位移和时间的关系以及速度和时间的关系
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
匀变速直线运动的位移与时间、速度的关系【知识点归纳】1、匀变速直线运动位移与时间的关系的公式表达:2021at t v s += s 为t 时间内的位移。
当a=0时,t v s 0= 当v 0=0时,221at s =当a<0时,2021at t v s -= 可见2021at t v s +=是匀变速直线运动位移公式的一般表示形式,只要知道运动物体的初速度v 0和加速度a ,就可以计算出任意一段时间内的位移,从而确定任意时刻物体所在的位置。
位移公式也可以用速度——时间图像求出面积得位移而推出。
2、匀变速直线运动的位移和速度的关系as v v t 2202=-这个关系式是匀变速直线运动规律的一个重要的推论。
关系式中不含时间t ,在一些不涉及到时间的问题中,应用这个关系是较方便的。
3、匀变速直线运动的两个推论1.匀变速直线运动的物体在连续相等的时间(T)内的位移之差为一恒量。
公式:S 2-S 1=S 3-S 2=S 4-S 3=…=S n -S n-1=△S=aT2 2.某段时间中间时刻的瞬时速度等于这段时间的平均速度,即: v v t =2【案例分析】例1.某物体作变速直线运动,关于此运动下列论述正确的是( )A .速度较小,其加速度一定较小B .运动的加速度减小,其速度变化一定减慢C .运动的加速度较小,其速度变化一定较小D .运动的速度减小,其位移一定减小例2.火车从车站由静止开出做匀加速直线运动,最初一分钟行驶540米,则它在最初l0秒行驶的距离是( )A .90米B .45米C .30米D .15米例3一物体由静止沿光滑斜面匀加速下滑距离为L 时,速度为V ,当它的速度是v /2时,它沿全面下滑的距离是A .L /2 B.2L/2 C .L /4 D .3L /4例4:一物体以初速度v 1做匀变速直线运动,经时间t 速度变为v 2求:(1)物体在时间t 内的位移. (2)(3)比较vt/2和v s/2例5:一辆沿平直路面行驶的汽车,速度为36km/h .刹车后获得加速度的大小是4m/s 2,求:(1)刹车后3s 末的速度;(2)从开始刹车至停止,滑行一半距离时的速度.例6、一个质点作初速为零的匀加速运动,试求它在1s ,2s ,3s ,…内的位移s 1,s 2,s 3,…之比和在第1s ,第2s ,第3s ,…内的位移S Ⅰ,S Ⅱ,S Ⅲ,…之比各为多少?【一试身手】1.下列说法正确的是A .加速度增大,速度一定增大B .速度变化量Δv 越大,加速度就越大C .物体有加速度,速度就增加D .物体速度很大,加速度可能为零2. 关于速度和加速度的关系A .物体的速度为零时,加速度一定为零B .物体的加速度为零时,速度一定为零C .物体的速度改变时,加速度不一定改变D .物体的加速度方向改变时,速度方向不一定改变3.如图所示,Ⅰ、Ⅱ两条直线分别描述P 、Q 两个物体的s —t 图象,下列说法正确的是A .两物体均做匀速直线运动B .M 点表示两物体在时间t 内有相同的位移C .t 时间内P 的位移较小D .0~t ,P 比Q 的速度大,t 以后P 比Q 的速度小 4.某质点做匀变速直线运动,加速度的大小为2m/s 2,则在任意1s 内A .质点的末速度一定是初速度的2倍B .质点的末速度一定比初速度大2m/sC .质点的初速度可能比末速度大2m/sD .质点的速度大小一定改变了2m/s 5.做匀变速直线运动的质点,它在通过某一段位移中点位置的速度为v ,通过这段位移所用时间的中间时刻的速度为u ,则该质点A .做匀加速运动时,v <uB .做匀减速运动时,v <uC .做匀加速运动时,v >uD .做匀减速运动时,v >u6.一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度的大小逐渐减小为零,在此过程中( )A .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值7.关于匀变速直线运动,下列说法中正确的是A 、加速度越大,物体的速度一定越大B 、加速度越小,物体的位移一定越小C 、物体在运动过程中的加速度保持不变D 、匀减速直线运动中,位移随时间的增加而减小8.质点做直线运动,当时间t = t 0时,位移S > 0,速度v > 0,加速度a > 0,此后加速度a 逐渐减小,则它的 ( )A .速度的变化越来越慢B .速度逐渐减小C .位移继续增大D .位移、速度始终为正值t st o M Ⅰ Ⅱ9.甲、乙、丙和丁是以时间为横轴的匀变速直线运动的图象,下面说法正确的是( )A .图甲是加速度—时间图象B .图乙是加速度—时间图象C .图丙是位移—时间图象D .图丁是速度—时间图象10.滑块以某一初速度冲上斜面做匀减速直线运动,到达斜面顶端时的速度为零.已知滑块通过斜面中点时的速度为v ,则滑块在前一半路程中的平均速度大小为A 、212 vB 、(2+1)vC 、2vD 、21v 11.一匀变速运动物体的位移随时间变化的函数关系是S=4t+t 2(m), 则它运动的初速度、加速度及2s末的速度分别是( )A . 0、 4m/s 2 、4m/sB . 4m/s 、 2m/s 2 、8m/sC . 4m/s 、1m/s 2 、8m/sD . 4m/s 、 2m/s 2 、6m/s12.一个物体做初速度为零的匀加速运动,该物体通过前一半位移和通过后一半位移所用的时间之比是( )A .2∶1B .2∶ 1C .(2+1)∶1D .(2-1)∶1二、填空题1.汽车以2m/s 2的加速度由静止开始启动,则第5s 末汽车的速度是_______m/s ,第5s 内汽车的平均速度是________m/s, 第5s 内汽车的位移是___________m 。
匀变速直线运动的位移与时间的关系公式1. 匀变速直线运动是指物体在一条直线上以恒定的加速度运动。
位移与时间的关系可以用公式来描述,该公式为:s = ut + (1/2)at^2,其中s表示位移,u 表示初速度,t表示时间,a表示加速度。
2. 公式中的第一项ut代表匀速直线运动的位移,即物体在没有加速度的情况下,根据初速度和时间的乘积计算得出的位移。
这是因为在匀速直线运动中,速度保持不变,位移与速度和时间的乘积成正比。
3. 公式中的第二项(1/2)at^2表示加速度对位移的影响。
加速度是速度的变化率,即速度每秒变化的大小。
当物体受到加速度的作用时,速度会随时间的推移而改变,从而导致位移的增加。
这一项表示加速度对位移的贡献,通过加速度和时间的平方的乘积来计算。
4. 公式的推导基于物体在匀变速直线运动过程中的运动规律。
根据牛顿第二定律,物体所受的合力等于质量乘以加速度。
在匀变速直线运动中,物体所受的合力是恒定的,所以加速度也是恒定的。
5. 利用物体运动的三个基本公式:v = u + at,s = ut + (1/2)at^2,v^2 = u^2 + 2as,其中v表示末速度,u表示初速度,s表示位移,t表示时间,a表示加速度。
可以推导出位移与时间的关系公式。
6. 通过将末速度v代入第一个公式,得到v = u + at,可以解出时间的表达式t = (v - u) / a。
7. 将时间t代入第二个公式s = ut + (1/2)at^2中,得到s = u((v - u) / a) + (1/2)a((v - u) / a)^2,化简得到s = (u(v - u) + (1/2)a(v - u)^2) / a。
8. 进一步化简得到位移与时间的关系公式s = (2u(v - u) + a(v - u)^2) / (2a),这就是匀变速直线运动的位移与时间的关系公式。
9. 该公式表示了位移与时间之间的关系,其中包含了初速度、末速度和加速度的影响。
速度、位移与时间的关系基础知识必备一、速度与时间的关系由加速度的定义式t v a ∆∆==tv v t 0-,可得:at v v t +=0 1、式中v 0是开始计时时的瞬时速度,v t 是经过时间t 后的瞬时速度,a 是匀变速直线运动的加速度;2、公式中的v 0、v t 、a 都是矢量,都有方向,所以必然要规定正方向;3、当公式中的v 0=0时,公式变为v t =at ,表示物体做从静止开始的匀加速直线运动,当a =0时,v t =v 0,表示物体做匀速直线运动。
二、匀变速直线运动的平均速度20t v v v +=三、位移与时间的关系:2021at t v x +=四、解决匀变速直线运动问题的一般思路:1、审清题意,建立正确的物理情景并画出草图2、判断物体的运动情况,并明白哪些是已知量,哪些是未知量;3、选取正方向,一般以初速度的方向为正方向4、选择适当的公式求解;5、一般先进行字母运算,再代入数值6、检查所得结果是否符合题意或实际情况,如汽车刹车后不能倒退,时间不能倒流。
典型例题:【例1】质点做匀变速直线运动,若在A 点时的速度是5m/s ,经3s 到达B 点时速度是14m/s ,则它的加速度是____________m/s 2;再经过4s 到达C 点,则它到达C 点时的速度是________m/s 2.答案:3 26【练习1】一个物体做初速度为4m/s 、加速度3m/s 2的匀加速直线运动,求它在第5s 末和第8s 末的瞬时速度。
答案:由at v v t +=0,得v 1=19m/s ,v 2=28m/s【例2】一质点做匀加速直线运动,从v 0=5m/s 开始计时,经历3s 后,速度达到9m/s ,则求该质点在这3s 内的位移为多少?答案:21m【练习2】一个物体做匀变速直线运动,某时刻的速度大小为4m/s ,2s 后速度大小变为12m/s 。
求在这2s 内该物体的位移为多大?答案:16m【练习3】一个物体做匀变速直线运动,第1s末的速度大小为3.0m/s,第2s末的速度大小为4.0m/s,则()A.物体第2s内的位移一定是3.5mB.物体的初速度一定是2.0m/sC.物体第2s内的平均速度大小可能为0.5m/sD.物体第2s内的位移可能为14m答案:C【例3】一辆汽车正在笔直的公路上以72km/h的速度行驶,司机看见红色交通信号灯便踩下刹车制动器,汽车开始减速,设汽车做匀减速运动的加速度为5m/s2,求开始制动后6s 内汽车行驶的距离是多少?答案:40m【练习4】做匀变速直线运动的物体,在时间t内的发生的位移仅取决于()A.初速度B.加速度C.末速度D.平均速度答案:D【练习5】以18m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度的大小为6m/s2.求汽车刹车后在4s内通过的路程。
位移与时间的公式
物理学中,位移与时间的公式是衡量物体在一个特定的时间内位移的基本方程。
它的公式为 s=v*t,其中s表示位移(d),v表示速度(m/s),t表示时间(S)。
公式s=v*t表明,当物体在一定的时间内,得到同等位移,则其速度必然是一致的。
反之,当物体在一定的时间内,做出不定速度的非连续运动,那么它将有不同的位移量。
这个公式也能用来检查一个物体在给定的一段时间内,有多少位移量。
这个公式也能帮助人们理解物理学中的简单的概念。
例如,当球从高处自由落下时,它的速度会随时间的推移而增加。
而从这个公式中可以推导出,只要时间不变,其位移量必定是恒定的。
这个公式也能帮助人们了解其他物理学概念,如加速度。
当物体处于加速度状态时,其速度随时间的变化而变化,但并不是恒定的,而是根据加速度值而变化,这个公式也能被用来求出加速运动物体在一定时间内,所做的位移量。
总之,物理学中的位移与时间的公式非常重要,它不仅能帮助人们理解物理学的概念,还能帮助人们检查物体在给定的一段时间内有变化时,所做的位移量。
三.匀变速直线运动的位移与时间的关系四.匀变速直线运动的速度与位移的关系[要点导学]1.位移公式物体做匀速直线运动的v-t图线如图2-3-1所示,在时间t内物体的位移对应v-t图象中矩形OCAB的面积,对应匀速直线运动物体的位移公式:x=vt;物体做匀变速直线运动的v-t,图线如图2-3-2所示,同理可知,在时间t内物体的位移对应v-t图象中梯形ODEF的面积,因此,匀变速度直线运动物体的位移公式为_____________________。
此位移公式是采用“微元法”把匀变速直线运动转化为匀速直线运动推导出来的,同学们应结合教材内容,深入理解这一研究方法及位移公式的推导过程,并加以应用。
2.对匀变速直线运动位移公式:的理解(1)式中共有四个物理量,仅就该公式而言,知三求一;(2)式中x、v0、a是矢量,在取初速度v0方向为正方向的前提下,匀加速直线运动a取正值,匀减速直线运动a取______,计算的结果x>0,说明位移的方向与初速度方向______,x<0,说明位移的方向与初速度方向________。
(3)对于初速度为零的匀加速直线运动,位移公式为:x=at2/23.匀变速直线运动速度与位移的关系由速度公式vt =v+at和位移公式联立消去时间t,可得速度与位移的关系式:vt2-v2=2ax此式是匀变速直线运动规律的一个重要推论,如果问题的已知量和未知量都不涉及时间,应用此式求解比较方便,对于初速度为零的匀变速直线运动,此式可简化为_______。
4.匀变速直线运动的平均速度由和可得,应用此式时请注意:(1)此式只适用于匀变速直线运动,不论是匀加速直线运动还是匀减速直线运动都适用,但对非匀变速直线运动的平均速度只能用平均速度的定义式来计算。
(2)式中的“v0+vt”是矢量和,不是代数和。
对匀变速直线运动来说,v和vt在一条直线上,可以通过规定正方向,把矢量运算转化为代数运算。
(3)由和速度公式vt=v0+at得=vt/2,即时间t内的平均速度等于中间时刻的瞬时速度。
一、匀变速直线运动公式1.常用公式有以下三个at v v t +=0(速度时间关系)2021at t v x +=(位移时间关系)ax v v t 2202=-(速度位移关系) (1)以上三个公式只适用于匀变速直线运动。
(2)三个公式都是矢量式,除时间t 外,x 、v 0、v t 、a 均为矢量。
一般以v 0的方向为正方向,以t =0时刻的位移为零,这时x 、v t 和a 的正负就都有了确定的物理意义。
二、匀变速直线运动的三个推论 1.运用匀变速直线运动的平均速度公式txv v v t t =+=202/解题,往往会使求解过程变得非常简捷,因此,要对该公式给与高度的关注。
2.在匀变速直线运动中,某段位移中间位置的瞬时速度v x/2与这段位移的初速度v 0和末速度v 之间的关系:推导:由222v v ax -=及220222x x v v a ax ⎛⎫-== ⎪⎝⎭得2x v =谁大谁小和推导一下22x t V V ?可以证明:无论是匀加速直线运动还是匀减速直线运动,都有唯一的结论,即:3.在连续相邻的相同时间内的位移之差是定值,即202t v vv v =+=22202V V V x +=2x aT =∆20121aT T v x +=20202022321)2(212aT T v aT T v T a T v x +=⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡+⋅=202020325)2(212)3(213aT T v T a T v T a T v x +=⎥⎦⎤⎢⎣⎡+⋅-⎥⎦⎤⎢⎣⎡+⋅=,,,,245234223212aT x x aT x x aT x x aT x x =-=-=-=-2()m n x x m n aT -=-应用(1)判断物体是否做匀加速直线运动 (2)逐差法求加速度以下为一做匀加速的纸带选取的7个计数点,相邻两点间的时间为T ,位移测量如图,求其加速度?用位移差平均值求加速度的缺陷由此看出,此法在取平均值的表象下,实际上只有s 1和s 6两个数据被利用,其余的数据s 2、s 3、s 4、s 5都没有用,因而失去了多个数据正负偶然误差互相抵消的作用,算出的结果的误差较大。
加速度位移时间的关系加速度、位移和时间是物理学中非常重要的概念。
它们之间的关系可以通过牛顿第二定律以及基本运动学公式来描述。
首先,加速度是一个描述物体运动变化率的物理量,它定义为单位时间内速度的变化量。
在一维运动中,加速度可以根据物体的速度变化情况来表示。
如果一个物体在某个时间段内的速度发生变化,那么它的加速度就可以通过以下公式来计算:加速度(a) = (Vf - Vi) / t其中,Vf是时间段结束时物体的速度,Vi是时间段开始时物体的速度,t是时间段的持续时间。
位移是一个描述物体位置变化的物理量,它定义为物体从一个位置到另一个位置之间的距离。
在一维运动中,位移可以通过以下公式计算:位移(d) = (Vf + Vi) / 2 * t其中,Vf和Vi分别是时间段结束时和开始时的速度,t是时间段的持续时间。
时间是物体运动的一个重要参量,它可以通过测量运动开始和结束的时间来确定。
从上述公式可以看出,加速度、位移和时间之间存在一种关系:位移等于速度的平均值乘以时间。
由于加速度定义为速度的变化率,所以可以将速度的平均值写为Vi + (Vf - Vi) / 2,从而得到位移公式。
此外,我们还可以从牛顿第二定律的角度来看待加速度、位移和时间的关系。
牛顿第二定律表明,物体的加速度等于作用在物体上的力与物体的质量的比值。
根据牛顿第二定律,我们可以推导出以下公式:加速度(a) = F / m其中,F是作用在物体上的力,m是物体的质量。
由此可见,在已知物体的质量和受力情况的前提下,我们可以计算出物体的加速度。
然后,根据位移公式,我们可以根据已知的加速度和时间来计算位移。
总结起来,加速度、位移和时间之间存在着紧密的关系。
通过运用牛顿第二定律、基本运动学公式以及已知的力、质量、速度和时间等信息,我们可以推导出加速度、位移和时间之间的关系式,从而更好地理解和描述物体的运动特性。
位移和时间的关系以及速度和时间的关系
一、匀速直线运动
1、定义:在任意相等的时间内位移均相等的直线运动。
2、运动规律:
3、特点:
二、位移——时间图象(s-t图象或简称位移图象)
1、横轴表示时间(t/s),纵轴表示位移(x/m),坐标原点表示位移起点。
2、x-t图象物理意义:反映物体运动位移随时间的变化关系。
3、x-t图象一经确定,在物体实际运动空间中正方向就确定,则x-t图象只能反映直线运动。
4、匀速直线运动:x-t图象是一条倾斜直线
5、图1物理含义:
(1)从距离规定的位移参考点相距x0的地方开始沿正方向作匀速直线运动。
θ1>θ2,与水平方向倾角越大,物体运动得越快,速度越大。
(2)x—t图像的交点表示相遇
(3)x-t图象并不表示物体运动
(4)x—t图像是曲线时,某一点的切线的斜率表示该点的速度.
三、速度和时间的关系:(v-t图像或速度图像)
1、纵轴v(m/s) 横轴t(s) 坐标原点速度为零
2、匀速直线运动v-t图象。
①匀速直线运动的v-t图象是一条平行于t轴的直线。
②v的正负表示运动的方向
③v-t图象与t轴所围面积表示位移的大小。
④v-t图象在坐标系中一经建立,正方向在实际运动空间中就确定,v-t图象只能反映物体速度沿正方向或负方向作直线运动,对于曲线运动的物体只能用速率时间图像反应.
3、
4、匀变速直线运动:在变速直线运动中,如果在任意相等的时间内速度的改变均相等,这种运动叫匀变速直线运动。
特点:
例:一辆玩具电动车,起动时和刹车时均做匀变速直线运动。
起动时:
刹车时:刚好相反。
启动作匀加速直线运动刹车时作匀减速运动
5、匀变速直线运动的v-t图象是一条倾斜直线。
可以把图象分割成无限的等时间间隔的梯形,这样无限分割下去,每一个小的时间间隔内物体可看作匀速直线运动,则每一个小的时间间隔内的位移可以看成是与t轴所围成的面积,这样整个0~t0过程物体作匀变速直线运动位移就等于与t轴所围图形的面积。
6、匀变速直线运动的位移等于v-t图象中与t轴所围面积的大小。
θ2>θ1A的速度增加得比B快,直线的倾斜程度反映了物体速度改变的快慢。
甲图为x-t图象,0~10s沿正方向做匀速直线运动;10~30s静止;30s~40s内沿原路返回做匀速直线运动。
乙图为v-t,0~10s内做匀加速直线运动,10~30s内做匀速直线运动,30~40s 内沿同向做匀减速直线运动。