人教版七年级数学下册期末测试题及答案共五套
- 格式:docx
- 大小:326.79 KB
- 文档页数:35
人教版七年级数学下册期末复习题(含答案)一、选择题1.如图所示,下列结论中正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是内错角D .3∠和4∠是对顶角 2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点(a 2+1,2020)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min 30a }=a ,min 30b }30a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.在同一个平面内,A ∠为50°,B 的两边分别与A ∠的两边平行,则B 的度数为( ).A .50°B .40°或130°C .50°或130°D .40°8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.0.0081的算术平方根是______十、填空题10.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.十一、填空题11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.十二、填空题12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.十三、填空题13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.十四、填空题14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______十五、填空题15.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.十六、填空题16.在平面直角坐标系中,点(,)P x y 经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点已知点1P 的终结点为2P 点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1234,,,,,,n P P P P P ⋯⋯,若点1P 的坐标为(2,0),则点2021P 的坐标为____十七、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021;(2)()2133+3––6⎛⎫ ⎪⎝⎭. 十八、解答题18.求下列各式中x 的值:(1)(x +1)3﹣27=0(2)(2x ﹣1)2﹣25=0十九、解答题19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)二十、解答题20.如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积.二十一、解答题21.已知:a是815-的小数部分.+的小数部分,b是815(1)求a、b的值;(2)求4a+4b+5的平方根.二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E .(1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.二十四、解答题24.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.二十五、解答题25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】解:A 、∠1和∠2是同旁内角,故本选项错误;B 、∠2和∠3是同旁内角,故本选项正确;C 、∠1和∠4是同位角,故本选项错误;D 、∠3和∠4是邻补角,故本选项错误;故选:B .【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是轴对称图形,故选项B不合题意;C.选项的图案可以通过平移得到.故选项C符合题意;D.是轴对称图形,故选项D不符合题意.故选:C.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.A【分析】根据点的横纵坐标的正负判断即可.【详解】解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:a30b30∵25<30<36,∴5306,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.C【分析】如图,分两种情况进行讨论求解即可.【详解】解:①如图所示,AC∥BF,AD∥BE,∴∠A=∠FOD,∠B=∠FOD,∴∠B=∠A=50°;②如图所示,AC∥BF,AD∥BE,∴∠A=∠BOD,∠B+∠BOD=180°,∴∠B+∠A=180°,∴∠B=130°,故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:A n﹣1A n=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3【分析】根据算术平方根的性质解答即可.【详解】,0.090.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.十、填空题10.(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要解析:(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.十一、填空题11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE平分∠BAC,∴∠BAE=1∠BAC=40°,2∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数十二、填空题12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.十三、填空题13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.十四、填空题14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索, 解析:43. 【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.十五、填空题15.【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解.【详解】∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.十六、填空题16.【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后解析:(2,0)【分析】利用点P (x ,y )的终结点的定义分别写出点P 2的坐标为(1,4),点P 3的坐标为(−3,3),点P 4的坐标为(−2,−1),点P 5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P 2021的坐标与点P 1的坐标相同.【详解】解:根据题意得点P 1的坐标为(2,0),则点P 2的坐标为(1,4),点P 3的坐标为(−3,3),点P 4的坐标为(−2,-1),点P 5的坐标为(2,0),…,而2021=4×505+1,所以点P 2021的坐标与点P 1的坐标相同,为(2,0),故答案为:(2,0).【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键. 十七、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC=∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED∥BC,通过两直线平行,内错角相等推出∠DEF=∠EHC,再运用等量代换得到∠EHC =∠B,最后推出BD∥EH,∠BDG=∠DFE,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED=∠C (已知)∴ED∥BC(同位角相等,两直线平行)∴∠DEF=∠EHC (两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC =∠B (等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG =180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.二十、解答题20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2)可知,△ABC向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A1(-3,0),B1(2,3),C1(-1,4),平移后的△A1B1C1如下图所示:;(3)111545313247222ABCS= =⨯-⨯⨯-⨯⨯-⨯⨯.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.(1)a=﹣3,b=4﹣;(2)±3.【分析】(1)根据3<<4,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3<<4,∴11<8+<12,解析:(1)a153,b=4152)±3.【分析】(1)根据3154,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可.【详解】解:(1)∵3154,∴11<1512,4<8155,∵a是815b是815∴a=1511153,b=8154=415(2))(44543445121659a b ++=++=+-=, ∴4a +4b +5的平方根为:±3.【点睛】出a 、b 的值是解题关键.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.二十四、解答题24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.二十五、解答题25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;(2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.。
2023年人教版七年级数学下册期末考试卷及答案【精品】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)5.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <06.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m ≤-1 B .m<-1 C .-1<m ≤0 D .-1≤m<010.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a ±,若4410m =,则m =________.4.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、B6、A7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、垂线段最短.3、10±4、①②③5、2或2.56、2三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、x≥3 53、(1)∠BOD;∠AOE;(2)152°.4、(1)略(2)成立5、()117、20;()22次、2次;()372;()4120人.6、(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,点C 到直线AB 的距离是指哪条线段长( ) A .CBB .CDC .CAD .DE2.下列不等式变形正确的是( ) A .由a >b ,得a ﹣2<b ﹣2 B .由a >b ,得|a|>|b| C .由a >b ,得﹣2a <﹣2bD .由a >b ,得a2>b23.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是4,则这样的点P 有( ) A .1个B .2个C .3个D .4个4.下列语言是命题的是( ) A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC=OAD .两直线平行,内错角相等.5.下列调查中,适宜采用全面调查方式的是( ) A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带违禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 6..不等式组的解集在数轴上表示正确的是( )A .B .C .D .7.若是方程组的解,则(a+b )•(a ﹣b )的值为( ) A .﹣B .C .﹣16D .168.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°9.如图,∠A +∠B +∠C +∠D +∠E +∠F =A.180°B.360°C.540°D.720°10.有甲、乙、丙三种商品,如果购买甲3件,乙2件,丙1件共需315元钱;购买甲1件,乙2件,丙3件共需285元,那么购甲,乙,丙三种商品各一件共需钱A.120元B.130元C.150元D.无法确定11.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩ 无解,则a 的取值范围是A.a <2B.a >2C.a ≥2D.a ≤2 12.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830°,则该多边形的边数是A.7B.8C.7或8D.无法确定第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A (1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B 的坐标为 .14.若a+1和-5是实数m 的两个平方根,则a 的值为 . 15.若0x 2-x =++y ,则=x y .16.如图,将一个宽度相等的纸条按如图所示沿AB 所折叠,已知︒=∠601,则=∠2 .17.已知a 是5的整数部分,b 是5的小数部分,则a-b= . 18.若不等式组⎩⎨⎧<->+1b x 23a 2x 解集为1<x<2,则(a+2)(b-1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)FED CBA19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。
人教版七年级下册数学期末复习试卷及答案一、选择题1.下列图形中,1∠与2∠是同旁内角的是( )A .B .C .D .2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程. A .①② B .②④ C .②③ D .③④ 3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( ) A .3个B .2个C .1个D .0个5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数7.如图,已知直线//AB CD ,点F 为直线AB 上一点,G 为射线BD 上一点.若:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,HD 交BE 于点E ,则E ∠的度数为( )A .45°B .55°C .60°D .75°8.如图,点A (0,1),点A 1(2,0),点A 2(3,2),点A 3(5,1)…,按照这样的规律下去,点A 100的坐标为( )A .(101,100)B .(150,51)C .(150,50)D .(100,53)九、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.十、填空题10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.十一、填空题11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.十二、填空题12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .十三、填空题13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°十四、填空题14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.十五、填空题15.()2260a b ++-=,则(),a b 在第_____象限.十六、填空题16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.十七、解答题17.计算:(1)3981++- (2)23427(3)+--- (3)2(23)+ (4)353325-++十八、解答题18.求下列各式中x 的值: (1)(x +1)3﹣27=0 (2)(2x ﹣1)2﹣25=0十九、解答题19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4 ∴∠2= (等量代换), ∴ ∥BF ( ),∴∠3=∠ ( ). 又∵∠B =∠C (已知), ∴∠3=∠B ∴AB ∥CD ( ).二十、解答题20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.二十一、解答题21.已知23|49|7a b a a -+-+=0,求实数a 、b 的值并求出b 的整数部分和小数部分.二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?二十三、解答题23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPFα∠的平分线和∠=,PEA∠的平分线交于点G,用含有α的式子表示GPFC∠的度数.二十四、解答题24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.二十五、解答题25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题1.A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.解:∵点P 的坐标为P (3,﹣5), ∴点P 在第四象限. 故选D . 【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-). 4.A 【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案. 【详解】平面内,垂直于同一条直线的两直线平行;故①正确, 经过直线外一点,有且只有一条直线与这条直线平行,故②正确 垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误, ∴正确命题有①②③,共3个, 故选:A . 【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.D 【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数. 【详解】解:由题意可知AD//BC ,∠FEG=90°, ∵∠1=34°,∠FEG=90°, ∴∠AEF=90°-∠1=56°, ∵AD//BC ,∴∠2=180°-∠AEF=124°, 故选:D . 【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.D 【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可. 【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n-,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键. 7.C 【分析】利用180ABG GBF ∠+∠=︒,及平行线的性质,得到180CDG GBF ∠+∠=︒,再借助角之间的比值,求出120BDE GBE ∠+∠=︒,从而得出E ∠的大小. 【详解】 解://AB CD ,ABG CDG ∴∠=∠, 180ABG GBF ∠+∠=︒,180CDG GBF ∴∠+∠=︒,:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,2222()1801203333HDG GBE CDG GBF CDG GBF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒,BDE HDG ∠=∠,120BDE GBE ∴∠+∠=︒,180()18012060E BDE GBE ∴∠=︒-∠+∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想.8.B 【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n (3n ,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1解析:B 【分析】观察图形得到偶数点的规律为,A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),由100是偶数,A 100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A 100(150,51). 【详解】解:观察图形可得,奇数点:A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n -1(3n -1,n -1),偶数点:A 2(3,2),A 4(6,3),A 6(9,4),…,A 2n (3n ,n +1),∵100是偶数,且100=2n,∴n=50,∴A100(150,51),故选:B.【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.九、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即 1.8044±.故答案为±1.8044十、填空题10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特3,2解析:()【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】A-关于x轴的对称点的坐标是(3,2).解:点(3,2)【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;十一、填空题 11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠B 解析:64【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD 与∠FAD 互余,与∠BFE 是对顶角,故可求得∠BFE 的度数. 【详解】∵AE 是角平分线,∠BAE=26°, ∴∠FAD=∠BAE=26°, ∵DB 是△ABC 的高,∴∠AFD=90°−∠FAD=90°−26°=64°, ∴∠BFE=∠AFD=64°. 故答案为64°. 【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题 12.48° 【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数. 【详解】 解:若AB//CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48° 【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数. 【详解】 解:若AB //CD , 则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DE C、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=1(180°-45°)=67.5°.2故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.十五、填空题15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).十六、填空题16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.十七、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.十八、解答题18.(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2.【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案.【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=±5,x=3或x=-2.【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.十九、解答题19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.二十、解答题20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=111 6426244210 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:4214【分析】根据分母不等于0,以及非负数的性质列式求出a 、b 的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a -b =0,a 2-49=0且a +7>0,解得a =7,b =21,∵16<21<25, ∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.二十四、解答题24.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1APB ADB∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD=12∠ABN,即可求出结果;(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.二十五、解答题25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
2023年人教版七年级数学下册期末考试题及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A.﹣2 B.0 C.1 D.46.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃9.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 10.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.51a -5b -=0,则(a ﹣b )2的平方根是________.6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.解方程组:34165633x y x y +=⎧⎨-=⎩2.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min .小东骑自行车以300m/min 的速度直接回家,两人离家的路程y (m )与各自离开出发地的时间x (min )之间的函数图象如图所示(1)家与图书馆之间的路程为多少m ,小玲步行的速度为多少m/min ;(2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.已知:在ABC 中,C 90∠=,AC 6cm =,BC 8cm =.()1如图1,若点B 关于直线DE 的对称点为点A ,连接AD ,试求ACD 的周长; ()2如图2,将直角边AC 沿直线AM 折叠,使点C 恰好落在斜边AB 上的点N ,且BN 4cm =,求CM 的长.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、B5、C6、B7、C8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、ab3、0.4、40或805、±4.6、±44三、解答题(本大题共6小题,共72分)1、612x y =⎧⎪⎨=-⎪⎩2、m=4,n=﹣1.3、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.4、()1ACD 的周长14cm =;()2CM 3cm =.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
2023年人教版七年级数学(下册)期末试卷及答案(真题) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( )A .大于零B .等于零C .小于零D .不能确定2.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a •b >0B .a+b <0C .|a|<|b|D .a ﹣b >03.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112° 494) A .32 B .32- C .32± D .81165.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.已知2x =3y (y ≠0),则下面结论成立的是( )A .32x y =B .23x y= C .23x y = D .23xy =10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .23x -在实数范围内有意义,则 x 的取值范围是________.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.已知,x y 为实数,且22994y x x --,则x y -=________.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.若一个多边形内角和等于1260°,则该多边形边数是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、C7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x≥33、同位角相等,两直线平行4、1-或7-.5、0.6、9三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x=.2、0.3、(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.4、(1)详略;(2)70°.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)略。
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2023年人教版七年级数学下册期末考试题(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243,则计算:的结果为().m-m-10m-m-m2=+A.3B.-3C.5D.-52.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠的大小为()∠=,则1A.14 B.16 C.90αα-- D.443.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD 的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°5.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A .70°B .180°C .110°D .80°7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米8.在数轴上,a 所表示的点总在b 所表示的点的右边,且|a |=6,|b |=3,则a -b 的值为( )A .-3B .-9C .-3或-9D .3或99.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩ 10.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.因式分解:2218x -=______.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解下列一元一次方程:(1)32102(1)x x -=-+ (2)2+151136x x -=-2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.4.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C4、C5、B6、C7、C8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、40°3、2(x+3)(x﹣3).4、815、454353 x yx y+=⎧⎨-=⎩6、1三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)x=-32、0<m<3.3、见解析(2)∠EBC=25°4、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)y=1.6x;(2)50千克;(3)36元。
新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
人教版七年级数学下册期末测试题及答案共五套Company number【1089WT-1898YT-1W8CB-9UUT-92108】七下期期末(共六套)姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m >-1,则下列各式中错误的...是( )A .6m >-6B .-5m <-5C .m+1>0D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解的是( )A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PC BA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .1C 1A 1ABB 1 CD8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________. 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C B AD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由。
22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A (-4,-1),B (-5,-4),C (-1,-3),△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点P(x 1,y 1)平移后的对应点为P′(x 1+6,y 1+4)。
(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.24.,•其中甲班有50多人920元;•两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A ,B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:(共30分)BCCDD,CBBCD二、填空题:(共24分)11.±7,7,-2 12. x ≤6 13.三 14.垂线段最短。
15. 40 16. 40017. ①②③ 18. x=±5,y=3 三、解答题:(共46分)19. 解:第一个不等式可化为x -3x+6≥4,其解集为x ≤1. 第二个不等式可化为 2(2x -1)<5(x+1),有 4x -2<5x+5,其解集为x >-7. ∴ 原不等式组的解集为-7<x ≤1.89627170x y x y -=⎧⎨++=⎩∴ 8960828680x y x y --=⎧⎨++=⎩两方程相减,可得 37y+74=0, ∴ y=-2.从而 32x =-.因此,原方程组的解为 322x y ⎧=-⎪⎨⎪=-⎩21. ∠B=∠C 。
理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′(2,3),B′(1,0),C′(5,1).24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢(50-x)节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地(5O-x)的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A 型货厢 28节,B 型货厢22节; 第二种调运方案:用A 型货厢29节,B 型货厢21节; 第三种调运方案:用A 型货厢30节,用B 型货厢20节. 人(满分120分)题号 1 2 3 4 5 6 7 8答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是 A .21a - B .221a a -+ C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有B ′C ′D ′O ′A ′ODC BA(第8题 A .4个 B .5个 C .6个 D .无数个6. 下列语句不正确...的是A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三角形的外角等于不相邻两个内角的和D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SASB .ASAC .AASD .SSS二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm .10.将方程2x+y=25写成用含x的代数式表示y的形式,则y= .11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小(第16题是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:m试验者试验次数n正面朝上的次数m正面朝上的频率n布丰404020480.5069德·摩409220480.5005根费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: . 三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''. 18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+2009×(+5)2010 (2)2(x+4) (x-4) 19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+1 20.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x yx (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y xO B(第16题21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b +的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗为什么23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3的圆心角是多少度24.(本题4+8=1210月31日。