大学物理学(下)(网络)
- 格式:docx
- 大小:16.65 KB
- 文档页数:1
奥鹏15春北航《大学物理(下)》在线作业1一、单选题(共25 道试题,共100 分。
)1. 把一个静止质量为m0的粒子,由静止加速到υ=0.6c(c为真空中的光速)需作的功等于()A. 0.18m0c*cB. 0.25m0c*cC. 0.36m0c*cD. 1.25m0c*c正确答案:B2. 对于有恒定电流通过的导体,下列说法正确的是[ ]A. 导体内部的电场强度为零B. 导体是个等势体C. 导体两端有恒定的电压存在D. 通过导体某个截面的电量在任何相等的时间内都不相等正确答案:C3. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r < R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:A. B1、B2均与r成正比.B. B1、B2均与r成反比C. B1与r成正比, B2与r成反比D. B1与r成反比, B2与r成正比正确答案:C4. 关于电流,下列说法中正确的是[ ]A. 通过导线截面的电量越多,电流越大B. 电子运动的速率越大,电流越大C. 单位时间内通过导体截面的电量越多,导体中的电流越大D. 因为电流有方向,所以电流是矢量正确答案:C5. 下列关于电阻率的叙述,错误的是[ ]A. 当温度极低时,超导材料的电阻率会突然减小到零B. 常用的导线是用电阻率较小的铝、铜材料做成的C. 材料的电阻率取决于导体的电阻、横截面积和长度D. 材料的电阻率随温度变化而变化正确答案:C6. 两块平行平板,间距为d,平板面积均为S,分别均匀带电+q和-q,若两板的线度远大于d,则它们之间相互作用力的大小为[ ]A. q*q/4πεd*dB. q*q/εSC. q*q/2εSD. ∞正确答案:C7. 关于稳恒磁场的磁场强度H的下列几种说法哪个是正确的?[ ]A. H仅与传导电流有关B. 若闭合曲线内没有包围传导电流,则该曲线上各点的H必为零C. 若闭合曲线上各点的H均为零,则该曲线所包围传导电流的代数和为零D. 以闭合曲线L为边缘的任意曲面的H通量相等正确答案:C8. 如果(1)锗用锑(5价元素),(2)硅用铝(3价元素)掺杂,则分别获得的半导体属于下述类型:A. (1)、(2)均为n 型半导体B. (1)为n 型半导体,(2)为p型半导体。
01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。
02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。
法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。
介绍互感的概念、计算方法以及变压器的工作原理和应用。
分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。
电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。
大学物理(下)1简谐运动:1.1定义:物体运动位移(或角度)符合余弦函数规律,即:;1.2特征:回复力;=令;1.3简谐运动:=1.4描述简谐运动的物理量:I振幅A:物体离开平衡位置时的最大位移;II频率:是单位时间震动所做的次数(周期和频率仅与系统本身的弹性系数和质量有关);III相位:称为初相,相位决定物体的运动状态1.5常数A和的确定:I解析法:当已知t=0时x和v;II旋转矢量法(重点):运用参考圆半径的旋转表示;2单摆和复摆2.1复摆:任意形状的物体挂在光滑水平轴上作微小()的摆动。
I回复力矩;(是物体的转动惯量)II方程:;2.2单摆:单摆只是复摆的特殊情况所以推导方法相同,单摆的惯性矩3求简谐运动周期的方法(1) 建立坐标,取平衡位置为坐标原点;(2) 求振动物体在任一位置所受合力(或合力矩);(3) 根据牛顿第二定律(或转动定律)求出加速度与位移的关系式2a x ω=-4 简谐运动的能量:4.1 简谐运动的动能: ; 4.2 简谐运动的势能: ; 4.3 简谐运动的总能量: ;(说明:①简谐运动强度的标志是A ②振动动能和势能图像的周期为谐振动周期的一半) 5 简谐振动的合成5.1 解析法:①和振幅 ②5.2 旋转矢量法:①和振幅 ②由几何关系求出初相6 波6.1 定义:振动在空间的传播过程;分为横波 纵波;6.2 波传播时的特点:①沿波传播的方向各质点相位依次落后②各质点对应的相位以波速向后传播;6.3 描述波的物理量:I 波长(λ):相位相差2π的两质点之间的距离,反应了波的空间周期性;II 周期(T ):波前进一个波长所需要的时间(常用求解周期的方法 ); III 频率(ν):单位时间内通过某点周期的个数; IV 波速(u ):振动在空间中传播的速度;6.4 波的几何描述I 波线:波的传播方向;II 波面:相同相位的点连成的曲面。
特例—波前(面)6.5 平面简谐波的波动方程I 波方程常见形式一:(波沿x 轴正方向运动,若波沿X 轴反方向运动则把“-”改为“+”) II 波方程常见形式二: π ; III 平面简谐波的速度:; IV 平面简谐波的加速度:V 讨论:i 当x 一定时:某一特定质点---表示在x 处质点的振动方程; ii 当t 一定时: ---表示各点在t 时刻离开平衡位置的位移;iii 当x 和t 都变时:方程表示各个质点在所有位置和时间离开平衡位置时的位移6.6 波的能量I 波的动能等于势能,且在平衡位置时动能和势能最大 II 波的任何一个体积元都在不断地吸收和放出能量,由于是个开放的系统,能量并不守恒;6.7 波的能量密度w (描述能量的空间分布):单位体积中的平均能量密度2212w A ρω=; 6.8 能流P :单位时间内通过某面积S 的能量;平均能流 ;6.9 能流密度I (描述波能量的强弱):通过垂直于波传播方向的平均能流。
大学物理学课后习题答案(下册)习题99.1 选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q 所受到合力为零,则Q 与q 的关系为:()(A )Q=-2 3/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3)一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A )σ/ε0(B)σ/2ε0(C)σ/4ε0(D )σ/8ε0[答案:C](4)在电场中的导体内部的()(A )电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2 填空题(1)在静电场中,电势不变的区域,场强必定为。
[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[ 答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[ 答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比。
[ 答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2 14π0qcos30a 214π(qq3a)23解得(2)与三角形边长无关.q3q3题9.3 图题9.4 图9.4 两小球的质量都是m,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示T sin T cosF emg14π 0 (2lq 2sin ) 2解得q2l sin 4 0 mg t an9.5 根据点电荷场强公式 Eq4 0 r,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?q解: E4 π0rr0 仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为S ,其带电量分别为+ q 和- q .则q 2 这两板之间有相互作用力 f ,有人说 f =4 d 2, 又有人说,因为 f = qE , Eq,所S222d2l l 22以 f =q .试问这两种说法对吗 ?为什么 ? f 到底应等于多少 ?S解: 题中的两种说法均不对. 第一种说法中把两带电板视为点电荷是不对的,第二种说法把q合场强 E看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个S板的电场为 E q,另一板受它的作用力fq q q2,这是两板间相互作用的电场力.2 0 S2 0 S2 0 S9.7 长 l =15.0cm 的直导线 AB 上均匀地分布着线密度=5.0x10 -9C 2 m-1的正电荷.试求:(1) 在导线的延长线上与导线B 端相距a 1 =5.0cm 处 P 点的场强; (2) 在导线的垂直平分线上与导线中点相距d 2 =5.0cm 处 Q 点的场强.解: 如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq 在 P 点产生场强为 dE PE P14 π 0 ( adE Pdxx) 22 dx题 9.7 图4π 02(a x) 2[ 11]4π 0a l al 2 2lπ 0 (4 al 2)用 l15 cm ,5.0 10 9 C m 1, a 12.5 cm 代入得(2) 同理2E P6.74 10 N CdE1 dx 1方向水平向右方向如题 9.7 图所示Q 4 π 0 x2由于对称性dE Qxl0 ,即 E Q 只有 y 分量,2d 220 l 1∵dE Qy1x d2 224 π 0 xd 2x22EdEd 2 2 dxQylQyl4π 2l 2(x23d 2 )22π 0 l4d2以5.0 10 9C cm , l 15 cm , d 2 5 cm 代入得E Q E Qy14.96 102 N C ,方向沿 y 轴正向9.8一个半径为 R 的均匀带电半圆环,电荷线密度为, 求环心处 O 点的场强.解: 如 9.8 图在圆上取 dl Rd题 9.8 图dqdl R d ,它在 O 点产生场强大小为Rd dE24π 0 R方向沿半径向外则dE xdE sinsin d 4π 0 RdE ydE cos()cos d 4π 0 R积 分 E xsin d4π 0 R2π 0 RE ycos d 04π 0 R∴E E x2π R,方向沿x 轴正向.122222 229.9均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上离中心为 r处的场强 E ; (2) 证明:在 rl 处,它相当于点电荷 q 产生的场强 E .解: 如 9.9 图示,正方形一条边上电荷q在 P 点产生物强4dE P 方向如图,大小为dE Pcos 4π 0 1 cos 2 l2r24∵cos 1l22r 2l 2∴dE Pcos 2cos 1ll2l24π0 rr42dE P 在垂直于平面上的分量dE∴dEl dE P cosr4π 0 rlr 2lr2l424题 9.9 图由于对称性, P 点场强沿 OP 方向,大小为E P 4 dE∵4π 0(r 2q 4l4 lr l2l2) r 24222e .e内r 0 内1∴E P4π 0 (r qrl) r 2l4 2方向沿OP9.10(1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1) 由高斯定理 E dS qs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴各面电通量q 6 0(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使q 处于边长2a 的立方体中心,则边长2a 的正方形上电通量q 6 0对于边长 a 的正方形,如果它不包含q 所在的顶点,则qe,24 0如果它包含q 所在顶点则 e 0 .如题9.10 图所示.题9.10 图9.11均匀带电球壳内半径6cm,外半径10cm,电荷体密度为238cm ,12cm 各点的场强.10 5 C2 m-3 求距球心5cm,解: 高斯定理 E dSsq2q , E4πr0 0当r 5 cm时,q 0 , E 0r 8 cm 时,q4π3p (r r 3 ) 34πr 3 r 2∴ E34π 23.48 10 4 N C ,方向沿半径向外.22外3 r 3r 12 cm 时, q4π(r3 r 内)4π 3 外 ∴E33r 内 4.10 10 4N C1沿半径向外 .4π 0 r9.12半径为 R 1 和 R 2 ( R 2 > R 1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 和-, 试求:(1)r < R 1 ; (2) R 1 < r < R 2 ;(3) r > R 2 处各点的场强.解: 高斯定理qE dSs取同轴圆柱形高斯面,侧面积则S E d S S2πrl E 2πrl对(1)r R 1 q 0, E 0(2)R 1rR 2q l∴E2π 0 r沿径向向外(3)∴r R 2q 0E题 9.13 图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强. 解:如题 9.13 图示,两带电平面均匀带电,电荷面密度分别为1 与2 ,两面间,E1( 2 02)n1 面外,E1 (1 2)n20 210 1 2 面外, E(12 02) nn :垂直于两平面由1 面指为2 面.9.14半径为 R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r < R 的 小球体,如题 9.14图所示.试求:两球心 O 与 O 点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14 图 (a) .(1)球在 O 点产生电场球在 O 点产生电场 E 10E 200,4 πr 33OO' 4π 0d∴O 点电场 E 0r33 d3OO ';4 d 3(2)在 O 产生电场 E 103 4π 0dOO '球在 O 产生电场 E 20∴ O 点电场E 0OO'3 0题 9.14 图(a)题 9.14 图 (b)(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如 题 8-13(b) 图)r 则E PO,3r E PO,3 03 3q -8r0 6OO∴E PE PO E PO(r r )3 0 OO' d3 0 3 0∴腔内场强是均匀的.-69.15 一电偶极子由 =1.0 3 10 C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电5-1偶极子放在 1.0 3 10 N2 C的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵ 电偶极子 p 在外场 E 中受力矩Mp E∴M maxpE qlE 代入数字M max1.0 1062 1031.0 1052.0 10 4N m9.16 两点电荷1 =1.5 3 10 C , -82 =3.03 10C ,相距 r 1 =42cm ,要把它们之间的距离变为r 2 =25cm ,需作多少功 ?解: Ar 2 F drr 2 q 1 q 2dr q 1q 2(11 ) r 1r 24π 24π 0 r 1r 26.55 10 J外力需作的功AA 6.55 106J题 9.17 图9.17 如题 9.17图所示,在 A , B 两点处放有电量分别为+q ,- q 的点电荷, AB 间距离为2 R ,现将另一正试验点电荷q 0 从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:如题 9.17 图示U 1 ( q 4π 0 Rq) 0 RU 1 ( q q ) 4π 0 3 R Rq 6 π 0 Rq q4-31-19∴A q 0 (U O U C )q o q 6π 0 R9.18 如题 9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 , 两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dqRd 产生 O 点 d E 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图EdE2Rd cosy24π 0 R[ sin() 4 π 0 R2sin]22 π 0 R(2)AB 电荷在 O 点产生电势,以 UAdx 1B4 π 0 x2 R dxR4π 0 x4π 0ln 2同理 CD 产生半圆环产生U 24 π 0πR 3ln 24π 0 R4 0∴U O U 1 U 2 U 32π 0ln 24 09.19 一电子绕一带均匀电荷的长直导线以23 10 m 2 s 的匀速率作圆周运动. 求带电直线上的线电荷密度. ( 电子质量m 0 =9.1 3 10 kg ,电子电量 e =1.60 3 10 C)2U U -1E 解:设均匀带电直线电荷密度为 ,在电子轨道处场强E2π 0 r电子受力大小F eeEe 2 π 0 r∴e mv2π 0 rr2π 0 得mv 2 12.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为=30kV2 cm,超过这个数值时空气要发生火花放 电. 今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压. 解:平行板电容器内部近似为均匀电场UEd 1.5 104V9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反; (2) 相背的两面上,电荷的面密度总是大小相等而符号相同. 证:如题 9.21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为1 ,2 ,3 ,4题 9.21 图(1) 则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有E d S ( s3) S 0∴2 3说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2212342 02222-77又∵2 3∴1 4说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板 A , B 和 C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22图所示.如果使 A 板带正电 3.0 3 10 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少 ?以地的电势为零,则 A 板的电势是多少 ? 解: 如题 9.22 图示,令 A 板左侧面电荷面密度为1 ,右侧面电荷面密度为2题 9.22 图(1) ∵U AC U AB ,即∴E AC d ACE AB d A B1E AC d AB ∴22E AB且1 +2q A23S d ACq A S2 q A 13S而qCS 2q 32 10 7Cq B2S1 10 C(2)U A E AC d A Cd AC2.3 103V9.23 两个半径分别为R 1 和 R 2 ( R 1 < R 2 ) 的同心薄金属球壳,现给内球壳带电+ q ,试计算:(1) 外球壳上的电荷分布及电势大小;(2) 先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.得, 1A 1R 2解: (1) 内球带电q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq UE drRR4π r 2 4π R22题 9.23 图(2) 外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍为 q .所以球壳电势由内球q 与内表面 q 产生:Uq 4π 0 R 2q 04π 0 R 2(3) 设此时内球壳带电量为q ;则外壳内表面带电量为 q ,外壳外表面带电量为 q q( 电荷守恒 ) ,此时内球壳电势为零,且q' q' U Aq q' 04 π 0 R 14π 0 R 24π 0 R 2得外球壳上电势UqR 1 qR 2q' q'q q'R 1 R 2 qB4π 0 R 24π 0 R 24π 0 R 24π 0 29.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷 + q ,试求:金属球上的感应电荷的电量. d3R 处有解:如题 9.24 图所示,设金属球感应电荷为q ,则球接地时电势 U O由电势叠加原理有:题 9.24 图q' q O4π 0 R4π 0 3 RUF 01223得qq 39.25 有三个大小相同的金属小球,小球1, 2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触 1,2后移去,小球 1,2之间的库仑力;(2) 小球 3依次交替接触小球 1, 2很多次后移去,小球 1, 2之间的库仑力.解: 由题意知q 4π 0r2(1) 小球 3 接触小球 1后,小球 3 和小球 1均带电qq ,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电q3 q 4∴此时小球 1与小球 2 间相互作用力3 q 2F q' q" 8 3 F 4π 0 r4π 0 r8(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .3∴小球 1 、 2 间的作用力 F 22 23 q 3 q 40 4π 0r 299.26 在半径为R 1 的金属球之外包有一层外半径为R 2 的均匀电介质球壳, 介质相对介电常数为r ,金属球带电Q .试求:(1) 电介质内、外的场强; (2) 电介质层内、外的电势; (3) 金属球的电势.解: 利用有介质时的高斯定理D dS qS(1) 介质内(R 1 rR 2 ) 场强DQr4 πr, E 内 Qr ;4 π 0 r r20 F 3r外 2介质外 (r R 2 ) 场强DQr 4πr 3, E 外Qr4 π 0 r(2) 介质外 (rR 2 ) 电势UE drrQ 4 π 0 r介质内(R 1 rR 2 ) 电势UE 内 dr rE 外 drrq1 ( 4π 0 r r 1 Q )R 2 4 π 0 R 2(3) 金属球的电势Q(1 r1 4π 0 r rR 2R 2 U E 内 drE 外 drR 1 R 2R 2 Qdr QdrR4π 0 r R 24 π 0rQ4π 0( 1 r1 rR 1R 29.27 如题 9.27图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题 9.27 图所示,充满电介质部分场强为E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D 11 ,D 22而D 1E 1 , D 20 rE 23)2)2E 1 E 2∴2 U d0 rE 2 r10 E 1题 9.27 图题 9.28 图9.28 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ) , 且 l >> R 2 - R 1 ,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1) 在半径 r 处(R 1 < r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2) 电介质中的总电场能量; (3) 圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面(S)则D d S ( S)2πrlD当 (R 1 r∴R 2 ) 时,q QDQ 2 πrl D 2Q2 (1) 电场能量密度w2 8π2r 2l 2Q2 Q 2dr 薄壳中 dWwd8π2r 2l22πrdrl4π rl(2) 电介质中总电场能量WdWR 2 Q2drQ lnR 2VR 14πrl4πl R 1(3) 电容:∵WQ2C2Q 2 2πl∴C2W ln( R2 / R1 )题9.29 图9.29 如题9.29 图所示,C1 =0.25 F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB .解: 电容C1 上电量Q1 C1U 1电容C2 与C3 并联C23 C2 C3其上电荷∴Q23 Q1Q232C1U 125 50UABC23U 1 U 2C2350(13525)3586 V9.30C1 和C2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) C1 与C2 串联后电容C C1C2200 300 120pF(2) 串联后电压比C1 C2U 1 C2200 300 3U 2 C1,而U 1 U 221000∴U 1600 V , U 2400 V即电容C1 电压超过耐压值会击穿,然后C2 也击穿.9.31半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2 =4.0cmU2222 2和 R 3 =5.0cm ,当内球带电荷 Q =3.0 3 10 C 时,求:(1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量; (3) 此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电Q ,外表面带电 Q(1) 在 rR 1 和 R 2题 9.31 图r R 3 区域在 Rr R 时E 0E Qr 1214π 0 rrR 3 时Qr 24π 0 r∴在 R 1rR 2 区域W 1R 2 1 R 1 2Q( 2 4π 0 r) 24πr drR 2 Q drQ( 1 1 ) R 18π 0 r8π 0 R 1R 2在 rR 3 区域W 1 ( Q) 2 4πr 2drQ 1R 32 0 4π 0 r8π0 R 3∴ 总能量W W 1 W 2Q( 1 1 1 ) 8π 0 R 1R 2R 31.82 10 4J(2) 导体壳接地时,只有R 1rR 2 时 EQr , W 2 04π 0 r2 -83E 3 22312∴W W 1Q21( 8π 0 R 11 ) 1.01 R 210 4 J(3) 电容器电容C2W Q2 4 π 0 /(11 ) R 1R 24.49 10F习 题 1010.1 选择题(1) 对于安培环路定理的理解,正确的是:( A )若环流等于零,则在回路 L 上必定是 H 处处为零; ( B )若环流等于零,则在回路 L 上必定不包围电流;( C )若环流等于零,则在回路L 所包围传导电流的代数和为零;( D )回路 L 上各点的 H 仅与回路 L 包围的电流有关。
习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差;(2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m =∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ(资料素材和资料部分来自网络,供参考。
大学物理学专业《大学物理(下册)》期末考试试卷A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
2、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
3、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
4、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
5、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
6、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。
7、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________8、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr而求得结果;又有人先计算速度和加速度v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d trt r 与误作速度与加速度的模。
大学物理学_(第3版.修订版)_下册_第十一章 电磁感应习题_答案习题1111.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ 感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv vB 0ln 2dr cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba b a Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB -+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtBR B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直 ∴ ⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ abhN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2R IrB μ=∴ 4222002π82R r I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I R rr I r r w W 0204320π16π4d d 2μμπ。
大学本科专业(物理学类-量子信息科学),该专业所学具体内容、发展方向以及就业前景大纲:一、量子信息科学专业概述1.1 定义及相关背景1.2 特点与意义1.3 专业目标及培养方案二、量子信息科学专业具体内容2.1 量子力学基础2.2 量子信息与计算2.3 量子通信与加密2.4 量子控制与测量技术2.5 量子物理实验技术2.6 量子材料与器件技术三、量子信息科学专业发展方向3.1 量子计算与量子模拟3.2 量子通信与量子网络3.3 量子精密测量与量子控制3.4 量子人工智能与量子机器学习3.5 量子材料与器件技术四、量子信息科学专业就业前景4.1 国内外发展现状与趋势4.2 量子信息科学专业毕业生就业情况4.3 主要就业领域与职业选择4.4 量子信息科学专业毕业生职业素质要求4.5 量子信息科学专业毕业生职业发展建议摘要:本文旨在从行业专业角度探讨大学本科专业——物理学类-量子信息科学,该专业所学具体内容、发展方向以及就业前景。
1. 该专业所学具体内容物理学类-量子信息科学专业的核心内容主要包括量子力学、量子信息与量子计算、量子光学等方面的基本理论和应用知识。
具体内容如下:1.1 量子力学量子力学是物理学类-量子信息科学专业的基础课程之一。
量子力学涉及到粒子的波动性、不确定性原理、量子态描述、量子测量等方面的知识。
通过学习量子力学,学生将掌握基本的量子力学原理和理论知识,为进一步学习相关的量子信息与计算课程打下基础。
1.2 量子信息与量子计算量子信息与量子计算是物理学类-量子信息科学专业的核心课程之一。
该课程主要介绍量子信息与计算的基本理论和应用知识,包括量子比特、量子门、量子算法等方面的内容。
通过学习这门课程,学生将掌握量子通信、量子密码等方面的基本知识,为进行相关研究和应用打下基础。
1.3 量子光学量子光学是物理学类-量子信息科学专业的重点课程之一。
该课程主要涉及到光的量子特性、光学干涉、光学相干等方面的知识。
大学物理学(下)期末考试试卷(A)
网络计算机专业专用试卷
备注:请将所有试题(包括填空题)解答在试题纸上。
一、填空题:(44分)
1、描述静电场性质的两个基本物理量是和。
它们的定义式是和。
(6分)
2、静电场的环路定理为,说明静电场是场,磁场中的安培环路定理为,说明磁场是场。
(6分)
3、电场包括由产生的电场和由产生的电场。
(4分)
4、产生动生电动势的非静电力是。
(3分)
5、电荷面密度为σ的真空平行板电容器极板间的电场强度为。
(3分)
6、 +q和-q相距l,则它们连线中点的场强大小为,电势为。
(6分)
??7、如图1所示,B?dl? 。
(3分) l
8、如图2所示,匀强磁场中的载流平面线圈磁矩大小为,方向为;在磁场中所受磁力矩大小为,方向为。
(6分)
9、自感电动势的计算公式为,自感系数的单位为。
(3分)
10、如图3所示,无限长载流直导线在O点处的磁感应强度大小为,方向为。
(4分)
二、计算题:(56分)
1、电荷q均匀分布在半径为R的球体内,求则离球心r(r<R)处的电势。
(12分)
2、求长为L带电量为Q的均匀细棒延长线上与棒的近端相距d处的场强。
(10分)
3、截面半径为R的无限长载流直导线,所载电流I均匀分布于导体截面,
求磁感应强度的分布。
(10分)
4、如图4所示,一长直导线通有电流I1,又在矩形线圈中通以电流I2,电
流与线圈共面,求电流I1的磁场对线圈各边作用的安培力。
(12分)
5、如图5所示,在通有稳恒电流I的长直导线附近有一导体棒ab,二者在
同一平面内且相互垂直,ab长l,a端距直导线的距离为d,当ab沿平行于长直导线的方向以的速度v平移时,棒中的感应电动势多大?哪端电势高?(12分)。