2012年北京市朝阳区初三一模数学试卷及答案
- 格式:doc
- 大小:615.00 KB
- 文档页数:9
2012北京市朝阳区初三(一模)数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)的相反数是()A.B.﹣C.2 D.﹣22.(4分)据报道,2011年北京市户籍人口中,60岁以上的老人有2460000人,预计未来五年北京人口“老龄化”还将提速.将2460000用科学记数法表示为()A.0.25×106 B.24.6×105 C.2.46×105 D.2.46×1063.(4分)在△ABC中,∠A=2∠B=80°,则∠C等于()A.40°B.60°C.80°D.120°4.(4分)若分式的值为零,则x的取值为()A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣35.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.角B.等边三角形C.平行四边形D.圆6.(4分)在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出黄球的概率是()A.B.C.D.7.(4分)在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.47.5,49 C.48,49 D.48,508.(4分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n 中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b二、填空题(本题共16分,每小题4分)9.(4分)函数中自变量x的取值范围是.10.(4分)分解因式:5ma2﹣5mb2=.11.(4分)如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠B=20°,则∠ADC的度数为.12.(4分)如图,在正方形ABCD中,AB=1,E、F分别是BC、CD边上的点,(1)若CE=CB,CF=CD,则图中阴影部分的面积是;(2)若CE=CB,CF=CD,则图中阴影部分的面积是(用含n的式子表示,n是正整数).三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)解不等式2(x﹣1)+3<5x,并把它的解集在数轴上表示出来.15.(5分)已知:如图,C是AE的中点,∠B=∠D,BC∥DE.求证:AB=CD.16.(5分)已知x2+3x﹣1=0,求4x(x+2)+(x﹣1)2﹣3(x2﹣1)的值.17.(5分)如图,P是反比例函数(x>0)的图象上的一点,PN垂直x轴于点N,PM垂直y轴于点M,矩形OMPN的面积为2,且ON=1,一次函数y=x+b的图象经过点P.(1)求该反比例函数和一次函数的解析式;(2)设直线y=x+b与x轴的交点为A,点Q在y轴上,当△QOA的面积等于矩形OMPN的面积的时,直接写出点Q的坐标.18.(5分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,求ED的长.四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分)19.(5分)列方程解应用题:为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量.缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?20.(5分)如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的点,且AF=BF.(1)求证:BC是⊙O的切线;(2)若sinC=,AE=,求sinF的值和AF的长.21.(5分)为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源情况的相关数据,绘制了如下统计图(不完整):(1)请根据以上信息解答下列问题:①2010年北京市人均公共绿地面积是多少平方米(精确到0.1)?②补全条形统计图;(2)小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人均公共绿地面积做贡献.她对所在班级的40名同学2011年参与植树的情况做了调查,并根据调查情况绘制出如下统计表:种树棵数(棵)0 1 2 3 4 5人数10 5 6 9 4 6如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2011年共植树多少棵.22.(6分)根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x (吨)之间的函数的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?五、解答题(本题共21分,第23题6分,第24题8分,第25题7分)23.(6分)阅读下面材料:问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD的长为;(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长.24.(8分)在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,﹣5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.(1)求此抛物线的解析式;(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P 的坐标;(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM?若存在,求出点Q的坐标;若不存在,说明理由.25.(7分)在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.数学试题答案一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】的相反数是﹣,添加一个负号即可.故选:B.2.【解答】2460000=2.46×106,故选:D.3.【解答】∵在△ABC中,∠A=2∠B=80°,∴∠A=80°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣80°﹣40°=60°.故选B.4.【解答】由题意得:x2﹣9=0,x﹣3≠0,解得:x=﹣3,故选:D.5.【解答】A、角是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不轴对称图形,是中心对称图形,故本选项错误;D、圆既是轴对称图形也是中心对称图形,故本选项正确;故选D.6.【解答】∵袋子中装有2个红球,1个黄球,1个黑球共2+1+1=4个球,∴摸到这个球是黄球的概率是1÷4=.故选A.7.【解答】49出现的次数最多,出现了5次,所以众数为49,第8个数是48,所以中位数为48,故选C.8.【解答】∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),∴二次函数y=x2+mx+n与x轴的交点坐标分别是(a,0)、(b,0)(a<b),且抛物线的开口方向向上,∴该二次函数的图象如图所示:根据图示知,符合条件的x的取值范围是:a<x<b;故选:C.二、填空题(本题共16分,每小题4分)9.【解答】根据题意得:x﹣4>0,解得:x>4.故答案为x>4.10.【解答】5ma2﹣5mb2,=5m(a2﹣b2),=5m(a+b)(a﹣b).故答案为:5m(a+b)(a﹣b).11.【解答】∵CD是⊙O的直径,∴∠CAD=90°,∵∠B=20°,∴∠C=∠B=20°,∴∠ADC=90°﹣∠C=70°.故答案为:70°.12.【解答】(1)设BF与DE交于点M,过点M作MN⊥CD于N,∵四边形ABCD是正方形,∴∠C=90°,AD∥BC,BC=CD=AB=1,∴AD∥MN∥BC,∴△DMN∽△DEC,△FMN∽△FBC,∴,,∵CE=CB=,CF=CD=,∴CE=CD,CF=BC,∴=2,=2,设MN=x,FN=y,∴=2,=2,解得:x=,∴MN=,∴S△BCF=BC•CF=×1×=,S△DFM=DF•MN=××=,S正方形ABCD=1,∴S阴影=1﹣﹣=;(2)设BF与DE交于点M,过点M作MN⊥CD于N,∵四边形ABCD是正方形,∴∠C=90°,AD∥BC,BC=CD=AB=1,∴AD∥MN∥BC,∴△DMN∽△DEC,△FMN∽△FBC,∴,,∵CE=CB=,CF=CD=,∴CE=CD,CF=BC,∴=n,=n,设MN=x,FN=y,∴=n,=n,解得:x=,∴MN=,∴S△BCF=BC•CF=×1×=,S△DFM=DF•MN=×(1﹣)×=,S正方形ABCD=1,∴S阴影=1﹣﹣=.故答案为:,.三、解答题(本题共30分,每小题5分)13.【解答】原式=3﹣6×+2﹣1=1.14.【解答】去括号得,2x﹣2+3<5x,移项,合并同类项得,﹣3x<﹣1,系数化为1得,x>.在数轴上表示为:15.【解答】证明:∵C是AE的中点,∴AC=CE.…(1分)∵BC∥DE,∴∠ACB=∠E.…(2分)在△ABC和△CDE中,,∴△ABC≌△CDE.…(4分)∴AB=CD.…(5分)16.【解答】4x(x+2)+(x﹣1)2﹣3(x2﹣1)=4x2+8x+x2﹣2x+1﹣3x2+3=2x2+6x+4 =2(x2+3x)+4,…(3分)∵x2+3x﹣1=0,∴x2+3x=1,…(4分)则原式=2+4=6.…(5分)17.【解答】(1)∵PN垂直x轴于点N,PM垂直y轴于点M,矩形OMPN的面积为2,且ON=1,∴PN=2、∴点P的坐标为(1,2).∵反比例函数(x>0)的图象、一次函数y=x+b的图象都经过点P,由,2=1+b得k=2,b=1、∴反比例函数为,一次函数为y=x+1;(2)Q1(0,1),Q2(0,﹣1).18.【解答】∵四边形ABCD是平行四边形,∴AO=CO=AC=×8=4,DO=BO,∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,…(2分)在Rt△ABO中,BO===3,∴DO=BO=3,…(3分)在Rt△EAO中,EO===4.…(4分)∴ED=EO﹣DO=4﹣3.…(5分)四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分)19.【解答】设缩短发车间隔前平均每分钟运送乘客x人.…(1分)根据题意,得,…(3分)解得x=400.…(4分)经检验,x=400是原方程的解.…(5分)答:缩短发车间隔前平均每分钟运送乘客400人.20.【解答】(1)证明:∵DA=DB(已知),∴∠DAB=∠DBA(等边对等角);又∵∠C=∠DBC(已知),∴∠DBA﹢∠DBC=(∠DAB+∠DBA+∠C+∠DBC)=×180°=90°(三角形内角和定理),即∠ABC=90°,∴AB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)如图,连接BE,BF.∵AB是⊙O的直径(已知),∴∠AEB=90°(直径所对的圆周角是直角),∴∠EBC+∠C=90°(直角三角形的两个锐角互余),∵∠ABC=90°(由(1)知),∴∠ABE+∠EBC=90°,∴∠C=∠ABE(等量代换);又∵∠AFE=∠ABE(同弧所对的圆周角相等),∴∠AFE=∠C(等量代换),∴sin∠AFE=sin∠ABE=sinC,∴sin∠AFE=,∴∠AFB=90°,在Rt△ABE中,AB==5∵AF=BF(已知),∴AF=BF=5.21.【解答】(1)①14.5×(1+3.4%)≈15.0,即2010年北京市人均绿地面积约为15.0平方米.②如图所示:;(2)由题意得出:.估计她所在学校的300名同学在2011年共植树675棵.22.【解答】(1)由题意得:5k=3,解得k=0.6,∴y1=0.6x;由,解得:.∴y2=﹣0.2x2+2.2x;(2)W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元.五、解答题(本题共21分,第23题6分,第24题8分,第25题7分)23.【解答】(1)把△ADC沿AC翻折,得△AEC,连接DE,∴△ADC≌△AEC,∴∠DCA=∠ECA,DC=EC,∠DAC=∠CAE,∵∠BAD=∠C=2∠DAC=45°,∠DAE=∠DAC+∠CAE=2∠DAC,∴∠ECD=∠ECA+∠DCA=90°,∠BAD=∠DAE,∴DE==2,∵∠ADB=∠DAC+∠ACD=22.5°+45°=67.5°,∴∠ADE=180°﹣∠ADB﹣∠EDC=180°﹣67.5°﹣45°=67.5°,∴∠ADB=∠ADE,在△BAD和△EAD中,∵,∴△BAD≌△EAD(ASA),∴BD=DE=2;…(2分)故答案为:2.(2)把△ADC沿AC翻折,得△AEC,连接DE,∴△ADC≌△AEC,∴∠DAC=∠EAC,∠DCA=∠ECA,DC=EC,∵∠BAD=∠BCA=2∠DAC=30°,∴∠BAD=∠DAE=30°,∠DCE=60°,∴△CDE为等边三角形,…(3分)∴DC=DE,在AE上截取AF=AB,连接DF,∵AD是公共边,∴△ABD≌△AFD,∴BD=DF,在△ABD中,∠ADB=∠DAC+∠DCA=45°,∴∠ADE=∠AED=75°,∠ABD=105°,∴∠AFD=105°,∴∠DFE=75°,∴∠DFE=∠DEF,∴DF=DE,∴BD=DC=2,…(4分)作BG⊥AD于点G,∴在Rt△BDG中,BG=BD•sin∠ADB=2×=,…(5分)∴在Rt△ABG中,AB=2BG=2.…(6分)24.【解答】(1)由题意得,MN平行x轴,MN=6,点N坐标为(2,﹣5),故可得点M坐标为(﹣4,﹣5),∵y=ax2+bx+3过点M(﹣4,﹣5)、N(2,﹣5),∴可得,解得:,故此抛物线的解析式为y=﹣x2﹣2x+3.(2)设抛物线的对称轴x=﹣1交MN于点G,若△DMN为直角三角形,则,可得D1(﹣1,﹣2),D2(﹣1,﹣8),从而可求得直线MD1解析式为;y=x﹣1,直线MD2解析式为:y=﹣x﹣9,将P(x,﹣x2﹣2x+3)分别代入直线MD1,MD2的解析式,得﹣x2﹣2x+3=x﹣1①,﹣x2﹣2x+3=﹣x﹣9②、解①得x1=1,x2=﹣4(舍),即P1(1,0);解②得x3=3,x4=﹣4(舍),即P2(3,﹣12);故当△DMN为直角三角形时,点P的坐标为(1,0)或(3,﹣12).(3)设存在点Q(x,﹣x2﹣2x+3),使得∠QMN=∠CNM,①若点Q在MN上方,过点Q作QH⊥MN,交MN于点H,则QH=﹣x2﹣2x+3+5,MH=(x+4)、故,即﹣x2﹣2x+3+5=4(x+4)、解得x1=﹣2,x2=﹣4(舍),故可得点Q1(﹣2,3);②若点Q在MN下方,同理可得Q2(6,﹣45).综上可得存在点Q,使∠QMN=∠CNM,点Q的坐标为(﹣2,3)或(6,﹣45).25.【解答】(1)在矩形ABCD中,∠A=∠D=90°,AP=1,CD=AB=2,则PB=,∴∠ABP+∠APB=90°,又∵∠BPC=90°,∴∠APB+∠DPC=90°,∴∠ABP=∠DPC,∴△APB∽△DCP,∴=,即=,∴PC=2;(2)①tan∠PEF的值不变.理由:过F作FG⊥AD,垂足为G,则四边形ABFG是矩形,∴∠A=∠PGF=90°,GF=AB=2,∴∠AEP+∠APE=90°,又∵∠EPF=90°,∴∠APE+∠GPF=90°,∴∠AEP=∠GPF,∴△APE∽△GPF,∴===2,∴Rt△EPF中,tan∠PEF==2,∴tan∠PEF的值不变;②设线段EF的中点为O,连接OP,OB,∵在Rt△EPF中,OP=EF,在Rt△EBF中,OB=EF,∴OP=OB=EF,∴O点在线段BP的垂直平分线上,∴线段EF的中点经过的路线长为O1O2=PC=.。
2012年北京市中考数学模拟试卷(二)2012年北京市中考数学模拟试卷(二)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共l0个小题,每小题3分,共30分)D..4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()8.(3分)(2012•西藏)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=_________.12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为_________.13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=_________.15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是_________.16.(3分)菱形的对角线长分别是6cm和8cm,则菱形的周长是_________.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是_________.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A= _________°.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=2011°,c=﹣(﹣2),求a﹣b+c的值.20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.2012年北京市中考数学模拟试卷(二)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共l0个小题,每小题3分,共30分)D..,故本选项错误;,故本选项正确;4.(3分)(2011•长沙)如图,在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度后的坐标是()6.(3分)(2011•长沙)若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()根据题意得,只要把代入7.(3分)(2011•长沙)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()8.(3分)(2012•西藏)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“美“相对的面上的汉字是()9.(3分)(2011•长沙)谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的()10.(3分)(2011•长沙)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AD=2,BC=4,则梯形的面积为()∴梯形的面积为:二、填空题(本题共8个小题,每小题3分,共24分)11.(3分)(2013•海南)因式分解:a2﹣b2=(a+b)(a﹣b).12.(3分)(2011•盘锦)反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.y=3=y=13.(3分)(2011•长沙)如图,CD是△ABC的外角∠ACE的平分线,AB∥CD,∠ACE=100°,则∠A=50°.ACD=ACD=∠15.(3分)(2011•长沙)在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是3%.解:从中任意抽取一件检验,则抽到不合格产品的概率是16.(3分)菱形的对角线长分别是6cm和8cm,则菱形的周长是20cm.17.(3分)(2011•长沙)已知a﹣3b=3,则8﹣a+3b的值是5.18.(3分)(2011•长沙)如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A= 35°.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)(2011•长沙)已知a=,b=2011°,c=﹣(﹣2),求a﹣b+c的值.b+c=20.(6分)(2011•长沙)解不等式2(x﹣2)≤6﹣3x,并写出它的正整数解.21.(8分)(2011•长沙)“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?22.(8分)(2011•长沙)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.(9分)(2011•长沙)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?.24.(9分)(2011•长沙)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.8米,引桥水平跨度AC=8米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75.)=6.4EF==5=25.(10分)(2011•长沙)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点.己知函数y=x2﹣2mx﹣2(m+3)(m为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B 左侧),点M在直线y=x﹣10上,当MA+MB最小时,求直线AM的函数解析式.和,﹣′的解析式为的解析式为26.(10分)(2011•长沙)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.(BQ=的坐标为(参与本试卷答题和审题的老师有:leikun;HLing;dbz1018;lbz;yangwy;bjf;冯延鹏;马兴田;sd2011;lk;wangjc3;zcx;王岑;蓝月梦;ZHAOJJ;nhx600;HJJ;xiawei;CJX;zjx111(排名不分先后)菁优网2014年2月27日。
顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。
北京市朝阳区九年级综合练习(一)语文试卷 2008.5第Ⅰ卷(共60分)一、选择题,完成第1—5题。
下面各题均有四个选项,其中只有一个符合题意,请将该答案的字母序号填在题干后的括号内。
(共10分)1.下面加点字读音有误的是( )(2分)A. 忌讳.(hu ì) 干涸.(h é) 谆.谆教诲(zh ūn )B. 游弋.(y ì) 自诩.(y ǔ) 言简意赅.(g āi )C. 蹒.跚(pán) 修葺.(q ì) 断壁残垣.(yu án )D. 侥.幸(ji ǎo ) 执拗.(ni ù) 载.歌载舞(z ài )2.根据成语解说,在横线处填写的汉字不正确的是( ) (2分)A .完 归赵蔺相如到秦国献美玉时,见秦王无意给赵国城池,便派人把美玉完好无损地送回赵国。
比喻将原物完好无损地归还原主。
横线处应填“璧”字。
B .守 待兔一农夫见一只兔子撞在树桩上死了,便捡回家。
以后他便每天守着树桩,希望再捡到兔子。
比喻心存侥幸,不劳而获。
横线处应填“株”字。
C .闻鸡起东晋时,祖逖和刘琨互相勉励,立志为国效力,半夜听到鸡鸣就起床练剑。
形容有志之士及时发奋,刻苦自励。
横线处应填“武”字。
D.破沉舟项羽跟秦兵打仗,过河后把锅都打破,船都沉弃,营房烧毁,表示不再回来。
现比喻下决心,不顾一切干到底。
横线处应填“釜”字。
3.下面文字是对“微笑北京”主题活动的介绍。
在横线处填入恰当的词语,正确的是()(2分)在开展“微笑北京”主题活动中,北京团市委推出了佩戴奥运志愿五色“微笑圈”的活动。
随着红、黑、绿、黄、蓝五色“微笑圈”越来越为人们所熟知并佩戴,整个活动的知晓率和参与率都在不断上升。
志愿服务奥运也是我们中学生的责任,我们将用微笑迎接八方来客。
A. 首当其冲B.不言而喻C. 义不容辞D.当之无愧4.填入下列文字横线处的语句,与上文衔接最恰当的是()(2分)精读之外,还需要略读。
2012-2013学年北京市朝阳区九年级综合练习(一)数 学 试 卷 2013.5一、选择题(本题共32分,每小题4分) 1.-3的倒数是( )A .13 B .13- C . 3 D .-3 2.“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示,中国每年浪费食物总量折合为粮食大约是200000000人一年的口粮.将200000000用科学记数法表示为 A .8210⨯ B .9210⨯ C .90.210⨯ D .72010⨯3. 若一个正多边形的一个外角是72°,则这个正多边形的边数是( )A .10 B .9 C .8 D .5 4.如图,AB ∥CD ,E 是AB 上一点,EF 平分∠BEC 交CD 于点F ,若∠BEF =70°,则∠C 的度数是( )A .70° B .55° C .45° D .40°5.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数大于4的概率为( )A .61 B .31 C .41 D .216.把方程2630x x ++=化成()2x n m +=的形式,正确的结果为A .()236x += B .()236x -= C .()2312x += D .()2633x +=7.某校春季运动会上,小刚和其他16名同学参加了百米预赛,成绩各不相同,小刚已经知道了自己的成绩,如果只取前8名参加决赛,他想知道自己能否进入决赛,还需要知道所有参加预赛同学成绩的 A . 平均数 B . 众数 C . 中位数 D . 方差8.如图,将一张三角形纸片ABC 折叠,使点A 落在BC 边上,折痕EF ∥BC ,得到△EFG ;再继续将纸片沿△BEG 的对称轴EM 折叠,依照上述做法,再将△CFG 折叠,最终得到矩形EMNF ,折叠后的△EMG 和△FNG 的面积分别为1和2,则△ABC 的面积为A . 6B . 9C . 12D . 18 二、填空题(本题共16分,每小题4分)9.在函数12y x =+中,自变量x 的取值范围是 .10.分解因式:3m m -= .11.如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,AB =32,∠B =30°,则△AOC 的周长为 .12. 在平面直角坐标系xOy 中,动点P 从原点O 出发,每次向上平移1个单位长度或向右平移2个单位长度,在上一次平移的基础上进行下一次平移.例如第1次平移后可能到达的点是(0,1)、(2,0),第2次平移后可能到达的点是(0,2)、(2,1)、(4,0),第3次平移后可能到达的点是(0,3)、(2,2)、(4,1)、(6,0),依此类推…….我们记第1次平移后可能到达的所有点的横、纵坐标之和为l 1,l 1=3;第2次平移后可能到达的所有点的横、纵坐标之和为l 2,l 2=9;第3次平移后可能到达的所有点的横、纵坐标之和为l 3,l 3=18;按照这样的规律,l 4= ; l n = (用含n 的式子表示,n 是正整数). 三、解答题(本题共30分,每小题5分) 13.计算:()0223tan 602013--︒+.14.求不等式13(1)x x +>-的非负整数解.15.已知2270x x --=,求2(2)(3)(3)x x x -++-的值. 16.已知:如图,OP 平分∠MON ,点A 、B 分别在OP 、ON 上,且OA =OB ,点C 、D 分别在OM 、OP 上,且∠CAP =∠DBN .求证:AC =BD .17.如图,在平面直角坐标系xOy 中,一次函数y = -x 的图象 与反比例函数()0ky x x=<的图象相交于点()4A m -,. (1)求反比例函数ky x=的解析式; (2)若点P 在x 轴上,AP =5,直接写出点P 的坐标.18.北京地铁6号线正式运营后,家住地铁6号线附近的小李将上班方式由自驾车改为了乘坐地铁,这样他从家到达上班地点的时间缩短了0.3小时.已知他从家到达上班地点,自驾车时要走的路程为17.5千米,而改乘地铁后只需走15千米,并且他自驾车平均每小时走的路程是乘坐地铁平均每小时所走路程的23.小李自驾车从家到达上班地点所用的时间是多少小时? 四、解答题(本题共20分,每小题5分)19. 如图,在四边形ABCD 中,∠D =90°,∠B =60°,AD =6,AB =3, AB ⊥AC ,在CD 上选取一点E ,连接AE ,将△ADE 沿AE 翻折,使点 D 落在AC 上的点F 处. 求(1)CD 的长; (2)DE 的长.20. 如图,⊙O 是△ABC 是的外接圆,BC 为⊙O 直径,作∠CAD =∠B ,且点D 在BC 的延长线上.(1)求证:直线AD 是⊙O 的切线;(2)若sin ∠CAD=4,⊙O 的半径为8,求CD 长.21. “2012年度中国十大科普事件”今年4月份揭晓,“PM2.5被写入‘国标’,大气环境质量广受瞩目”名列榜首.由此可见,公众对于大气环境质量越来越关注,某市对该市市民进行一项调查,以了解PM2.5浓度升高时对人们户外活动是否有影响,并制作了统计图表的一部分如下:(1)结合上述统计图表可得:p = ,m = ; (2)根据以上信息,请直接补全条形统计图;(3)若该市约400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.(说明:“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物)22.阅读下面材料:小雨遇到这样一个问题:如图1,直线l 1∥l 2∥l 3 ,l 1与l 2之间的距离是1,l 2与l 3之间的距离是2,B PM 2.5浓度升高时对于户外活动 公众的态度的扇形统计图2%试画出一个等腰直角三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并求出所画等腰直角三角形ABC 的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l 1任取一点A ,作AD ⊥l 2于点D ,作∠DAH =90°,在AH 上截取AE =AD ,过点E 作EB ⊥AE 交l 3于点B ,连接AB ,作∠BAC =90°,交直线l 2于点C ,连接BC ,即可得到等腰直角三角形ABC .请你回答:图2中等腰直角三角形ABC 的面积等于 . 参考小雨同学的方法,解决下列问题:如图3,直线l 1∥l 2∥l 3, l 1与l 2之间的距离是2,l 2与l 3之间的距离是1,试画出一个等边三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并直接写出所画等边三角形ABC 的面积(保留画图痕迹).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.二次函数2134y x x n =++-的图象与x 轴只有一个交点;另一个二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交于两点,这两个交点的横坐标都是整数,且m 是小于5的整数.求(1)n 的值;(2)二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交点的坐标.24.在Rt △ABC 中,∠A =90°,D 、E 分别为AB 、AC 上的点.(1)如图1,CE =AB ,BD =AE ,过点C 作CF ∥EB ,且CF =EB ,连接DF 交EB 于点G ,连接BF ,请你直接写出EBDC 的值; (2)如图2,CE =kAB ,BD =kAE ,12EB DC =,求k 的值.l 1l 2l 3图325.如图,二次函数y =ax 2+2ax +4的图象与x 轴交于点A 、B ,与y 轴交于点C ,∠CBO 的正切值是2.(1)求此二次函数的解析式.(2)动直线l 从与直线AC 重合的位置出发,绕点A 顺时针旋转,与直线AB 重合时终止运动,直线l 与BC 交于点D ,P 是线段AD 的中点. ①直接写出点P 所经过的路线长.②点D 与B 、C 不重合时,过点D 作DE ⊥AC 于点E 、作DF ⊥AB 于点F ,连接PE 、PF ,在旋转过程中,∠EPF 的大小是否发生变化?若不变,求∠EPF 的度数;若变化,请说明理由. ③在②的条件下,连接EF ,求EF 的最小值.北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准 2013.5一、选择题(本题共32分,每小题4分)1.B 2.A 3.D 4.D 5.B 6.A 7.C 8.C 二、填空题(本题共16分,每小题4分)9.x ≠-2 10.(1)(1)m m m +- 11.6 12.30;()312n n +(说明:结果正确,不化简整理不扣分).(每空2分) 三、解答题(本题共30分,每小题5分)13原式114=-…4分34=-.……5分 14.解:133x x +>- …1分 24x ->-2x <.…3分∴原等式的非负整数解为1,0.…5分15. 解:原式22449x x x =-++- …2分2245x x =--.……3分∵2270x x --=,∴227x x -=.……4分∴原式22(2)5x x =--9=.…5分16.证明:∵OP 平分∠MON ,∴∠COA =∠DOB .……1分∵∠CAP =∠DBN ,∴CAO DBO ∠=∠.……2分∵OA =OB ,………3分∴COA ∆≌DOB ∆. ……4分∴AC =BD . ……5分17.(1)解:把()4A m -,代入y = -x ,得m =4.…1分 ∴()44A -,. ………2分把()44A -,代入k y x =,得k = -16.∴反比例函数解析式为16y x=-. ……3分 (2)(-7,0)或(-1,0).…5分18. 解:设小李自驾车从家到达上班地点所用的时间是x 小时…1分由题意,得 17.51520.33x x =⨯-.…2分解方程,得 x =0.7.…3分经检验,x =0.7是原方程的解,且符合题意.……4分答:小李自驾车从家到达上班地点所用的时间是0.7小时.……5分 四、解答题(本题共20分,题每小题5分)19.解:(1)∵AB ⊥AC ,∴∠BAC =90°.∵∠B =60°,AB,∴AC =10.…1分∵∠D =90°,AD =6, ∴CD =8. ………2分(2)由题意,得∠AFE =∠D=90°,AF=AD =6, EF=DE .∴∠EFC =90°, ∴FC =4.…3分设DE =x ,则EF=x ,CE=8-x . 在Rt △EFC 中,由勾股定理,得 2224(8)x x +=-.……4分解得x =3.所以DE =3.…5分20.(1)证明:连接OA .∵BC 为⊙O 的直径,∴∠BAC =90°.………1分∴∠B +∠ACB∵OA=OC ,∴∠OAC =∠OCA .∵∠CAD =∠B ,∴∠CAD +∠OAC =90°.即∠OAD =90°.∴OA ⊥AD .∴AD 是⊙O 的切线.………2分(2) 解:过点C 作CE ⊥AD 于点E .∵∠CAD =∠B ,∴sinB =sin ∠CAD =4.……3∵⊙O 的半径为8,∴BC=16. ∴AC =sin BC B ⋅= ∴在Rt △ACE 中,CE=sin AC CAD ⋅∠=2.…4分 ∵CE ⊥AD , ∴∠CED =∠OAD =90°. ∴CE ∥OA . ∴△CED ∽△OAD .∴CD CE OD OA =.设CD =x ,则OD =x +8.即8x x =+5分21.解:(1)30%,20%; ………………………2分 (2)如图;………………………………4分(3)400×20%=80(万人). …………5分22. 解: 5;………2分 如图; ……3分 …5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵2134y x x n =++-的图象与x 轴只有一个交点,∴令10y =,即2304x x n ++-=.………1分123B∴131404n ⎛⎫∆=--= ⎪⎝⎭.解得n =1.……2分 (2)由(1)知,()2222146y x m x m m =--+-+.∵()2222146y x m x m m =--+-+的图象与x轴有两个交点,∴[]2222(1)4(46)m m m ∆=----+820m =-.∵20∆>,∴52m >.……3分 又∵5m <且m 是整数,∴m =4或3.…5分当m =4时,2266y x x =-+的图象与x 轴的交点的横坐标不是整数;当m =3时,2243y x x =-+,令20y =,即2430x x -+=,解得11x =,23x =.综上所述,交点坐标为(1,0),(3,0).…7分24. 解:(1)EB DC =……2分 (2)过点C 作CF ∥EB 且CF =EB ,连接DF 交EB 于点G , 连接BF .∴四边形EBFC 是平行四边形.…3分∴CE ∥BF 且CE =BF .∴∠ABF =∠A =90°.∵BF =CE =kAB .∴BF k AB =.∵BD =kAE ,∴BDk AE=.……4分 ∴BF BD AB AE =.∴DBF ∆∽EAB ∆……5分∴DFk BE=,∠GDB=∠AEB .∴∠DGB =∠A =90°. ∴∠GFC =∠BGF =90°.∵12CF EB DCDC==.∴DF DF EB CF==∴k……7分25. 解:(1)根据题意,C (0,4).∴OC =4.∵tan ∠CBO =2,∴OB =2.∴B (2,0).…………1分∴ 0444a a =++.∴12a =-. ∴二次函数的解析式为2142y x x =--+.………2分 (2) ①点P……………………………………………3分 ②∠EPF 的大小不发生改变.………………………………………………………4分 由2142y x x =--+可得,A (-4,0). ∴OA = OC .∴△AOC 是等腰直角三角形. ∴∠CAO =45°.∵DE ⊥AC , DF ⊥AB , ∴∠AED = ∠AFD =90°. ∵点P 是线段AD 的中点,B∴PE= PF =12AD= AP.∴∠EPD=2∠EAD,∠FPD=2∠F AD.∴∠EPF =∠EPD+∠FPD =2∠EAD +2∠F AD= 2∠CAO=90°.…………………5分③由②知,△EPF是等腰直角三角形.∴EF.……………………………………………………………6分∴当AD⊥BC时,AD最小,此时EF最小.……………………………………7分在Rt△ABD中,∵tan∠CBO=2,AB=6,∴AD=5.∴EF =5.即此时EF.……………………………………………………8分说明:各解答题其它正确解法请参照给分.。
北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准2012.5一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 ADBDDACC二、填空题 (本题共16分,每小题4分,)9. x ≥4 10. ))((5b a b a m -+ 11. 70° 12. 32,1+n n(每空2分) 三、解答题(本题共30分,每小题5分) 13. 解:原式1223633-+⨯-= ……………………………………………………4分1=. …………………………………………………………………………5分 14. 解:x x 5322<+-. …………………………………………………………………2分13-<-x . …………………………………………………………………3分∴31>x . ……………………………………………………………………4分 这个不等式的解集在数轴上表示为:……………………5分15. 证明:∵C 是AE 的中点,∴AC =CE . …………………………………………………………………………1分 ∵BC∥D E ,∴∠ACB=∠E . ……………………………………………………………………2分 在△ABC 和△CDE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE AC E ACB D B , ∴△ABC ≌△CDE . ………………………………………………………………4分 ∴ AB =CD . ………………………………………………………………………5分16. 解: )1(3)1()2(422---++x x x x331284222+-+-++=x x x x x4622++=x x ………………………………………………………………………3分4)3(22++=x x .∵0132=-+x x ,∴132=+x x . (4)分∴原式=6. ……………………………………………………………………………5分17. 解:(1)∵PN 垂直x 轴于点N ,PM 垂直y 轴于点M ,矩形OMPN 的面积为2 ,且ON =1,∴PN =2.∴点P 的坐标为(1,2). ………………………1分 ∵反比例函数ky x=(x >0)的图象、一次函数 y x b =+的图象都经过点P ,由12k=,b +=12得2=k ,1=b . ∴反比例函数为xy 2=,………………………………………………………2分一次函数为1+=x y . ………………………………………………………3分(2)Q 1(0,1),Q 2(0,-1). ……………………………………………………5分18. 解:∵四边形ABCD 是平行四边形,∴421===AC CO AO ,BO DO =. ∵△EAC 是等边三角形,∴8==AC EA ,EO ⊥AC . ………………………………………………………2分 在Rt△ABO 中,322=-=AO AB BO .∴DO =BO =3. ………………………………………………………………………3分在Rt△EAO 中,3422=-=AO EA EO . …………………………………4分∴334-=-=DO EO ED . (5)分四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分) 19. 解:设缩短发车间隔前平均每分钟运送乘客x 人. ……………………………………1分根据题意,得xx 128005014400=+, …………………………………………………………………3分解得400=x . ………………………………………………………………………4分 经检验,400=x 是原方程的解. …………………………………………………5分答:缩短发车间隔前平均每分钟运送乘客400人.20. (1)证明:∵D A=DB ,∴∠DAB=∠DBA . 又∵∠C =∠DBC ,∴∠DBA ﹢∠DBC =︒=︒⨯9018021. ∴AB ⊥BC .又∵AB 是O ⊙的直径,∴BC 是O ⊙的切线. ………………………………………………………2分(2)解:如图,连接BE ,∵AB 是O ⊙的直径,∴∠AEB =90°. ∴∠EBC +∠C =90°. ∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠C =∠ABE .又∵∠AFE =∠ABE , ∴∠AFE =∠C .∴sin ∠AFE =sin ∠ABE =sin C . ∴sin ∠AFE =53. …………………………………………………………………3分连接BF ,∴︒=∠90AFB . 在Rt△ABE 中,25sin =∠=ABEAEAB . ……………………………………4分∵AF =BF ,∴5==BF AF . (5)分21. 解:(1)① 0.15%)4.31(5.14≈+⨯, ………………………………………………2分即2010年北京市人均绿地面积约为15.0平方米.②……………………………………3分(2)675300406544936251100=⨯⨯+⨯+⨯+⨯+⨯+⨯. …………………5分 估计她所在学校的300名同学在2011年共植树675棵.22. 解:(1)x y 6.01=. ………………………………………………………………………1分x x y 2.22.022+-= (3)15.315.014.513.612.618人均公共绿地面积(m 2)1512963020072008200920102011年份FEO DBCA(2))2.22.0()10(6.02t t t W +-+-=,66.12.02++-=t t W (4)分即2.9)4(2.02+--=t W .所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元. …………………………………………………6分五、解答题(本题共21分,第23题6分,第24题8分,第25题7分)23. 解:(1)22=BD . ……………………………………………………………………2分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE ,∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………3分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………4分 作BG ⊥AD 于点G , ∴在Rt△BDG 中, 2=BG . ……………………………………………5分∴在Rt△ABG 中,22=AB . ……………………………………………6分FGEDABC24. 解:(1)∵32++=bx ax y 过点M 、N (2,-5),6=MN ,由题意,得M (4-,5-). ∴⎩⎨⎧-=+--=++.53416,5324b a b a解得 ⎩⎨⎧-=-=.2,1b a∴此抛物线的解析式为322+--=x x y . …………………………………2分 (2)设抛物线的对称轴1-=x 交MN 于点G ,若△DMN 为直角三角形,则32121===MN GD GD . ∴D 1(1-,2-),2D (1-,8-). (4)分直线MD 1为1-=x y ,直线2MD 为9--=x y . 将P (x ,322+--x x )分别代入直线MD 1,2MD 的解析式,得1322-=+--x x x ①,9322--=+--x x x ②. 解①得 11=x ,42-=x (舍),∴1P (1,0). …………………………………5分 解②得 33=x ,44-=x (舍),∴2P (3,-12). ……………………………6分 (3)设存在点Q (x ,322+--x x ),使得∠QMN =∠CNM .① 若点Q 在MN 上方,过点Q 作QH ⊥MN ,交MN 于点H ,则4tan =∠=CNM MHQH. 即)(445322+=++--x x x .解得21-=x ,42-=x (舍).∴1Q (2-,3). ……………………………7分 ② 若点Q 在MN 下方,同理可得2Q (6,45-). …………………8分xy P 2D 2D 1G MNCO P 1x y HQMNC O25. 解:(1)在矩形ABCD 中,90A D ∠=∠=︒,AP =1,CD =AB =2,∴PB= 5,90ABP APB ∠+∠=︒. ∵90BPC ∠=︒,∴90APB DPC ∠+∠=︒. ∴ABP DPC ∠=∠. ∴ △ABP ∽△DPC .∴AP PBCD PC=,即152PC =. ∴PC=25.……………………………………………………………………2分 (2)① ∠PEF 的大小不变.理由:过点F 作FG ⊥AD 于点G . ∴四边形ABFG 是矩形. ∴90A AGF ∠=∠=︒.∴GF=AB=2,90AEP APE ∠+∠=︒.∵90EPF ∠=︒,∴90APE GPF ∠+∠=︒.∴AEP GPF ∠=∠.∴ △APE ∽△GFP . …………………………………………………………4分 ∴221PF GF PE AP ===. ∴在Rt△EPF 中,tan∠PEF=2PFPE=.……………………………………5分即tan∠PEF 的值不变.∴∠PEF 的大小不变.…………………………………………………………6分② 5. (7)分G F P D C A B E P DC(F)A B(E)。
1.生 3. 须 知 1. 2. 3. 4. 5. 6. 7. 8. 2012年北京市朝阳区初三一模试卷数学本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟.在试卷和答题纸上认真填写学校名称、班级和姓名.试题答案一律填涂或书写在答题纸上,在试卷上作答无效. 在答题纸上,作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 考试结束,请将本试卷、答题纸和草稿纸一并交回. 、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个计算:2 ,9 =() A. 1 B . 3 我市深入实施环境污染整治, 某经济开发区的 吨.将167000用科学记数法表示为() A. 167 103 B . 16.7 104 已知,如图, A. 40 因式分解 A. x C. 3 D. 5 40家化工企业中已关停、整改 C. 1.67 105 D. 0.167 是符合题意的. 32家,每年排放的污水减少了 167000106AD 与BC 相交于点 B . 50° O, AB// CD 如果/ B = 20°,/ D = 40°,那么/C. BOD 为()60°D. 70° 9的结果是(B . xC . D. x 10 如图,是由一些相同的小正方体搭成的几何体的三视图, A. 2个 B . 3个 C . 搭成这个几何体的小正方体的个数有 4个 D. 6个 已知抛一枚均匀硬币正面朝上的概率为A. B. C. D. 1 ,下列说法正确的是() 2次正面朝上 连续抛一枚均匀硬币 2次必有连续抛一枚均匀硬币 10次都可能正面朝上 大量反复抛一枚均匀硬币,平均每 100次出现下面朝上50次 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 如图,AB 是O O 的直径,AB= 4, AC 是弦,AC= 2 3 , / AOC 为() A. 120° B. 130° C. 140° 如图,在△ ABC 中,/ ACB= 90°, AC= BC= 2. E 、 EH L AB 于点H,设AE= x , GH h y ,下面能够反映 D F 分别是射线AC CB 上的动点,且 y 与x 之间函数关系的图象是() 150°AE= BF EF 与AB 交于点G每小题4分)二、填空题(本题共16分,护―3自变量的取值范围是 _____________ .k点P 在双曲线y — (k 0)上,点P (1,2)与点P 关于y 轴对称,则此双曲线的解析式为x11 .如图,线分别与边 AB, AC 交于点M N 若OM MN 则点M 的坐标为12.如图,点 A , A, A, A,…,A 在射线 OA 上,点 B , R, B ,…,B —1 在射线 OB 上,且 AB // A 2B 2// AB ?// …// A n —1B n —1,AB // AE 2// AiB? / …// A>E n —1, △ A A 2B1 ,△ A 2A 3B 2,…,△ A —1AB —1 为阴影三角形,若△ ABB ,A ABB 3 的面积分别 为1、4,则厶AAB 的面积为 ________________ ;面积小于201115. 已知:如图, A 点坐标为 3, 0 , B 点坐标为0, 3 .2(1) 求过A , B 两点的直线解析式; (2) 过B 点作直线BP 与x 轴交于点P ,且使OP 2OA ,求 ABP 的面积.(2)解方程组x 2y 3x 2y9.函数y10.如图, 在平面直角坐标系中,等边三角形ABC 的顶点B, C 的坐标分别为(1,0),(3,0),过坐标原点 O 的一条直的阴影三角形共有、解答题(本题共30分,每小题5分)(⑹.13.计算:2 112 4si n60个.16. 如图,分别以Rt △ ABC勺直角边AC及斜边AB向外作等边△ ACD等边△ ABE已知/ BA& 30o, EFl AB,垂足为F,连结DF.(1)求证:AC= EF;(2)求证:四边形ADFE1平行四边形.17 .先化简: x2x 3 —3i(i 3);若结果等于2,求出相应x的值. 4x 9 2 2x 3 318.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?四、解答题(本题共20分,每小题19 .某批发商以每件50元的价格件T恤.第一个月以单价80 售出了200件;第二个月如果变,预计仍可售出200件,批加销售量,决定降价销售,根查,单价每降低1元,可多售件,但最低单位应高于购进的5分)购进800元销售,单价不发商为增据市场调出10价格;第A4 ' 血窗书(制)二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元(1)填表(不需要化简)时间第一个月第二个月清仓时单价(元)80▲40销售量(件)200▲▲(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCDh AD/ BC AD= AB= CD= 2,/ C= 60°, M是BC的中点.(1)求证:△ MD(是等边三角形;(2)将厶MD(绕点M旋转,当MD即MD )与AB交于一点E, M(C即MC )同时与AD交于一点F时,点E, F和点A构成厶AEF试探究△ AEF的周长是否存在最小值•如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.21. 如图,已知△ ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为弧CF的中点,连接BE交AC于点M,AD ABC的角平分线,且AD BE,垂足为点H .(1)求证:AB是半圆O的切线;(2)若AB 3,BC 4,求BE 的长.22.已知:如图1,矩形ABCDK AB= 6,BC= 8,E、F、G H分别是AB BC CD DA四条边上的点(且不与各边顶点重合),设m^ A聊BO CDF DA探索m的取值范围.(1)__________________________________________________________________ 如图2,当E、F、G H分别是AB BC CD DA四边中点时,m= ____________________________________________________________(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图1中补全小贝同学翻折后的图形;②m的取值范围是______________ .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知一元二次方程 x + ax + a — 2= 0.(1) 求证:不论a 为何实数,此方程总有两个不相等的实数根;(2) 设a v 0,当二次函数y = x 2+ ax + a — 2的图象与x 轴的两个交点的距离为时,求出此二次函数的解析式; (3)在(2)的条件下,若此二次函数图象与 x 轴交于A B 两点,在函数图象上是否存在点P,使得△ PAB 的面积为 色丄3,2 若存在求出P 点坐标,若不存在请说明理由.24. 如图,在△ ABC 中,点 D 是 BC 上一点,/ B =Z DA = 45° (1) 如图1,当/ C = 45。
2012年初中毕业数学中考模拟试题(五)(满分120分)学校 班别 姓名 得分 一.选择题:(本大题共12小题,每小题3分,共36分) 1. |-2012|的值是 A .2012 B .0 C .1 D .-1 2.下列四个几何体中,主视图、左视图、俯视图完全相同的是 A .圆锥 B .圆柱 C .球 D .三棱柱 3.以下图形中,既是轴对称图形,又是中心对称图形的是A .等边三角形B .矩形C .等腰梯形D .平行四边形 4.如图所示,在菱形ABCD 中,两条对角线AC =6,BD =8,则此菱形的边长为A .5B .6C .8D .105.下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤6.出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有A .1个B .2个C .3个D .4个7.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是A .38B .52C .66D .748.六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( )9.从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )0 2 8 4 2 4 6 22 4 6 844AB CD(第4题) ABCD图9A .41B .21C .43D .110.方程23+x =11+x 的解为( )A .x =54B .x = -21 C .x =-2 D .无解11.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是A .12B .2 C.2 D.512.如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是( )A .2.5B .3C .4D .5 二、填空题(本大题共6小题,每小题3分,共18分) 13. 4的算术平方根是 .14.从26个英文字母中任意选一个,是C 或D 的概率是 。
北京市朝阳区九年级综合练习(一)数 学 试 卷 2012.5学校 姓名 准考证号 铅笔作答,其它试题用黑色字迹签字笔作答回一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.21的相反数是 A.21- B .21C .2D .-2 2.据报道,2011年北京市户籍人口中,60岁以上的老人有2460000人,预计未来五年北京人口“老龄化”还将提速.将2460000用科学记数法表示为 A .0.25×106 B .24.6×105 C .2.46×105 D .2.46×1063.在ABC △中,280A B ∠=∠=,则C ∠等于 A. 40° B. 60°C. 80°D. 120°4.若分式392--x x 的值为零,则x 的取值为A. 3≠xB. 3-≠xC. 3=xD. 3-=x 5.下列图形中,既是中心对称图形又是轴对称图形的是A.角B.等边三角形C. 平行四边形D. 圆6.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里摸出1个球,则摸出黄球的概率是 A.41 B. 31 C. 21 D. 43 7.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:这此测试成绩的中位数和众数分别为A. 47, 49B. 47.5, 49C. 48, 49D. 48, 508.已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是x二、填空题(本题共16分,每小题4分) 9.函数4-=x y 中,自变量x 的取值范围是___.10.分解因式:2255ma mb -=___.11.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠B =20°,则∠ADC 的度数为 . 12.如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分) 13.计算:01)22()21(60sin 627--+--.14.解不等式312+-)(x <x 5,并把它的解集在数轴上表示出来. 15.已知:如图,C 是AE 的中点,∠B=∠D ,BC ∥DE .16.已知0132=-+x x ,求)1(3)1()2(422---++x x x x 的值.17.如图,P 是反比例函数ky x=(x >0)的图象上的一点,P N 垂直x 轴于点N ,P M 垂直y 轴于点M ,矩形OMPN 的面积为2,且ON =1,一次函数y x b =+的图象经过点P . (1)求该反比例函数和一次函数的解析式;(2)设直线y x b =+与x 轴的交点为A ,点Q 在y 轴上,当△QOA 的面积等于矩形OMPN 的面积的41时,直接写出点Q 的坐标.18.如图,在□A B C D 中,对角线A C 、B D 相交于点O ,点E 在B D 的延长线上,且△E A C 是等边三角形,若AC =8,AB =5,求ED 的长.四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分)19.列方程解应用题:为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?20.如图,在△ABC 中,点D 在AC 上,D A=DB ,∠C =∠DBC ,以AB 为直径的O ⊙交AC 于点E ,F是O ⊙上的点,且AF =BF . (1)求证:B C 是O ⊙的切线; (2)若sin C =53,AE =23,求sin F 的值和AF 的长. CBF2-1-2121. 为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源情况的相关数据,绘制了如下统计图(不完整):(1)请根据以上信息解答下列问题:① 2010年北京市人均公共绿地面积是多少平方米(精确到0.1)? ② 补全条形统计图;(2)小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人均公共绿地面积做贡献. 她对所在班级的40名同学2011年参与植树的情况做了调查,并根如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2011年共植树多少棵.22. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y 1(千元)与进货量x (吨)之间的函数kx y =1的图象如图①所示,乙种蔬菜的销售利润y 2(千元)与进货量x (吨)之间的函数bx ax y +=22的图象如图②所示. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t 吨,写出这两种蔬菜所获得的销售利润之和W (千元)与t (吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?图① 图②北京市2007-2011年人均公共绿地面积年增长率统计图y (万元)(吨)Oy (千元) 北京市2007-2011年 人均公共绿地面积统计图人均公共绿地面积(m 2五、解答题(本题共21分,第23题6分,第24题8分,第25题7分) 23. 阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长. 小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题 得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.图① 图②24. 在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点N (2,-5),过点N 作x 轴的平行线交此抛物线左侧于点M ,MN =6. (1)求此抛物线的解析式;(2)点P (x ,y )为此抛物线上一动点,连接MP 交此抛物线的对称轴于点D ,当△DMN 为直角三角形时,求点P 的坐标;(3)设此抛物线与y 轴交于点C ,在此抛物线上是否存在点Q ,使∠QMN =∠CNM ?若存在,求出点Q 的坐标;若不存在,说明理由.25. 在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E、F ,连接EF .(1)如图,当点E 与点B重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF 的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF 的中点所经过的路线长.备用图北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准2012.5一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8 答案ADBDDACC二、填空题 (本题共16分,每小题4分,)9. x ≥4 10. ))((5b a b a m -+ 11. 70° 12. 32,1+n n(每空2分) 三、解答题(本题共30分,每小题5分) 13. 解:原式1223633-+⨯-= ……………………………………………………4分 1=. …………………………………………………………………………5分 14. 解:x x 5322<+-. …………………………………………………………………2分13-<-x . ……………………………………………………………………3分∴31>x . ……………………………………………………………………4分 这个不等式的解集在数轴上表示为:……………………5分15. 证明:∵C 是AE 的中点,∴A C =C E . …………………………………………………………………………1分∵BC ∥DE ,∴∠A C B =∠E . ……………………………………………………………………2分 在△ABC 和△CDE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE AC E ACB D B , ∴△A B C ≌△C D E . ………………………………………………………………4分 ∴ AB =CD . ………………………………………………………………………5分16. 解: )1(3)1()2(422---++x x x x331284222+-+-++=x x x x x4622++=x x ………………………………………………………………………3分4)3(22++=x x .∵0132=-+x x ,∴132=+x x . …………………………………………………………………………4分 ∴原式=6. ……………………………………………………………………………5分17. 解:(1)∵PN 垂直x 轴于点N ,PM 垂直y 轴于点M ,矩形OMPN 的面积为2 ,且ON =1, ∴PN =2.∵反比例函数ky x=(x >0)的图象、一次函数 y x b =+的图象都经过点P ,由12k=,b +=12得2=k ,1=b . ∴反比例函数为xy 2=,………………………………………………………2分 一次函数为1+=x y . ………………………………………………………3分(2)Q 1(0,1),Q 2(0,-1). ……………………………………………………5分18. 解:∵四边形ABCD 是平行四边形,∴421===AC CO AO ,BO DO =. ∵△EAC 是等边三角形,∴8==AC EA ,EO ⊥AC . ………………………………………………………2分 在Rt △ABO 中,322=-=AO AB BO .∴DO =BO =3. ………………………………………………………………………3分 在Rt △EAO 中,3422=-=AO EA EO . …………………………………4分∴334-=-=DO EO ED . ……………………………………………………5分四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分)19. 解:设缩短发车间隔前平均每分钟运送乘客x 人. ……………………………………1分根据题意,得xx 128005014400=+, …………………………………………………………………3分解得400=x . ………………………………………………………………………4分 经检验,400=x 是原方程的解. …………………………………………………5分答:缩短发车间隔前平均每分钟运送乘客400人. 20. (1)证明:∵D A=DB ,∴∠DAB=∠DBA . 又∵∠C =∠DBC , ∴∠DBA ﹢∠DBC =︒=︒⨯9018021. ∴AB ⊥BC .又∵AB 是O ⊙的直径,∴BC 是O ⊙的切线. ………………………………………………………2分(2)解:如图,连接BE ,∵AB 是O ⊙的直径, ∴∠AEB =90°. ∴∠EBC +∠C =90°. ∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠C =∠ABE .F∴∠AFE =∠C .∴sin ∠AFE =sin ∠ABE =sin C . ∴sin ∠AFE =53. …………………………………………………………………3分 连接BF , ∴︒=∠90AFB . 在Rt △ABE 中,25sin =∠=ABEAEAB . ……………………………………4分∵AF =BF ,∴5==BF AF . …………………………………………………………………5分21. 解:(1)① 0.15%)4.31(5.14≈+⨯, ………………………………………………2分即2010年北京市人均绿地面积约为15.0平方米.②……………………………………3分(2)675300406544936251100=⨯⨯+⨯+⨯+⨯+⨯+⨯. …………………5分估计她所在学校的300名同学在2011年共植树675棵.22. 解:(1)x y 6.01=. ………………………………………………………………………1分x x y 2.22.022+-=.……………………………………………………………3分(2))2.22.0()10(6.02t t t W +-+-=,66.12.02++-=t t W .…………………………………………………………4分即2.9)4(2.02+--=t W .所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元. …………………………………………………6分五、解答题(本题共21分,第23题6分,第24题8分,第25题7分)23. 解:(1)22=BD . ……………………………………………………………………2分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE ,∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………3分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , 人均公共绿地面积(m 29630在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………4分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………5分∴在Rt △ABG 中,22=AB . ……………………………………………6分24. 解:(1)∵32++=bx ax y 过点M 、N (2,-5),6=MN ,由题意,得M (4-,5-).∴⎩⎨⎧-=+--=++.53416,5324b a b a解得 ⎩⎨⎧-=-=.2,1b a∴此抛物线的解析式为322+--=x x y . …………………………………2分 (2)设抛物线的对称轴1-=x 交MN 于点G ,若△DMN 为直角三角形,则32121===MN GD GD . ∴D 1(1-,2-),2D (1-,8-). ………………………………………4分 直线MD 1为1-=x y ,直线2MD 为9--=x y . 将P (x ,322+--x x )分别代入直线MD 1,2MD 的解析式,得1322-=+--x x x ①,9322--=+--x x x ②. 解①得 11=x ,42-=x (舍),∴1P (1,0). …………………………………5分 解②得 33=x ,44-=x (舍),∴2P (3,-12). ……………………………6分 (3)设存在点Q (x ,322+--x x ),使得∠QMN =∠CNM .① 若点Q 在MN 上方,过点Q 作QH ⊥MN , 交MN 于点H ,则4tan =∠=CNM MHQH. 即)(445322+=++--x x x .解得21-=x ,42-=x (舍).∴1Q (2-,3). ……………………………7分 ② 若点Q 在MN 下方,25. 解:(1)在矩形ABCD 中,90A D ∠=∠=︒,AP =1,CD =AB =2,∴PB=,90ABP APB ∠+∠=︒.∵90BPC ∠=︒,∴90APB DPC ∠+∠=︒. ∴ABP DPC ∠=∠. ∴ △ABP ∽△DPC . ∴AP PB CD PC=,即12= ∴PC=.……………………………………………………………………2分 (2)① ∠PEF 的大小不变.理由:过点F 作FG ⊥AD 于点G . ∴四边形ABFG 是矩形.∴90A AGF ∠=∠=︒.∴GF=AB=2,90AEP APE ∠+∠=︒. ∵90EPF ∠=︒,∴90APE GPF ∠+∠=︒. ∴AEP GPF ∠=∠.∴ △APE ∽△GFP . …………………………………………………………4分 ∴221PF GF PE AP ===. ∴在R t △E P F 中,t a n ∠P E F =2PFPE=.……………………………………5分 即tan ∠PEF 的值不变.∴∠PEF 的大小不变.…………………………………………………………6分 ②. …………………………………………………………………………7分。