·A=2k-1A·A=2k-1A2=2k-1·2A=2kA.因而对任何自然数n,有An=2n-1A,于是An一2An-1=2n-1A一2·2n-2A=O.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一(二维随机变量及其分布)历年真题试卷汇编2(总分150, 做题时间180分钟)选择题1.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y(z)为随机变量Z=XY的分布函数,则函的概率分布P(Y=0)=P(Y=1)=1/2.记FZ数F(z)的间断点的个数为( ).ZSSS_SINGLE_SELAB1C2D3分值: 7.5答案:BF(z)=P(Z≤z)=P(XY≤z)=P(XY≤z|Y=0)P(Y=0)+P(XY≤z|Y=1)P(Y=1)Z=[P(XY≤z|Y=0)+P(XY≤z|Y=1)]/5.又X,Y相互独立,故 F(z)=[P(X·0≤z)+P(X≤z)]/2.Z(z)=[+ф(z)]/2=ф(z)/2.当z<0时, FZ(z)=[P(Ω)+P(X≤z)]/2=[1+ф(z)]/2.当z≥0时, FZ综上所述,得到因(z)只有一个间断点z=0.仅B入选.所以FZ2.[2012年] 设随机变量X与Y相互独立,且分别服从参数为1和参数为4的指数分布,则P(X<Y)=( ).SSS_SINGLE_SELA1/5B1/3C2/5D4/5分值: 7.5答案:A由题设有而X与Y相互独立,故f(x,y)=fX (x)fY(y)=则P(X<Y)= f(x,y)dxdy=∫0+∞∫x+∞4e-(x+4y)dxdy=一∫+∞e-x dx∫x+∞e-4y d(一4y)=∫0+∞e-x·e-4x dx=∫+∞e-5x dx=仅A入选.3.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则( ).SSS_SINGLE_SELAa=0.2,b=0.3Ba=0.4,b=0.1Ca=0.3,b=0.2Da=0.1,b=0.4分值: 7.5答案:B由=(a+0.4)+(b+0.1)=a+b+0.5=1(归一性)知,a+b=0.5.又由事件{X=0}与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故 a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4.从而b=0.5一a=0.1.填空题4.[2003年] 设二维随机变量(X,Y)的概率密度为则P(X+Y≤1)=______.SSS_FILL分值: 7.5答案:首先求出积分区域D ∩ G.D ∩ G实质上是G={(x,y)|0≤x≤y≤1}与D={(x,y)|x+y≤1}交集.可知,0≤x≤y≤1是在y=x上方的区域,而x+y≤1是直线x+y=1下方的区域.两者之交即为D ∩ G(见图),故5.[2015年] 设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY—Y<0}=_______.SSS_FILL分值: 7.5答案:因(X,Y)~N(1,1;0,1;0),ρ=0,故X,Y相互独立,则P{XY—y<0}=P{(X一1)Y<0}=P{X一1<0,Y>0}+P{X一1>0,Y<0}=P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1}=P{X>1}=.因Y~N(0,1),故P{Y>0}=P{Y<0}=.所以6.[2006年] 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P(max{X,Y}≤1)=______.SSS_FILL分值: 7.5答案:1/9P(max(X,Y)≤1)=P({X≤1}{Y≤1})=P(X≤1,Y≤1)=P(X≤1)P(Y≤1)=[(1一0)/(3—0)][(1一0)/(3一0)]=(1/3)×(1/3)=1/9.解答题[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=一1,0,1),Y的概率密度为记Z=X+Y.SSS_TEXT_QUSTI7.求P(Z≤1/2|X=0);分值: 7.5答案:由于X,Y相互独立,有P(Z≤1/2 |X=0)=P(X+Y≤1/2|X=0)=P(y≤1/2|X=0)SSS_TEXT_QUSTI8.求Z的概率密度fZ(z).分值: 7.5答案:因X的可能取值为一1,0,1,而fY(y)取非零值的自变量的变化范围为0≤y≤1,一1≤z=x+y≤2.(1)当z≥2时,X,Y的所有取值均满足上式,故F(z)=P(Z≤z)=P(X+Y≤z)=1.(2)当z=x+y<一1时,X,Y的取值为空值,则P(X+Y≤z)==0.(3)当一1≤z<2时,下面用全概率公式求出FZ(z)的表示式:FZ(z)=P(Z≤z)=P(X+Y≤z)=P(X+Y≤z|X=一1)P(X=一1)+P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=1)P(X=1)(Fy(z)为y的分布函数),则fZ (z)=F'Z(z)=[FY(z+1)+fY(z)+fY(z—1)].当0<z+1<1或0<z<1或0<z—1<1,即一1<z<2时,FZ(z)=;其他情况下,fZ(z)=0.[2017年] 设随机变量X,Y相互独立,,Y的概率密度为fY(y)=SSS_TEXT_QUSTI9.求P{Y≤E(Y)};分值: 7.5答案:因E(Y)=∫-∞+∞yfY(y)dy=∫1y·2ydy=,故SSS_TEXT_QUSTI10.求Z=X+Y的概率密度.分值: 7.5答案:Z的分布函数FZ(Z)=P{X+Y≤z,X=0}+P{X+Y≤z,X=2} =P{X=0,Y≤z}+P{X=2,Y+2≤z}=,故Z的概率密度函数为[2014年] 设随机变量X的概率分布为P(X=1)=P(X=2)=,在给定X=i的条件下,随机变量y服从均匀分布U(0,i)(i=1,2).SSS_TEXT_QUSTI11.求Y的分布函数F(y);Y分值: 7.5答案:记U(0,i)的分布函数为F(x)(i=1,2),则i(y)=p(Y≤Y)=P(x=1)P(Y≤y|X=1)+P(X=2)P(Y≤y|X=2)于是FY因在X=i的条件下,Y服从均匀分布U(0,i)(i=1,2),故当y≤0时,(y)=0.Fi当0<y≤1时,当1<y<2时,当y≥2时,所以SSS_TEXT_QUSTI12.求期望E(Y).分值: 7.5答案:(y)可得概率密度函数为由Y的分布函数FY+∞yfy(y)dy=故E(Y)=∫-∞[2013年] 设随机变量X的概率密度为令随机变量,SSS_TEXT_QUSTI13.求y的分布函数;分值: 7.5答案:+∞f(x)dx=,得到a=9.此时,X的利用概率密度函数的归一性,由1=∫-∞概率密度为(y).由题设知,Y的取值范围为1≤Y≤2,故设Y的分布函数为FY(y)=P{Y≤y}=0;P(1≤Y≤2)=1.因而当y<1时,FY当1≤Y<2时,F(y)=P{Y≤y}=P{Y<1}+P{Y=1}+P{1<Y≤y}Y=0+P{X≥2}+P{1<X≤Y}=(y)=P{Y≤y}=P{Y≤2}=1.当Y≥2时,FY综上得到y的分布函数为SSS_TEXT_QUSTI14.求概率P{X≤Y}.分值: 7.5答案:由随机变量y的分段表示式易看出,满足x≤y的x的取值范围为x<2.因而所求概率为P{X≤Y}=P{X<2}=[2016年]设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<y<)上服从均匀分布.令SSS_TEXT_QUSTI15.写出(X,Y)的概率密度;分值: 7.5答案:易求得区域D的面积,故(X,Y)的概率密度SSS_TEXT_QUSTI16.问U与X是否相互独立?并说明理由;分值: 7.5答案:考查事件{U=0}与乘积的概率是否与事件{U=0}的概率的乘积相等.事实上,它们不相等.易求得显然,故U与X不独立.SSS_TEXT_QUSTI17.求Z=U+X的分布函数FZ(z).分值: 7.5答案:下面用全集分解法求f(u,v)的分布函数FZ(z)=P(Z≤z)=P(U+X≤z).FZ(z)=P(U+X≤z)=P(U=0,U+X≤z)+P(U=1,U+X≤z)=P(U=0,X≤z)+P(U=1,U≤z—1)=P(X>y,X≤z)+P(X≤Y,X≤z一1)注意到x取值的边界点为0,1,而U取值边界点也为0,1,因而z的取值的分段点为0,1,2.于是应分下述四种情况分别求出FZ(z)的表示式.①z<0时,则P(X≤z)==0,P(X≤z—1)==0,故FZ(z)=0.②0≤z<1时,③1≤z<2时,④z≥2时,FZ(z)=P(X>Y)+P(X≤y)=P(U=0)+P(U=1)=1.综上所述,Z的分布函数为[2009年] 袋中有一个红球、两个黑球、三个白球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球个数.SSS_TEXT_QUSTI18.求P(X=1|Z=0);分值: 7.5答案:(I)用缩减样本空间的方法求之.求时应注意两次取球取到的是不同类的球,要讲次序.因而两次都没取到白球(Z=0)的条件下,只能取红、黑两种球,且每次都要取到一个红球,其可能性为C11×C21+C21×C11=4,总的可能性为C 31×C31=3×3=9,故SSS_TEXT_QUSTI19.求二维随机变量(X,Y)的概率分布.分值: 7.5答案:由题设知X与Y的所有可能取值均为0,1,2,而取值的概率可由古典概率的计算公式得到.计算时要注意两次取球取到的是不同类的球要讲次序,取到的是同类的球不讲次序.故(X,Y)的概率分布为20.设随机变量X的概率密度为f(x)=e-|x|/2,一∞<x<+∞,问随机变量X 与|X|是否相互独立?为什么?SSS_TEXT_QUSTI分值: 7.5答案:因X和|X|为两个随机变量,下面证明对于给定的a(0<a<+∞),式P(X<x,Y<y)=P(X<x)P(Y<y)不成立,从而X与|X|不相互独立.事实上,因事件{|X|<a}包含在事件{X<a}之中,即{X<a} {|X|<a},故P(X<a,|X|<a)=P({X<a}∩{|X|<a})=P(|X|<a).又P(X<a)<1,P(|X|<a)>0,因而P(X<a)P(|X|<a)<P(|X|<a).于是P(X<a,|X|<a)=P(|X|<a)>P(X>a)P(|X|<a),故P(X>a,|X|<a)≠P(X<a)P(|X|<a) (0<a<+∞).可知,X与|X|不相互独立.1。
[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (1998年)已知函数y=y(x)在任意点x处的增量且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于( )(A)2π(B)π(C)(D)2 (2016年)若是微分方程y′+p(x)y=q(x)的两个解,则q(x)=( )(A)3x(1+x2)(B)一3x(1+x2)(C)(D)3 (2008年)在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )(A)y"′+y"一4y′一4y=0(B)y"′+y"+4y′+4y=0(C)y"′一y"一4y′+4y=0(D)y"′一y"+4y′一4y=04 (2015年)设是二阶常系数非齐次线性微分方程y"+ay′+by=ce x的一个特解,则( )(A)a=一3,b=2,c=一1(B)a=3,b=2,c=一1(C)a=一3,b=2,c=1(D)a=3,b=2,c=1二、填空题5 (2006年)微分方程的通解是__________。
6 (2008年)微分方程xy′+y=0满足条件y(1)=1的解是y=___________。
7 (2014年)微分方程xy′+y(lnx—lny)=0满足y(1)=e3的解为y=____________。
8 (2005年)微分方程xy′+2y=zlnx满足的解为___________。
9 (2011年)微分方程y′+y=e-x cosx满足条件y(0)=0的解为y=__________。
10 (2000年)微分方程xy"+3y′=0的通解为_____________。
11 (2002年)微分方程xy"+y′2=0满足初始条件的特解是____________。
2012年全国硕士研究生入学统一考试 数学一试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0(B )1(C )2(D )3【答案】:C 【解析】:221lim 1x x x x →+=∞-,所以1x =为垂直的22lim 11x x x x →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!n n --(C )1(1)!n n --(D )(1)!n n -【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+--- 所以'(0)f =1(1)!n n --(3)如果(,)f x y 在()0,0处连续,那么下列命题正确的是( )(A )若极限0(,)lim x y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (B )若极限2200(,)lim x y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(C )若(,)f x y 在(0,0)处可微,则极限00(,)lim x y f x y x y→→+存在(D )若(,)f x y 在(0,0)处可微,则极限2200(,)limx y f x y x y →→+存在 【答案】:B 【解析】:由于(,)f x y 在()0,0处连续,可知如果220(,)lim x y f x y x y→→+存在,则必有00(0,0)lim (,)0x y f f x y →→==这样,2200(,)limx y f x y x y →→+就可以写成2200(,)(0,0)lim x y f x y f x y ∆→∆→∆∆-∆+∆,也即极限2200(,)(0,0)lim x y f x y f x y ∆→∆→∆∆-∆+∆存在,可知lim 0x y ∆→∆→=,也即(,)(0,0)00f x y f x y o ∆∆-=∆+∆+。
考研解析几何真题汇总答案作为考研数学科目中的一部分,解析几何是让许多考生头疼的一门课程。
在考试中,解析几何的题目往往需要考生具备一定的思维能力和解题技巧。
下面,将对几个历年考研解析几何真题进行总结和解析,帮助考生更好地掌握考点和解题方法。
一、2008年考研数学解析几何题1. 题目:已知平面α过点A(1,1,1),与直线l:x=y-1=z-2相交于点P。
若α与平面β:x-2y+z+1=0垂直,则平面α与平面β的距离为_____。
解析:首先要找到平面α的法向量。
根据已知条件,直线l的方向向量为(1,1,1),那么直线l上的一点P(2,0,1)与点A构成的向量为(2-1,0-1,1-1)=(1,-1,0)。
所以平面α过A(1,1,1)且与直线l相交于点P(2,0,1),那么平面α的法向量为(1,-1,0)。
而平面α与平面β垂直,所以平面α的法向量与平面β的法向量垂直。
令平面β的法向量为(n1,n2,n3),建立方程组:n1-2n2+n3=0;n1+1=0;可解得n1=-1,n2=1,n3=2。
平面α的法向量为(1,-1,0),平面β的法向量为(-1,1,2)。
根据两平面垂直的性质,两平面法向量的内积为0,即(1,-1,0)·(-1,1,2)=0。
解得-1+(-1)+0=0,所以平面α与平面β垂直。
根据向量的模和点到平面的距离公式,平面α与平面β的距离为:|(x-1)m + (y-1)(-n2) + (z-1)n3 | / √(m² + n²) = |(x-1) - (y-1)2 + (z-1)2| / √(1² + (-1)² + 0²) = √(x² - 2xy + 5) / √2 。
所以答案是:√(x² - 2xy + 5) / √2。
二、2012年考研数学解析几何题1. 题目:已知点A(1,1,1)为平面α:2x+y+z=3的内点,点B(2,3,4)在平面α上,直线l:(x-1)/a=(y-2)/b=(z-3)/c与平面α垂直,且直线l过点A。
2002数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.(2)已知2e 610yxy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________. 二、选择题(每小题3分.)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒①(B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim=∞→nn u n ,则级数)11()1(11+++-∑n n n u u 为(A)发散 (B)绝对收敛 (C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数(C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(7分)已知两曲线)(x f y =与2arctan 0ex t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→. 五、(7分))计算二重积分22max{,}ex y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y y x dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值. 七、(7分)(1)验证函数∑∞==03)!3()(n nn x x y (+∞<<∞-x )满足微分方程e xy y y '''++=.(2) 求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(8分)设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(7分)设维随机变量X 的概率密度为()f x = 1c o s 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 十二、(7分)设总体X 的概率分布为X 0123 P2θ)1(2θθ-2θθ21-其中θ(102θ<<)是未知参数,利用总体X 的如下样本值:3,1,3,0,3,1,2,3. 求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x 01x y ≤≤≤其它,则=≤+}1{Y X P . (6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 二、选择题(每小题4分,)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立 (B)n n c b <对任意n 成立 (C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A)点(0,0)不是(,)f x y 的极值点(B)点(0,0)是(,)f x y 的极大值点 (C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 (4)设向量组I:12,,,r ααα可由向量组II:12,,,s βββ线性表示,则(A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关 (C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①② (B)①③(C)②④ (D)③④(6)设随机变量21),1)((~XY n n t X =>,则 (A)2~()Y n χ(B)2~(1)Y n χ- (C)~(,1)Y F n (D)~(1,)Y F n三、(10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五 、(10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin e e e e y x y x LLx dy y dx x dy y dx ---=-⎰⎰.(2)sin sin 2e e 2.y x Lx dy y dx π--≥⎰六 、(10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程. (2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 八 、(12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dv z y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(8分)设总体X 的概率密度为()f x = 2()2e 0x θ-- 0x x θ>≤其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x .(2)求统计量θˆ的分布函数)(ˆx F θ. (3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e xxf x -'=,且(1)0f =,则()f x =__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵21012001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(每小题4分) (7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,(B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n(D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010 (B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010 (D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σn n Y X D +=+ (D)211)(σnn Y X D +=- 三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧. (18)(11分)设有方程10nx nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(9分)设有齐次线性方程组 121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(9分)设,AB 为随机事件,且111(),(|),(|)432P A P B A P A B ===, 令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα, 如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________. 二、选择题(每小题4分) (7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点 (8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有 (A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数(D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222y ux u ∂∂=∂∂(C)222y uy x u ∂∂=∂∂∂(D)222x u y x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xzxy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ(B)02≠λ(C)01=λ)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则 (A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为X Y0 1 0 0.4 a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ (C))1(~)1(--n t SX n (D)2122(1)~(1,1)n i i n X F n X =--∑ 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yφ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 10 01,02x y x<<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2006数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(本题共8小题,每小题4分)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆(B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)22120(,)x xdx f x y dy -⎰⎰(B)22120(,)x dx f x y dy -⎰⎰(C)22120(,)y ydy f x y dx -⎰⎰(C)22120(,)y dy f x y dx -⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1n n a ∞=∑收敛(B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '= (B)若00(,)0x f x y '=,则00(,)0y f x y '≠ (C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T =C P AP(D)T =C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B > (C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(10分)设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y+=++⎰⎰. (16)(12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==.求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫⎪⎝⎭.(17)(12分)将函数()22xf x x x=+-展开成x 的幂级数. (18)(12分)设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式. (19)(12分)设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(9分)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解.(21)(9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A .(22)(9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭.(23)(9分) 设总体X 的概率密度为(,0)F X =10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.``2007数学(一)试卷一、选择题(本题共10小题,每小题4分) (1)当0x +→时,与x 等价的无穷小量是 (A)1ex-(B)1ln1xx+- (C)11x +-D)1cos x -(2)曲线1ln(1e )x y x=++,渐近线的条数为 (A)0(B)1 (C)2 (D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设0()()xF x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F = (D)5(3)(2)4F F =-- (4)设函数()f x 在0x =处连续,下列命题错误的是 (A)若0()limx f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()limx f x x→ 存在,则(0)0f '= (D)若0()()limx f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n ==则下列结论正确的是(A)若12u u >,则{n u }必收敛(B)若12u u >,则{n u }必发散(C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是(A)(,)x y dx Γ⎰(B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是 (A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则A 与B(A)合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为(A)()X f x (B)()Y f y(C)()X f x ()Y f y(D)()()X Y f x f y 二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______. (12)设(,)f u v 为二元可微函数,(,)yxz f x y =,则zx∂∂=______. (13)二阶常系数非齐次线性方程2''4'32e xy y y -+=的通解为y =____________.(14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵0100001000010000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为________. (16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________. 三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤) (17)(11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值.(18)(10分)计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中 ∑为曲面221(01)4y z x z =--≤≤的上侧. (19)(11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=.(20)(10分)设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+(2)求()y x 的表达式.(21)(11分) 设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321,x x x a ++=-有公共解,求a 的值及所有公共解.(22)(11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)Tλλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(11分)设二维随机变量(,)X Y 的概率密度为 2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (1)求{2}.P X Y >(2)求Z X Y =+的概率密度.(24)(11分)设总体X 的概率密度为12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪其他(1)求参数θ的矩估计量ˆθ.4X是否为2θ的无偏估计量,并说明理由.(2)判断22008数学(一)试卷一、选择题(1-8小题,每小题4分,.)(1)设函数2()ln(2)x f x t dt =+⎰则()f x '的零点个数(A)0(B)1 (C)2 (D)3(2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于 (A)i(B)-i(C)j(D)-j(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是(A)440y y y y ''''''+--= (B)440y y y y ''''''+++= (C)440y y y y ''''''--+=(D)440y y y y ''''''-+-=(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是 (A)若{}n x 收敛,则{}()n f x 收敛 (B)若{}n x 单调,则{}()n f x 收敛 (C)若{}()n f x 收敛,则{}n x 收敛(D)若{}()n f x 单调,则{}n x 收敛(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则(A)-E A 不可逆,+E A 不可逆(B)-E A 不可逆,+E A 可逆 (C)-E A 可逆,+E A 可逆 (D)-E A 可逆,+E A 不可逆(6)设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 在正交变换下的标准方程的图形如图,则A 的正特征值个数为(A)0 (B)1 (C)2(D)3(7)设随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为 (A)()2Fx(B) ()()F x F y(C) ()211F x --⎡⎤⎣⎦(D) ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦(8)设随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则 (A){}211P Y X =--=(B){}211P Y X =-= (C){}211P Y X =-+=(D){}211P Y X =+=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.) (9)微分方程0xy y '+=满足条件()11y =的解是y = . (10)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (11)已知幂级数()02nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数()03nn n a x ∞=-∑的收敛域为.(12)设曲面∑是224z x y =--的上侧,则2xydydz xdzdx x dxdy ∑++=⎰⎰ .(13)设A 为2阶矩阵,12,αα为线性无关的2维列向量,12120,2==+A αA ααα,则A 的非零特征值为 . (14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(10分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(10分) 计算曲线积分()2sin 221Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点()0,0到点(),0π的一段.(17)(10分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求曲线C 距离XOY 面最远的点和最近的点.(18)(10分)设()f x 是连续函数,(1)利用定义证明函数()()0xF x f t dt =⎰可导,且()()F x f x '=.(2)当()f x 是以2为周期的周期函数时,证明函数()22()()xG x f t dt x f t dt =-⎰⎰也是以2为周期的周期函数.(19)(10分)()21(0)f x x x π=-≤≤,用余弦级数展开,并求()1211n n n-∞=-∑的和.(20)(11分)TT=+A ααββ,Tα为α的转置,Tβ为β的转置.证明:(1)()2r ≤A .(2)若,αβ线性相关,则()2r <A .(21)(11分)设矩阵2221212n na a a a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭A ,现矩阵A 满足方程=AX B , 其中()1,,Tn x x =X ,()1,0,,0=B ,(1)求证()1nn a =+A .(2)a 为何值,方程组有唯一解,求1x . (3)a 为何值,方程组有无穷多解,求通解.(22)(11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+,(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭. (2)求Z 的概率密度. (23)(11分) 设12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n=- (1)证明T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2009数学(一)试卷一、选择题(1-8小题,每小题4分.)(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==-(B)11,6a b ==(C)11,6a b =-=-(D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)1I (B)2I (C)3I(D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为(A)(B)()f x2 3x1 -2-11()f x0 2 3x1 -2 -11 1 ()f x-20 2 3x-1O(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则 (A)当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B)当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C)当1nn b∞=∑收敛时,221n nn a b∞=∑收敛. (D)当1nn b∞=∑发散时,221n nn a b∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,+++αααααα的过渡矩阵为(A)101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)120023103⎛⎫⎪⎪ ⎪⎝⎭(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为(A)**32O B A O ⎛⎫ ⎪⎝⎭(B)**23OB A O ⎛⎫⎪⎝⎭ (C)**32O A B O ⎛⎫ ⎪⎝⎭(D)**23OA B O ⎛⎫⎪⎝⎭(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX = (A)0(B)0.3(C)0.7(D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1 (C)2 (D)3 二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)()f x2 3x1 -2-11()f x2 3x1 -1 1(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ .(10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12e xy C C x =+,则非齐次方程y ay by x'''++=满足条件()()02,00y y '==的解为y = .(11)已知曲线()2:02L y x x =≤≤,则Lxds =⎰ .(12)设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2T=αβ,其中T α为α的转置,则矩阵Tβα的非零特征值为 . (14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(9分)求二元函数()22(,)2ln f x y x y y y =++的极值. (16)(9分)设n a 为曲线ny x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-. (2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=. (19)(10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224x y z ++=的外侧.(20)(11分)设111111042--⎛⎫⎪=- ⎪ ⎪--⎝⎭A ,1112-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ.(2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值;(2)若二次型f 的规范形为2212y y +,求a 的值. (22)(11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布.(23)(11 分)设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X的简单随机样本.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.2010数学(一)试卷一、选择题(1-8小题,每小题4分,共32分.)(1)极限2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦=(A)1(B)e(C)ea b-(D)eb a-(2)设函数(,)z z x y =由方程(,)0y zF x x =确定,其中F 为可微函数,且20,F '≠则z z x y x y∂∂+∂∂= (A)x(B)z(C)x -(D)z -(3)设,m n 为正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性(A)仅与m 取值有关(B)仅与n 取值有关 (C)与,m n 取值都有关(D)与,m n 取值都无关(4)2211lim()()nnx i j nn i n j →∞==++∑∑= (A)1201(1)(1)xdx dy x y ++⎰⎰(B)11(1)(1)xdx dy x y ++⎰⎰(C)1101(1)(1)dx dy x y ++⎰⎰(D)112001(1)(1)dx dy x y ++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则 (A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B(C)秩(),n =A 秩()m =B(D)秩(),n =A 秩()n =B(6)设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭(B)1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(7)设随机变量X 的分布函数()F x =00101,21e 2x x x x -<≤≤->则{1}P X == (A)0 (B)1(C)11e 2--(D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf x00x x ≤>(0,0)a b >>为概率密度,则,a b 应满足(A)234a b += (B)324a b += (C)1a b += (D)2a b += 二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设20e ,ln(1),ttx y u du -==+⎰求220t d ydx == .(10)2cos x xdy π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0), 则曲线积分2Lxydx x dy +⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = .(13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),T T Tα=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= .(14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k ===则2EX = . 三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(10分)求微分方程322e xy y y x '''-+=的通解.(16)(10分)求函数221()()e xt f x x t dt -=-⎰的单调区间与极值.(17)(10分)(1)比较1ln [ln(1)]n t t dt +⎰与1ln (1,2,)n t t dt n =⎰的大小,说明理由.(2)记10ln [ln(1)](1,2,),n n u t t dt n =+=⎰求极限lim .n x u →∞(18)(10分)求幂级数121(1)21n nn x n -∞=--∑的收敛域及和函数.(19)(10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 的切平面与xoy 面垂直,求P 点的轨迹,C 并计算曲面积分22(3)2,44x y z I dS y z yz∑+-=++-⎰⎰其中∑是椭球面S 位于曲线C 上方的部分.(20)(11分)设11010,1,111a λλλ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b 已知线性方程组=A x b 存在两个不同的解.(1)求,.a λ(2)求方程组=A x b 的通解.。
1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+及121111x y z +++==都平行且过原点的平面方程为_____________.2z t =+(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx xx dy -+-⎰ = _____________.(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x ∂∂∂∂(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设2()()lim1,()x af x f a x a →-=--则在x a =处(A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值(D)()f x 的导数不存在(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)nn k nn∞=+-∑ (A)发散 (B)绝对收敛 (C)条件收敛(D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A)a(B)1a(C)1n a-(D)na六、(本题满分10分) 求幂级数1112n n n x n ∞-=∑的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分)问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),xx f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤, 求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域. (3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),txx f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是(A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小 (C)比x ∆低阶的无穷小 (D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值 (B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则(A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤ααα 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k 使11220s s k k k +++≠ααα (B)12,,,s ααα 中任意两个向量均线性无关(C)12,,,s ααα 中存在一个向量不能用其余向量线性表示 (D)12,,,s ααα 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x y u yf xg y x =+其中函数f 、g 具有二阶连续导数,求222.u ux y x x y∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,xy y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r >为常数,r 为A 质点与M 之间的距离),质点M 沿直线y =自(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________. (3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--= _____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lxy ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当0x >时,曲线1siny x x= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是 (A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,,n b f x n xdx n π==⎰ 则1()2S -等于(A)12- (B)14-(C)14 (D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y ∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =.四、(本题满分6分) 将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分) 设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln e xx π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本题满分6分)问λ为何值时,线性方程组13x x λ+=123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值.(2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B 的概率()P A B =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差),而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim()xx x a x a→∞+-=_____________.(3)设函数()f x =1011x x ≤>,则[()]f f x =_____________.(4)积分222e y xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xxF x f t dt -=⎰则()F x '等于(A)e (e )()xx f f x ----(B)e (e )()xx f f x ---+(C)e(e )()x x f f x ---(D)e(e )()xx f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x + (B)1[()]n n f x +(C)2[()]nf x(D)2![()]nn f x(3)设a 为常数,则级数21sin()[n na n ∞=∑ (A)绝对收敛(B)条件收敛 (C)发散(D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim 2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠ (C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα (B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y ∂∂∂(3)求微分方程244exy y y -'''++=的通解(一般解).四、(本题满分6分) 求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞ 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21c o s x ty t=+=,则22d ydx =_____________.(2)由方程xyz +(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,0012011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=- (A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x(B)2eln 2x(C)e ln 2x+(D)2e ln 2x+(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20lim .x π+→(2)设n 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =P 处沿方向n的方向导数.(3)22(),xy z dv Ω++⎰⎰⎰其中Ω是由曲线220y z x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n ∞=∑的和. 六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________. (2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程e cos()0x y xy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x -+ 00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i ia b i n ≠≠= 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限 (A)等于2 (B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(nn a n ∞=--∑常数0)a > (A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为(A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y ∂∂∂(3)设()f x = 21ex x -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分) 求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分) 计算曲面积分323232()()(),xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =上侧.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++ 的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c ++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)xF x dt x =>⎰的单调减少区间为_____________.(2)由曲线2232120x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________.(4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 234()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小(B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π (C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sincos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分) 计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分) 求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点. (2)设,b a e >>证明.b a a b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xx u y -=则2ux y∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M << (B)M P N << (C)N M P <<(D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221c o s ()c o s ()c o st x t y t t udu ==-⎰,求dy dx 、22d ydx 在t =.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim0,x f x x →=证明级数11()n f n ∞=∑绝对收敛. 七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+ (1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos xd x t dt dx ⎰= _____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a=_____________. (4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-+则级数 (A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散 (D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.dudx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4, 则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x =e 0x - 00x x ≥<, 求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e x y y y '''-+=的通解为_____________.(4)函数ln(u x =+在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >= 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑ (A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1(B)2 (C)3(D)4(5)四阶行列式1122334400000a b a b a b b a 的值等于 (A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a bb a a b b --(D)23231414()()a a b b a a bb --三、(本题共2小题,每小题5分,满分10分)(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +=== 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x yv x ay =-=+可把方程2222260z z zx x y y∂∂∂+-=∂∂∂∂简化为20,z u v ∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分) 设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,TA =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明(1)2=A A 的充分条件是 1.T=ξξ(2)当1T =ξξ时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)(2)求随机变量X 的数学期望().E X。
考研数学一(一元函数微分学)历年真题试卷汇编3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2004年)设函数f(x)连续,且f’(0)>0,则存在δ>0。
使得A.f(x)在(0,δ)内单调增加B.f(x)在(一δ,0)内单凋减少C.对任意的x∈(0,δ)有f(x)>f(0)D.对任意的x∈(一δ,0)有f(x)>f(0)正确答案:C解析:由于由极限的保号性知,存在δ>0,当x∈(一δ,0)或x∈(0,δ)时,而当∈(0,δ)时x>0,则此时f(x)一f(0)>0,即f(x)>f(0),故应选(C).知识模块:一元函数微分学2.(2005年)设函数则f(x)在(一∞,+∞)内A.处处可导B.恰有一个不可导点C.恰有两个不可导点D.至少有三个不可导点正确答案:C解析:当|x|≤1时,当|x|>1时,则而f’+(一1)≠f’-(一1),则f(x)在x=一1不可导.同理则f(x)在x=1处不可导,故应选(C).知识模块:一元函数微分学3.(2006年)设函数y=f(x)具有二阶导数,且f’(x)>0.f”(x)>0,△x为自变量x在x11处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则A.0<dy<△yB.0<△y<dyC.△y<dy<0D.dy<△y<0正确答案:A解析:解1 直接法:dy=f’(x0)△x,△y=f(x0+△x)一f(x0)=f’(ξ)△x,x0<ξ<x0+△x由于f”(x)>0,则f’(x)单调增,从而有f(x0)<f’(ξ),故dy<△y 由于f’(x)>0,△x>0,则0<dy<△y,故应选(A).解2 排除法:取f(x)=x2,在(0,+∞)上,f’(x)=2x>0,f”(x)一2>0,取x0=1,则dy=f’(x0)△x=2△x △y=f(1+△x)一f(1)=(1+△x)2一1=2△x+(△x)2由于△x>0,显然有0<dy<△y,由此可知,选项(B),(C),(D)均不正确,故应选(A)。
2012年1月真题一、问题求解:第1~15小题,每小题3分,共45分。
下列每题给出的,,,,A B C D E 五个选项中,只有一项是符合试题要求的。
请在答题卡上将所选项的字母涂黑。
1、某商品定价200元,受金融危机影响,连续2次降价20%后的售价为( ).114 B.120 C.128 D.144E.160A2、如图2,三个边长为1的正方形所组成区域(实线区域)的面积( )32333A. 32 B.3 C.3 3 D.3 E.3424---3、在一次捐赠活动中,某人将捐赠的物品打包成件,其中帐篷和食品共320件,帐篷比食品多80件,则帐篷的件数是( )A.180B.200C.220D.240E.2604、如图,三角形ABC 是直角三角形,,,为正方形,已知,,a b c 分别是为,,的边长,则:( )222222333333 ...22.22 A a b c B a b c C a b c D a b c E a b c=+=+=+=+=+5、如图,一个储物罐的下半部分是底面直径与高均是20m的圆柱体,上半部分(顶部)是半球形的,已知底面与项部的造价是400元/,侧面的造价是300元/,该储物罐的造价是()万元A.56.52B.62.8C.75.36D.87.92E.100.486、在一次商品促销活动中,主持人出示了一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右面相邻的3个数字组成的3位数,若主持人出示的是的513535319,则一顾客猜中价格的概率是()11121.....96572A B C D E7、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列()次.3000 B.3003 C.4000 D.4003 E.4300A8、甲、乙、丙三个地区公务员参加一次测评,其人数和如下表:三个地区按平均分从高到低的排列顺序为()A.乙、丙、甲B. 乙、甲、丙C. 甲、丙、乙D.丙、甲、乙E. 丙、乙、甲地区/分数6 7 8 9 甲 10 10 10 10 乙 15 15 10 20 丙101015159、经统计,某机构的一个安检口每天中午办理安检手续的乘客人数及对应的概率如下表: 安检口2天中至少有1天中午办理安检手续的乘客人数大于15人的概率是( )顾客人数 0--5 6--10 11--15 16--20 21--25 26以上 概率0.10.20.20.250.20.05.0.2.0.25 .0.4 .0.5 E. 0.75A B C D10、某人在保险柜中存放了M 元现金,第一天取出它的,以后每天取出的前一天所取的,共取了7天,保险柜中剩余的现金为( )77766222.....[1()]33333M M M M A B C D E M- 11、在直角坐标系中,若平面区域D 中虽有的点的坐标(),x y 均满足:,,,则面积是( )999.(14).9(4).9(3).(2).(1)44444A B C D E πππππ+--++ 12、某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组共用3天完成,已知甲组每天比乙组多植树4棵,则甲组每天植树( )棵A.11B.12C.13D.15E.17 13、有两队打羽毛球,每队派出3男2女参加5局单打比赛,第二局和第四局为女生,那么每队派队员出场的方式有几种?( )A. 12B.10C.8D.6E.414、若32x x ax b +++能被232x x -+整除,则( ).4,4.4,4.10,8.10,8.2,0A a b B a b C a b D a b E a b ===-=-==-=-==-=15、某公司计划运送180台电视机和110台洗衣机下乡,现有两种货车,甲种货车每辆最多可载40台电视机和10台洗衣机,乙种货车每辆最多可载20台电视机和20台洗衣机,已知甲、乙两种货车的租金分别是每辆400元和360元,则最少的运费是( )元A. 2560B.2600C.2640D.2680E.2720二、充分性条件判断:第16~25小题小题,每小题3分,共30分。
1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2xy x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+及121111x y z +++==都平行且过原点的平面方程为_____________.2z t =+(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰Ñ= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x ∂∂∂∂(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)nn k nn ∞=+-∑ (A)发散 (B)绝对收敛(C)条件收敛(D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A)a(B)1a(C)1n a -(D)n a六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑g 的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),xx f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤,求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域. (3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰Ò二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上) (1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是 (A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小 (C)比x ∆低阶的无穷小(D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值(B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则 (A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B)12,,,s αααL 中任意两个向量均线性无关(C)12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D)12,,,s αααL 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x yu yf xg y x=+其中函数f 、g 具有二阶连续导数,求222.u u x yx x y ∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,xy y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x = 六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M沿直线y =自(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________. (2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________. (3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =-的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lx y ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1siny x x= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是 (A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,nn S x bn x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,,n b f x n xdx n π==⎰L 则1()2S -等于(A)12- (B)14-(C)14 (D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y ∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分) 将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分) 设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln e x x π=-⎰在区间(0,)+∞内有且仅有两个不同实根. 七、(本题满分6分)问λ为何值时,线性方程组13x x λ+=123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值. (2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分) 设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B U 的概率()P A B U =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________. (3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t=-+(1)过点(1,21)M-且与直线34y t=-垂直的平面方程是_____________.1z t=-(2)设a为非零常数,则lim()xxx ax a→∞+-=_____________.(3)设函数()f x=111xx≤>,则[()]f f x=_____________.(4)积分222e yxdx dy-⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x是连续函数,且e()(),xxF x f t dt-=⎰则()F x'等于(A)e(e)()x xf f x----(B)e(e)()x xf f x---+(C)e(e)()x xf f x---(D)e(e)()x xf f x--+(2)已知函数()f x具有任意阶导数,且2()[()],f x f x'=则当n为大于2的正整数时,()f x的n阶导数()()nf x是(A)1![()]nn f x+(B)1[()]nn f x+(C)2[()]nf x(D)2![()]nn f x(3)设a为常数,则级数21sin()[nnan∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a的取值有关(4)已知()f x在0x=的某个邻域内连续,且()(0)0,lim2,1cosxf xfx→==-则在点0x=处()f x(A)不可导(B)可导,且(0)0f'≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b的两个不同的解1,α、2α是对应其次线性方程组=AX0的基础解析1,k、2k为任意常数,则方程组=AX b的通解(一般解)必是(A)1211212()2k k-+++ββααα(B)1211212()2k k++-+ββααα(C)1211212()2k k-+++ββαββ(D)1211212()2k k++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求12ln(1).(2)xdxx+-⎰(2)设(2,sin),z f x y y x=-其中(,)f u v具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分) 求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'> 七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F r 作用(见图).F r的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F r 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===L 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________. (4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)曲线221e 1ex x y --+=- (A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x (B)2e ln 2x (C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20).x π+→(2)设n r 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =P 处沿方向n r 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程ecos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu =_____________.(3)设()f x =211x -+0x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L其中0,0,(1,2,,).i i a b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限 (A)等于2 (B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(nn an∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f存在的最高阶数n 为(A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y ∂∂∂(3)设()f x = 21e xx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分) 求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++r r r r 的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F r所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论. 九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________. (2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=⎰.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π(B)4π (C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sincos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分) 计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò其中∑是由曲面z =与z =.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点. (2)设,b a e >>证明.b a a b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011limcot ()sin x x xπ→-= _____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xx u y -=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M << (B)M P N << (C)N M P <<(D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛 (C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu==-⎰,求dydx 、22d y dx 在t =. (2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +- (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分) 设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+ (1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________.(3)设()2,⨯=a b c g 则[()()]()+⨯++a b b c c a g =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-则级数 (A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散 (D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x = e 0x - 0x x ≥<,求随机变量e X Y =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e xy y y '''-+=的通解为_____________. (4)函数ln(u x =+在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >=L 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑ (A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数22,(0)0,(0)0,()()(),x f f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x ⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2b f c a '≤+设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T=ξξ (2)当1T=ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2, (1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:(2)求随机变量X 的数学期望().E X。
考研高数历年真题考研高数是每年考研数学科目中的重点,掌握历年真题对于备考非常重要。
本文将为大家整理一些考研高数的历年真题,并附上详细的解析,帮助大家提升高数的应试能力。
1. 2007年考研高数真题题目1:设函数 f(x) 在 (-∞, +∞) 上可导,且满足f(1)=5, f'(x)>0, 求函数 f(x) 在区间(1, +∞) 上的取值范围。
解析:由题意可知,函数 f(x) 在 (-∞, +∞) 上可导,且 f'(x)>0。
因此f(x) 在整个实数轴上单调递增。
同时,已知 f(1)=5,所以 f(x) 在区间 (1, +∞) 上的取值范围是[5, +∞)。
2. 2012年考研高数真题题目2:设函数 f(x) 为连续函数,且满足 f(x+1) - f(x) = e^x + 1,求f(0) 的值。
解析:根据题意,可以得到 f(x+1) - f(x) = e^x + 1。
考虑对等式两边从 0 积分得到 f(x+1) - f(x) = ∫(e^x+1)dx,即f(x) = ∫(e^x+1)dx。
对此定积分进行计算,可以得到 f(x) = e^x + x + C,其中 C 为常数。
由于函数 f(x) 为连续函数,所以 f(x+1) = f(x)。
代入 f(x) = e^x + x + C 可得 e^x + x + 1 + C = e^x + x + C。
经过整理可得 C = 1。
因此,f(0) = e^0 + 0 + 1 + 1 = 3。
3. 2015年考研高数真题题目3:设 A 和 B 为两个 n 阶实矩阵,并满足 A^2 = A,B^2 = B,则 A + B 的秩最大是多少?解析:根据题意可得 A^2 = A,B^2 = B。
根据矩阵的性质,矩阵 A 和 B 都是投影矩阵。
因为 A 和 B 为实矩阵,所以它们的秩均不大于 n。
因此,A + B 的秩最大不大于 2n。
另一方面,A 和 B 的和为 (A + B)^2 = A^2 + AB + BA + B^2 = A + AB + BA + B。
2012年考研会计硕士管理类综合数学真题及参考答案2012年全国MBA联考1月7日举行,考生人数再创新高。
学苑教育将在第一时间为考生送上2012年MBA、MPA、MPAcc管理类联考真题进行解析课,课上学苑名师将就2012年MBA、MPA、MPAcc管理类联考真题做详细解析,现在先向广大考生独家提供部分试题及答案,请考生们参照进行估分,了解自己和其他考生状态及2012年MBA联考的全部情况。
2012年MBA|MPA|MPAcc管理类联考真题数学答案1.C2.A3.C4.B5.B6.E7.E8.A9.C 10.D11.A 12.D 13.B 14.E 15.B16.D 17.E 18.A 19.B 20.D21.E 22.D 23.D 24.C 25.A一、问题求解,共计15题。
1、某商品的定价为200元,受金融危机的影响,连续两次降价20%后的售价为:(A) 114元 (B) 120元(C) 128元 (D) 144元(E) 160元参考答案:(C) 128元2、如图1,三角形ABC是直角三角形,S1,S2,S3为正方形,已知a,b,c分别是S1,S2,S3边长,则:(A) a=b+c (B) a2 =b2 +c 2(C)a2 =2b2 +2c 2 (D) a 3=b 3+c 3(E)a 3=2b 3+2c 3参考答案:(A) a=b+c3、如图2,一个储物罐的下半部分是底面直径与高均是20m的圆柱形,上半部分(顶部)是半球形,已知地面与顶部的造价是400元/m2,侧面的造价是300元/m2,该储物罐的造价是(π=3.14)(A) 56.52万元 (B) 62.8万元(C) 75.36万元 (D) 87.92万元(E) 100.48万元参考答案:(C) 75.36万元4、在一次商品促销活动中,主持人出示一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右相邻的3个数字组成的3位数,若主持人出示的是513535319,则顾客一次猜中价格的概率是:(A) 1/7 (B) 1/6(C) 1/5 (D) 2/7(E) 1/3参考答案:(B) 1/65、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列(A)3000次 (B) 3003次(C)4000次 (D) 4003次(E)4300次参考答案:(B) 3003次6、甲乙丙三个地区的公务员参加一次测评,其人数和考分情况如下表:分数(右上)地区(下)人数(右下)6789甲10101010乙15151020丙10101515三个地区按平均分由高到低的排名顺序为(A)乙、丙、甲 (B) 乙、甲、丙(C)甲、丙、乙 (D) 丙、甲、乙(E)丙、乙、甲参考答案:(E)丙、乙、甲7、经统计,某机场的一个安检口每天中午办理安检手续的乘客人数及相应的概率如下表:乘客人数0-56-1011-1516-2021-2525以上概率0.10.20.20.250.20.05该安检口2天中至少有1天中午办理安检手续的乘客人数超过15的概率是(A)0.2 (B) 0.25(C)0.4 (D) 0.5(E)0.75参考答案:(E)0.758、某人在保险柜中存放了M元现金,第一天取出他的2/3,以后每天取出前一天所取的1/3,共取了7天,保险柜中剩余的现金为(A) M/37 元 (B) M/36 元(C) 2M/36 元 (D)元(E) [1-7*(2/3)7 M元参考答案:(A) M/37元9. 在直角坐标系中,若平面区域D中所有点的坐标(x,y)均满足0≤x≤60≤y≤6,|y-x|≤3,x2+y2≥9,则D的面积是(A)9/4(1+4π)(B)9(4 –π/4)(C)9(3 -π/4 )(D) 9/4(2+π)(E) 9/4(1+π)参考答案:(C)9(3 -π/4 )10. 某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组用3天完成。
考研数学一选择题专项强化真题试卷12(题后含答案及解析)题型有:1.1.(2013年)设L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2.L4:2x2+y2=2为四条逆时针方向的平面曲线.记则max{I1,I2,I3,I4}=A.I1.B.I2.C.I3.D.I4.正确答案:D解析:由格林公式得其中Di为Li围成的平面域(i=1,2,3,4) 显然,在D1和D4上则0<I1<I4又I2<I4,I3<I4,则max{I1,I2,I3,I4)=I4 知识模块:多元函数积分学2.(2017年)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量n=(1,2,2)的方向导数为A.12.B.6.C.4.D.2.正确答案:D解析:fx(1,2,0)=2xy|(1,2,0)=4 fy(1,2,0)=x2|(1,2,0)=1 fz(1,2,0)=3z2|(1,2,0)=0 向量n={1,2,2}的方向余弦为则知识模块:多元函数微分学3.设X1,X2,…,Xn(n≥2)为来自总体N(0.1)的简单随机样本,X为样本均值,S2为样本方差,则A.n~N(0,1)B.nS2~χ2(n)C.~t(n-1)D.~F(1,n-1)正确答案:D 涉及知识点:概率论与数理统计4.(2012年)设函数_f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=A.(一1)n-1一(n一1)!B.(一1)n(n一1)!C.(一1)n-1n!D.(一1)nn!正确答案:A解析:解1 记g(x)=(e2x一2)(e3x一3)…(enx一n),则f(x)=(ex一1)g(x) f’(x)=exg(x)+(ex一1)g’(x)则f’(0)=g(0)=(一1)(一2)…(一(n一1))=(一1)n-1(n一1)! 故应选(A).△解2 由导数定义得△解3 排除法:当n=2时,f(x)=(ex一1)(e2x一2) f’(x)=ex(e2x一2)+2e2x(ex一1),f’(0)=一1 显然,(B)(C)(D)都不正确,故应选(A).知识模块:一元函数微分学5.设α是n维单位列向量,E为n阶单位矩阵,则( )A.E-ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E-2ααT不可逆正确答案:A解析:由α是n维单位列向量可知(ααT)α=α(αTα)=α,且1≤r(ααT)≤r(α)=1,即1是矩阵ααT的特征值,且r(ααT)=1,所以ααT的特征值为0(n-1重)和1。
2012年10月真题一、问题求解:第1~15小题,每小题3分,共45分。
下列每题给出的A 、B 、C 、D 、E 五个选项中,只有一项是符合试题要求的。
请在答题卡...上将所选项的字母涂黑。
1.将3700元奖金按112::235的比例分给甲、乙、丙三人,则乙应得奖金( ) .1000.1050.1200.1500.1700A B C D E 2.设实数,x y 满足23x y +=,则222x y y ++的最小值为( ).4.5.6.51.51A B C D E -+3.若菱形两条对角线的长分别为6和8,则这个菱形的周长和面积分别为( ).14;24.14;48.20;12.20;24.20;48A B C D E4.第一季度甲公司的产值比乙公司的产值低20%,第二季度甲公司的产值比第一季度增长了20%,乙公司的产值比第一季度增长了10%,第二季度甲、乙两公司的产值之比是( )11:10.25:24.55:48.115:92.115:96.E D C B A5.在等差数列{}n a 中,244,8a a ==。
若111521n k k k a a =+=∑,则n =( ) .16.17.19.20.21A B C D E6.如图是一个简单的电路图123,,S S S 表示开关,随时闭合123,,S S S 中的两个,灯泡发光的概率是( )31.41.61.C B A 32.21.E D7.设{}n a 是非负等比数列,若)(1,41,18153===∑=n na a a 。
32255.16255.8255.4255.255.E D C B A8.某次乒乓球单打比赛,先将8名选手等分为2组进行小组单循环赛,若一位选手只打1场比赛后因故退赛,则小组赛的实际比赛场数是( )。
10.11.12.19.24.E D C B A9.甲、乙、丙三人同时在起点出发进行1000米自行车比赛(假若他们各自保持速度不变),甲到终点时,乙距终点还有10米,丙距终点还有64米,那么乙到达终点时,丙距终点( )米。
2012年全国硕士研究生考试数学一试题答案解析一、 选择题1. 解析:C由lim 1,1x y y →∞==得为水平渐近线由1lim 1x y x →=∞=得为垂直渐近线12.)3.4. 解析: D22222111sin |sin |.xxI I e xdx I ex dx I ππππ=+=-<⎰⎰2223312|sin |sin .xxI I ex dx e xdx ππππ=-+⎰⎰而2232()2sin sin xt e xdx x t etdt ππππππ+=+-⎰⎰2222()|sin ||sin |.x xex dx ex dx πππππ+=>⎰⎰31312..I I I I I ∴>∴>>5. 解析:C343400c c αα⎛⎫ ⎪+= ⎪ ⎪+⎝⎭,34αα+ 与1α成比例.6.110111010012012 ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭7. 解析:A~(1)X E ,,0~(4)()0,x x e x Y E f x x -⎧>⇒=⎨≤⎩.4,40()0,0y Y e y f y y -⎧>=⎨≤⎩.,X Y ∴独立.44,0,0(,)0,x y e e x y f x y --⎧>>∴=⎨⎩其他8.cov(,)(1)(1)X Y EX X EX E x =---2()[1]E X X EX EX =--- 22()EX EX EX EX =-+ 22()EXEX DX =-+=-1ρ∴=,选项D二、 填空题1. 解析:212202,1λλλλ+-=⇒=-=212()()2()0(),xxf x f x f x f x C e C e -"+'-=⇒=+代入12()()20, 1.xf x f x e C C '+===得2.3.4.121,:1(0,0)z x y D x y x y =--+≤≥≥112222x Dy ds y dx y dy δ-=⋅=⎰⎰⎰⎰⎰1134(1)(1)31212x dx x =-=--=⎰5. 解析:2.设2,TA E XX A A =-=()() 3.r A r E A ⇒+-=()()()1Tr E A r XX r X -=== () 2.r A ∴=6.11xx --2211lnsin 11x x x x xx++=+--- 01x <<时. 1ln01x x+>-,2211x x x x+≥-,又sin x x ≤.()0x ϕ∴>’;10x -<<时,1ln01x x+<-,2211x x x x+≤-,又sin x x ≥.()0x ϕ∴<’.0x ⇒=为()x ϕ在(-1,1)内最小点,而ϕ(0)=0 ∴当-1<x<1时. ϕ()0x ≥,即21x x+20A C B -> 且0A >,0y ∴⎨=⎩为极小点.极小值为12(1,0).f e--=-当1x y =⎧⎨=⎩时,11222,0,,A e B C e --=-==-2100,0x AC B A y =⎧-><∴⎨=⎩ 且为极大点 极大值为12(1,0)f e -=3. 解: 由1lim1n x na a +→∞=得R =1.当∴令n ==n ∞=⎛= ⎝⎛= ⎝当当x ≠0时,xS 1(x )=021n n =+∑[]2121()1nn xS x xx∞===-∑’111111()ln,()ln.2121x x xS x S x xxx++=∴=--223,0()111ln ,110(1)1x S x x xx x x x x =⎧⎪∴=++⎨+-<<≠⎪--⎩且4. 解析: ①/sin ./()dy dy dt t k dxdx dtf t -==='x ⇒ (f ②=⎰5. 解析:012:0(2,0)L L L L x y y I +====-⎰⎰22(313)x x d =+-σ=⎰2d dx σ=-而20⎰∴∴∴((当1a =时,A =11 0 0 1⎛⎫ ⎪0 1 1 0 -1⎪ ⎪0 0 1 1 0 ⎪1 0 0 1 0⎝⎭→100120101100110000⎛⎫⎪-- ⎪ ⎪⎪⎝⎭通解为12111010x k -⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ 当1a =-时.A 11001100100110101011001100011011000--⎛⎫⎛⎫⎪ ⎪---- ⎪⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭通解为10111010x k ⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 解析:A T A=1010010111a a -⎛⎫ ⎪ ⎪ ⎪-⎝⎭1010111001a a⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭22201011113a aa a aa -⎛⎫⎪=+-⎪ ⎪--+⎝⎭TT(A A )x x 秩为2. ∴TT(A A )2((A A )(A )2)r r r ===也可以利用 ⇒TA A 01a =⇒=- ( T22A A (3)(1)a a =++)(II)令T202A A =B =022224⎛⎫ ⎪ ⎪ ⎪⎝⎭ 由E λ-20-2λ-B =0λ-2-2-2-2λ-4=λ(λ-2)(λ-6)=0解λ当λ当λ当λ取r 令2223111.12026Q f x x x Q y y y T=-⎝=B = +8. 解析:(1)(2)=X ∴D 2222cov(,)13333X Y Y -=-⨯-=-.9. 解析:22~(,),~(,2)X N Y N μσμσ,,X Y 独立,0σ>,未知Z X Y =-. 解:(1)Z 的密度2(,)f z σ22~(,),~(,2),,X N Y N X Yμσμσ独立.2~(0,3)Z X Y Nσ=-22222236(,)z zf zσσσ--⋅∴==(2)设1nZ Z…样本.2n2~(0,3)iZ Nσ,~(0,1)ZN-∴,iZ是简单随机样本.221~(),niZnχ=⎛⎫⎝∑223iZE nσ∑∴=,223iE Z nσ∑=.。
考研数学一解答题专项强化真题试卷2(题后含答案及解析)题型有:1.1.设总体X的概率密度为其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.正确答案:似然函数而由题意,χ1,χ2,…,χn中有N个的值在区间(0,1)内,故知L=θN(1-θ)n-N ∴lnL=Nlnθ+(n-N)ln(1-θ) 令=0,得θ=.故知θ的最大似然估计为.涉及知识点:概率论与数理统计2.(2001年试题,八)设有一高度为h(t)(t为时间)的雪堆,在融化过程中其侧面满足方程(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130(厘米)的雪堆全部融化需多少小时?正确答案:本题关键是要导出h(t)所满足的方程,根据题意,设V为雪堆的体积,S为雪堆的侧面积,则雪堆的侧面在xOy平面上的投影为则又由题设知因此从而结合初始条件h(0)=130,得C=130,于是不难算出t=100(小时),雪堆全部融化.解析:本题综合考查了曲面面积和立体体积的计算.本题求解时可能出现的错误有:(1)审题错误,误认为侧面面积满足方程(2)想从比例关系一0.9S中求V,且关系式中的负号易漏;(3)将t看成与x,y有关,计算三重积分时,不知如何处理t与x,y的关系.知识模块:章重积分3.设向量组(Ⅰ):α1,α2,α3的秩为3;向量组(Ⅱ):α1,α2,α3,α4的秩为3:向量组(Ⅲ):α1,α2,α3,α5的秩为4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.正确答案:由条件知(Ⅰ)线性无关,而(Ⅱ)线性相关,故α4可由α1,α2,α3线性表示,设为:α4=λ1α1+λ2α2+λ3α3 .设有一组数x1,x2,x3,x4,使得x1α1+x2α2+x3α3+x4(α5一α4)=0,即(x1—λ1x4)α2+(x2—λ2x4)α2+(x3—λ3x4)α3+x4α6=0,由(Ⅲ)线性无关,得齐次线性方程组它只有零解x1=x2=x3=x4=0,故(Ⅳ)线性无关,即秩(Ⅳ)=4.亦可利用(Ⅲ)与(Ⅳ)等价,→(Ⅳ)与(Ⅲ)有相同的秩.涉及知识点:向量4.(2003年试题,九)设矩阵B=P-1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.正确答案:由题设,不难算出从而A可逆,由初等行变换可求出则由公式A*=|A|A-1,可求得又由已知则易求得综上又由特征方程可求出λ1=9,λ2=9,λ3=3.当λ1=λ2=9时,由(B+2E一9E)x=0,可求得相应特征向量为ξ1=(一l,1,0)T,ξ2=(一2,0,1)T即对应于特征值9的所有特征向量为k1ξ1+k2ξ2=k1(一1,1,0)T+k2(一2,0,1)T当λ3=3时,由(B+2E一3E)x=0,可求得相应特征向量为ξ3=(0,1,1)T故对应于特征值3的所有特征向量为k3ξ3=k3(0,1,1)T以上k1,k2,k3皆为不为零的任意常数.解析二令则得A的特征值为λ1=λ2=1,λ3=7.当λ1=λ2=1时,对应的线性无关的特征向量可取为当λ3=7时,对应的特征向量为记λ,η分别为矩阵A的特征值和特征向量,则A*η=于是(B+2E)(P-1η)=P-1A*P(P-1η)+2P-1η,=|P-1A*η+2P-1η因而可知,和P-1η分别为B+2E的特征值和特征向量.又|A|=λ1λ2λ3=7,则B+2层的特征值分别为9,9,3.又则即有B+2E对应于特征值9的全部特征向量为:k1P-1η1+k2P-1η2=其中k1,k2是不全为零的任意常数;其对应于特征值3的全部特征向量为:k2P-1η3=其中k3是不为零的任意常数.涉及知识点:特征值与特征向量5.(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.正确答案:(I)记矩阵A的属于特征值λi的特征向量为αi(i=1,2,3),由特征值的定义与性质,有Akαi=λikαi(i=1,2,3,k=1,2,…),于是有Bα1=(A5一4A3+E)α1=(λ15一4λ1正确答案:7.求级数的和.正确答案:涉及知识点:级数[2012年] 设随机变量X与Y相互独立,且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0.设Z=X—y.8.求Z的概率密度f(z;σ2);正确答案:因X服从N(μ,σ2),Y服从N(μ,2σ2),且X,Y相互独立.由定理知Z=X—Y服从N(0,3σ2),故Z的概率密度为涉及知识点:参数估计与假设检验9.设z1,z2,…,zn为来自总体Z的简单随机样本,求σ2的最大似然估计量;正确答案:最大似然函数为两边取对数,得到在上式两边对σ2求导,得到令,得σ2=,故σ2的最大似然估计为涉及知识点:参数估计与假设检验10.证明为σ2的无偏估计量.正确答案:因,E(zi)=0,D(zi)=3σ2,故E()=(3σ2+0)/3=σ2,即为σ的无偏估计.涉及知识点:参数估计与假设检验。
2012年全国硕士研究生入学统一考试
数学(一)试卷
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1)曲线221
x x
y x +=-渐近线的条数为()
(A )0 (B )1 (C )2 (D )3
(2)设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - (3)如果(,)f x y 在()0,0处连续,那么下列命题正确的是( ) (A )若极限00
(,)
lim
x y f x y x y
→→+存在,则(,)f x y 在(0,0)处可微 (B )若极限22
00
(,)
lim
x y f x y x y →→+存在,则(,)f x y 在(0,0)处可微 (C )若(,)f x y 在(0,0)处可微,则极限00
(,)
lim
x y f x y x y →→+存在 (D )若(,)f x y 在(0,0)处可微,则极限22
00
(,)
lim
x y f x y x y →→+存在 (4)设2k
x k e
I e
=⎰
sin x d x (k=1,2,3),则有D
(A )I 1< I 2 <I 3.
(B) I 2< I 2< I 3.
(C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.
(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
其中1234,,,c c c c 为任意常数,
则下列向量组线性相关的是( )
(A )123,,ααα (B )124,,ααα (C )134,,ααα (D )234,,ααα
(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫
⎪= ⎪
⎪⎝⎭
,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( ) (A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫
⎪ ⎪
⎪⎝⎭
(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫
⎪ ⎪
⎪⎝⎭
(7)设随机变量x 与y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}=<y x p ()
112
4
()
()
() ()
5
35
5A B C D
(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为()1)(2
1
)(2
1
)
(1)(--
D C B A 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题..纸.
指定位置上. (9)若函数)(x f 满足方程0)(2)()('''=-+x f x f x f 及x e x f x f 2)()('=+,则
)(x f =________。
(10
)2
0⎰ ________。
(11)(2,1,1)
grad z xy y
⎛⎫+ ⎪
⎝
⎭ ________。
(12)设(){},0,0,0,1,,∑≥≥≥=++=z y x z y x z y x 则⎰⎰∑
=ds y 2________。
(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T xx E -的秩为________。
(14)设,,A B C 是随机事件,,A C 互不相容,1()2P AB =,1()3
P C =,则
()P ABC -
=________。
三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)
证明:2
1ln cos 1,1112x x x x x x ++≥+-<<-
(16)(本题满分10分)
求()22,2
x y f x y xe +=-的极值。
(17)(本题满分10分) 求幂级数0n ∞
=∑
244321
n n n +++x 2n
的收敛域及和函数
(18)(本题满分10分)
已知曲线
,其中函数)(t f 具有连续导数,且0)0(=f ,⎪⎭
⎫
⎝
⎛<<>200)(πt t f 。
若曲线
L 的切线与x 轴的交点到切点的距离恒为1,求函数)(t f 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。
(19)(本题满分10分)
已知L 是第一象限中从点()0,0沿圆周222x y x +=到点()2,0,再沿圆周
224x y +=到点()0,2的曲线段,计算曲线积分()22=32L
J x ydx x x y dy ++-⎰。
(20)(本题满分10分)
设
100
010
001
001
a
a
A
a
a
⎛⎫
⎪
⎪
=
⎪
⎪
⎝⎭
,
1
1
b
⎛⎫
⎪
- ⎪
=
⎪
⎪
⎝⎭
(Ⅰ)求A
(Ⅱ)已知线性方程组Ax b
=有无穷多解,求a,并求Ax b
=的通解。
(21)(本题满分10分)三阶矩阵
101
011
10
A
a
⎛⎫
⎪
= ⎪
⎪
-
⎝⎭
,T A为矩阵A的转置,
已知()2
T
r A A=,且二次型T T
f x A Ax
=。
1)求a2)求二次型对应的二次型矩阵,并将二次型化为标准型,写出正交变换过程。
(22)(本题满分10分)
已知随机变量,X Y以及XY的分布律如下表所示,
求:(1)()
ρ.
-与XY
X Y Y
2
P X Y
=; (2)()
cov,
(23)(本题满分11分)
设随机变量X 与Y 相互独立且分别服从正态分布()2,N μσ与()2,2N μσ,其中σ是未知参数且0σ>,设Z X Y =-,
(1)
求z 的概率密度()2,f z σ; (2) 设12,,n z z z 为来自总体Z 的简单随机样本,求2σ的最大似然估计量2σ;
(3) 证明2
σ为2σ的无偏估计量。
2012考研数学答案——数学一真题及答案。