初一下学期数学月考试卷带答案
- 格式:docx
- 大小:38.26 KB
- 文档页数:4
七年级下第一次月考数学试卷(含答案)6一.选择题(共10小题,满分30分,每小题3分)1.(3分)四条直线相交于一点,总共有对顶角()A.8对B.10对C.4对D.12对2.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.(3分)某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4B.8C.12D.164.(3分)如图,∠AOB=50°,CD∥OB交OA于E,则∠AEC的度数为()A.120°B.130°C.140°D.150°5.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定6.(3分)如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠3=180°7.(3分)下列说法:①平方等于其本身的数有0,±1;②32某y3是4次单项式;③将方程第1页共18页=1.2中的分母化为整数,得线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个=12;④平面内有4个点,过每两点画直8.(3分)把图中的一个三角形先横向平移某格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么某+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值9.(3分)学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25°D.65°10.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.12.CD相交于点O,OE⊥AB,O为垂足,(3分)如图,直线AB,∠EOD=26°,则∠AOC=,∠COB=.第2页共18页13.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.14.(3分)如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF=°15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.若∠En=1度,那∠BEC等于度16.(3分)如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC=.第3页共18页三.解答题(共8小题,满分72分)17.(8分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(8分)已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).19.(8分)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA第4页共18页度数;若不存在,说明理由.21.(8分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.22.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)第5页共18页23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠En=α度,那∠BEC等于多少度?(直接写出结论).第6页共18页七年级(下)第一次月考数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:如图所示,,共有12对,故选D.2.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.3.【解答】解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2某8=16对.故选:D.4.【解答】解:∵CD∥OB,∠AOB=50°,∴∠AOB=∠CEO=50°,∵∠AEC+∠CEO=180°,∴∠AEC=180°﹣50°=130°.故选:B.5.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,第7页共18页∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.6.【解答】解:A、∠1=∠2不能判断直线l1∥l2,故此选项错误;B、∠1=∠5不能判断直线l1∥l2,故此选项错误;C、∠3=∠5不能判断直线l1∥l2,故此选项错误;D、∠1+∠3=180°,能判断直线l1∥l2,故此选项正确.故选:D.7.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.【解答】解:(1)当两斜边重合的时候可组成一个矩形,此时某=2,y=3,某+y=5;(2)当两直角边重合时有两种情况,①短边重合,此时某=2,y=3,某+y=5;②长边重合,此时某=2,y=5,某+y=7.综上可得:某+y=5或7.故选:B.9.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.第8页共18页。
七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。
最新】人教版七年级下册数学第一次月考试题及答案七年级第一次月考数学试题一、填空题(每小题2分,共20分)1.如图,若∠1=35°,则∠2=145°,∠3=35°。
2.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,DC/BD=6.4,AD=3.6,AC=6,点A到BC 的距离是2.4,点A,B两点间的距离是8.4.3.把命题“平行于同一条直线的两条直线平行”,改写成“如果两条直线在同一条直线上,那么它们平行”的形式为。
4.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD=50°。
5.如图,已知直线a∥b,∠4=40°,则∠2=140°。
6.如图,直线AB∥CD,EF交AB于点M,MN⊥EF于点M,MN交CD于点N,若∠BME=125°,则∠MND=55°。
7.如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4=100°。
8.如图,AB∥CD,BC∥DE,则∠B与∠D的关系是对应角相等。
9.XXX将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90°。
10.如图,DH∥EG∥BC,且DC∥EF,则图中与∠1相等的角有两个,分别是∠3和∠4.二、单项选择题(每小题3分,共18分)11.下列各图中,∠1和∠2是对顶角的是(B)。
12.如图,点A到直线CD的距离是指哪一条线段的长(D)。
13.下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是(B)。
14.如图,下列条件中能判定AB∥CD的是(C)。
15.在如图所示的长方体中,和棱AB平行的梭有(C)。
16.在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:1=∠2(已知)。
七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:105 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,在中,,点在上,,若,则的度数为( )A.B.C.D.2. 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是( )A.B.C.D.3. 如图,点,分别在和上,,,,则的度数( )△ABC ∠C =90∘D AC DE //AB ∠CDE =165∘∠B 15∘55∘65∘75∘AB //CD ∠BAE=87∘∠DCE=121∘∠E 28∘34∘46∘56∘D E AB AC DE//BC ∠ADE =60∘∠EBC =25∘∠ABEA.B.C.D.4. 如图,是的平分线,交于点,若,则的度数为( )A.B.C. D.5. 如图,直线与相交于点,,若,则 A.B.C.D.25∘30∘45∘35∘AF ∠BAC EF//AC AB E ∠1=35∘∠BEF 35∘60∘70∘80∘l 1l 2O OM ⊥l 1α=44∘β=()56∘46∘45∘44∘△ABC α(<α<)0∘180∘△EBD A6. 如图,将绕点逆时针旋转,得到,若点恰好在的延长线上,则的度数为 A.B.C.D.7. 平移小菱形可以得到美丽的“中国结”图案,下面四个图案是小菱形平移后得到的类似“中国结”的图案,按图中规律,第个图案中,小菱形的个数是( )A.B.C.D. 8.如图是一架婴儿车的示意图,其中,, ,那么的度数为( )A.B.C.D.△ABC B α(<α<)0∘180∘△EBD A ED ∠CAD ()−α90∘α−α180∘2α2080090010001100AB//CD ∠1=110∘∠3=40∘∠280∘90∘100∘70∘卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 把“等角的余角相等”改写成“如果那么”的形式是________,________,该命题是________命题(填“真”或“假”).10. 已知的两边与的两边分别平行,且比的倍少,那么________.11. 如图,直线相交于点,与互为余角,若,则________.12. 如图,将沿方向平移个单位得到,若的周长等于,则四边形的周长等于________.13. 两条平行直线被第三条直线所截,同旁内角的和为________度.14. 如图,在正方形中,,点是边的中点,点是边上一点,连接,若,则线段的长度为________.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )15. 如图,直线与直线相交于,根据下列语句画图、解答.⋯⋯⋯⋯∠A ∠B ∠A ∠B 340∘∠A =AB ,CD O ∠BOD ∠BOE ∠AOC =72∘∠BOE =∘△ABC BC 1△DEF △ABC 10cm ABFD ABCD AB =2E BC F CD AF ∠FAE =∠BAE CF CD AB C (1)PQ //CD AB Q过点作,交于点;过点作,垂足为;若,猜想是多少度?并说明理由. 16.如图,已知,.求证.请将下列证明过程填写完整.证明:∵(已知),∴________________,又∵已知,∴,________,∴________________,∴________.17. 如图,在中,是高,点、、分别在、、上且,试判断与的数量关系,并说明理由.18.如图所示,已知, .若 ,求的度数;判断,的位置关系,并说明理由;若平分,求证:平分 .19. 综合与探究已知,分别为直线,直线上的点,且,点在,之间.如图,求证:;如图,点是上一点,连接,作,若.试探究与的数量关系,并说明理由.在的条件下,作交于点,平分,平分,若(1)P PQ //CD AB Q (2)P PR ⊥CD R (3)∠DCB =120∘∠PQC EF //AD ∠1=∠2∠DGA +∠BAC =180∘EF //AD ∠2=()∠1=∠2()∠1=∠3()AB //()∠DGA +∠BAC =180∘()△ABC CD E F G BC AB AC EF ⊥AB,∠1=∠2∠AGD ∠ACB AE//CF ∠A =∠C (1)∠1=40∘∠2(2)AD BC (3)DA ∠BDF BC ∠EBD M N AB CD AB//CD E AB CD (1)1∠BME +∠DNE =∠MEN (2)2P CD PM MQ//EN ∠QMP =∠BME ∠E ∠AMP (3)(2)NG ⊥CD PM G MP ∠QME NF ∠ENG ∠MGN =170∘∠MFN =,则________.20. 问题:如图,是的平分线,,且.求证:也是的平分线.完成下列推理过程:证明:∵是的平分线,(已知)∴________∵(已知)∴________∴______=______(等量代换),又∵(已知)∴( )(________,∴________∵(等量代换)∴是的平分线(_______)21. 如图,在中,,分别为半径,弦的中点,连接并延长,交过点的切线于点.求证:;若,,求半径的长.∠MGN =170∘∠MFN =BD ∠ABC ED //BC ∠FED =∠BDE EF ∠AED BD ∠ABC ∠ABD =∠DBC ()ED //BC ∠BDE =∠BDC()∠FED =∠BDE //())∠AEF =∠ABD ()∠AEF =∠DEF EF ∠AED ⊙O C D OB AB CD A E (1)AE ⊥CE (2)AE =2–√sin ∠ADE =13⊙O参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】平行线的性质三角形内角和定理【解析】利用平角的定义可得,再根据平行线的性质知,再由内角和定理可得答案.【解答】解:∵,∴.∵,∴,∴.故选.2.【答案】B【考点】平行线的性质【解析】延长交于,依据,=,可得=,再根据三角形外角性质,即可得到=.【解答】解:如图,延长交于,过点作交于,∠ADE =15∘∠A =∠ADE =15∘∠CDE =165∘∠ADE =15∘DE //AB ∠A =∠ADE =15∘∠B =−∠C −∠A =−−180∘180∘90∘15∘=75∘D DC AE F AB //CD ∠BAE 87∘∠CFE 87∘∠E ∠DCE −∠CFE DC AE F C GH//AE AB G∵,,∴,则,又∵,∴.故选.3.【答案】D【考点】平行线的性质【解析】利用平行线性质以及三角形外角性质即可求解.【解答】解:∵,∴,又∵,∴.故选.4.【答案】C【考点】角平分线的定义平行线的性质【解析】根据平行线的性质求出,根据角平分线的定义得出,根据平行线的性质得出,代入求出即可.【解答】AB //CD ∠BAE=87∘∠CFE=87∘∠DCH =∠EFC =87∘∠DCE=121∘∠E=∠HCE =∠DCE −∠DCH =−=121∘87∘34∘B DE//BC ∠DEB =∠EBC =25∘∠ADE =∠ABC =60∘∠ABE =∠ABC −∠EBC =−=60∘25∘35∘D ∠FAC =∠1=35∘∠BAC =2∠FAC =70∘∠BEF =∠BAC EF//AC ∠1=35∘解:∵,,∴.∵是的平分线,∴.∵,∴.故选.5.【答案】B【考点】垂线余角和补角【解析】由题意可得,把代入求解即可.【解答】解:∵,∴.把代入,得.故选.6.【答案】C【考点】多边形的内角和【解析】根据旋转的性质和四边形的内角和是,可以求得的度数,本题得以解决.【解答】解:由题意可得,,,∵,∴,∵,,∴.故选.7.EF//AC ∠1=35∘∠FAC =∠1=35∘AF ∠BAC ∠BAC =2∠FAC =70∘EF//AC ∠BEF =∠BAC =70∘C α+β=90∘α=44∘OM ⊥l 1β++α=90∘180∘α=44∘β=46∘B 360∘∠CAD ∠CBD =α∠ACB =∠EDB ∠EDB +∠ADB =180∘∠ADB +∠ACB =180∘∠ADB +∠DBC +∠BCA +∠CAD =360∘∠CBD =α∠CAD =−α180∘C【答案】A【考点】规律型:图形的变化类【解析】仔细观察图形发现第一个图形有个小菱形;第二个图形有个小菱形;第三个图形有个小菱形;由此规律得到通项公式,然后代入即可求得答案.【解答】解:∵第一个图形有个小菱形;第二个图形有个小菱形;第三个图形有个小菱形;以此类推,第个图形有个小菱形,∴第个图形有个小菱形.故选.8.【答案】D【考点】平行线的性质三角形的外角性质【解析】根据平行线性质求出,根据三角形外角性质得出,代入求出即可.【解答】解:∵,∴,∵,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9.【答案】如果两个角是等角的余角,那么这两个角相等,真2×=2122×=8222×=1832n =202×=2122×=8222×=1832⋯n 2n 2202×=800202A ∠A ∠2=∠1−∠A AB//CD ∠A =∠3=40∘∠1=110∘∠2=∠1−∠A =70∘D命题的组成真命题,假命题【解析】此题暂无解析【解答】解:命题“等角的余角相等”改写成“如果那么”的形式为:如果两个角是等角的余角,那么这两个角相等.这个命题正确,是真命题.故答案为:如果两个角是等角的余角,那么这两个角相等;真.10.【答案】或【考点】平行线的性质【解析】设的度数为,则的度数为,根据两边分别平行的两个角相等或互补得到=或=,再分别解方程,然后计算的值即可.【解答】解:设的度数为,则的度数为,当时,即,解得,所以;当时,即,解得,所以;所以的度数为或.故答案为:或.11.【答案】【考点】对顶角⋯⋯⋯⋯20∘125∘∠B x ∠A 3x −40∘x 3x −40∘x +3x −40∘180∘3x −40∘∠B x ∠A 3x −40∘∠A =∠B x =3x −40∘x =20∘3x −=40∘20∘∠A +∠B =180∘x +3x −=40∘180∘x =55∘3x −=40∘125∘∠A 20∘125∘20∘125∘18角的计算【解析】此题暂无解析【解答】解:∵,∴.∵与互余,∴.故答案为:.12.【答案】【考点】平移的性质【解析】根据平移的性质可得,,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵沿方向平移个单位得到,∴,,∴四边形的周长∵的周长,∴,∴四边形的周长.故答案为:.13.【答案】【考点】平行线的性质【解析】∠AOC =72∘∠BOD =72∘∠BOD ∠BOE ∠BOE =−=90∘72∘18∘1812cmAD =CF =1AC =DF △ABC BC 1△DEF AD =CF =1AC =DF ABFD =AB +(BC +CF)+DF +AD=AB +BC +AC +AD +CF.△ABC =10cm AB +BC +AC =10cm ABFD =10+1+1=12cm 12cm 180根两条直线被第三条直线所截,同旁内角互即可得解.【解答】解:两条直线被第三条直线所截,同旁内角互补,所以同旁内角的和为.故答案为:.14.【答案】【考点】勾股定理平行线的性质三角形中位线定理【解析】由平行线性质,梯形中位线定理得到,设,则,,在直角三角形中,利用勾股定理即可求解.【解答】解:过作交于,则,∴,又,∴,设,则,,在直角三角形中,,解得,∴.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )180∘18012AF =AB +CF CF =x AF =2+x DF =2−x ADF E EM//AB AF M ∠FAE =∠BAE=∠MEA AM =ME =AF 12ME =(AB +CF)12AF =AB +CF CF =x AF =2+x DF =2−x ADF (2+x =+(2−x )222)2x =12CF =121215.【答案】解:如图所示,直线即为所求.如图所示,直线即为所求.猜想.理由如下:∵(已作),∴(两直线平行,同位角相等).∴(邻补角的定义).【考点】平行线的画法经过一点作已知直线的垂线平行线的性质邻补角【解析】(1)过点作,交于点;(2)过点作,垂足为;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:如图所示,直线即为所求.如图所示,直线即为所求.猜想.理由如下:∵(已作),∴(两直线平行,同位角相等).∴(邻补角的定义).16.【答案】,两直线平行,同位角相等,等量代换,,内错角相等,两直线平行,两直线平行,同旁内角互补【考点】平行线的判定与性质(1)PQ (2)PR (3)∠PQC =60∘PQ //CD ∠PQB =∠DCB =120∘∠PQC =−∠PQB =−=180∘180∘120∘60∘P PQ //CD AB Q P PR ⊥CD R (1)PQ (2)PR (3)∠PQC =60∘PQ //CD ∠PQB =∠DCB =120∘∠PQC =−∠PQB =−=180∘180∘120∘60∘∠3DG【解析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:∵,(已知)∴.(两直线平行,同位角相等)又∵,(已知)∴,(等量代换)∴,(内错角相等,两直线平行)∴(两直线平行,同旁内角互补).故答案为:;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补.17.【答案】解: .理由:∵,,∴,∴,∵,∴,∴,∴ .【考点】平行线的判定与性质【解析】此题暂无解析【解答】解: .理由:∵,,∴,∴,∵,∴,∴,∴ .18.【答案】解:,,∵,∴ .解:∵,EF //AD ∠2=∠3∠1=∠2∠1=∠3AB //DG ∠DGA +∠BAC =180∘∠3DG ∠AGD =∠ACB CD ⊥AB EF ⊥AB EF//CD ∠2=∠BCD ∠1=∠2∠1=∠BCD DG//BC ∠AGD =∠ACB ∠AGD =∠ACB CD ⊥AB EF ⊥AB EF//CD ∠2=∠BCD ∠1=∠2∠1=∠BCD DG//BC ∠AGD =∠ACB (1)∵AE//CF ∴∠CDB =∠1=40∘∠CDB +∠2=∠180∘∠2=−∠CDB =−180∘180∘40∘=140∘(2)AE//CF ∴∠A =∠ADF,又∵,,∴ .证明:由得 ,,,,∵平分,,∴,∴平分 .【考点】平行线的性质邻补角平行线的判定与性质角平分线的定义【解析】此题暂无解析【解答】解:,,∵,∴ .解:∵,,又∵,,∴ .证明:由得 ,,,,∵平分,,∴,∴平分 . 19.【答案】证明:如图,过作.∴∠A =∠ADF ∠A =∠C ∴∠ADF =∠C AD//BC (3)(2)AD//BC ∴∠ADB =∠DBC ∵AE//CF ∴∠BDF =∠EBD DA ∠BDF ∴∠ADF =∠ADB =∠BDF 12∠DBC =∠EBD 12BC ∠EBD (1)∵AE//CF ∴∠CDB =∠1=40∘∠CDB +∠2=∠180∘∠2=−∠CDB =−180∘180∘40∘=140∘(2)AE//CF ∴∠A =∠ADF ∠A =∠C ∴∠ADF =∠C AD//BC (3)(2)AD//BC ∴∠ADB =∠DBC ∵AE//CF ∴∠BDF =∠EBD DA ∠BDF ∴∠ADF =∠ADB =∠BDF 12∠DBC =∠EBD 12BC ∠EBD (1)E EG//AB∵,∴,∴.∵,∴.解:.理由:∵,∴.∵,∴.∵,∴,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:如图,过作.∵,∴,∴.∵,∴.解:.理由:∵,∴.∵,∴.∵,∴,∴,∴.提示:在的条件下,.AB//CD EG//CD ∠BME =∠MEG,∠DNE =∠GEN ∠MEN =∠MEG +∠GEN ∠BME +∠DNE =∠MEN (2)∠E =∠AMP AB//CD ∠BMP +∠MPD =,∠MPD =∠AMP180∘MQ//EN ∠QME +∠E =180∘∠QMP =∠BME ∠QME =∠BMP ∠E =∠MPD ∠E =∠AMP 110∘(1)E EG//AB AB//CD EG//CD ∠BME =∠MEG,∠DNE =∠GEN ∠MEN =∠MEG +∠GEN ∠BME +∠DNE =∠MEN (2)∠E =∠AMP AB//CD ∠BMP +∠MPD =,∠MPD =∠AMP180∘MQ//EN ∠QME +∠E =180∘∠QMP =∠BME ∠QME =∠BMP ∠E =∠MPD ∠E =∠AMP (3)(2)∠AMP =∠E ∠QMP =∠BME∵,∴.∵平分,∴.∵,∴.∵,∴,∴.∵,平分,∴,∴.故答案为:.20.【答案】角平分线的定义两直线平行,内错角相等EF //BD,内错角相等,两直线平行两直线平行,同位角相等角平分线定义【考点】平行线的判定与性质【解析】先利用角平分线定义得到,再根据平行线的性质由得,则,接着由可判断,则利用平行线的性质得,,所以,从而得到结论.【解答】证明:∵是的平分线(已知),∴(角平分线定义);∵(已知),∴(两直线平行,内错角相等),∴(等量代换);又∵(已知),∴(内错角相等,两直线平行),∴(两直线平行,同位角相等),∴(等量代换),∴是的平分线(角平分线定义).21.【答案】证明:连接,如图,∠QMP =∠BME ∠AMQ =∠DNE MP ∠QME ∠PMQ =∠PME =∠BME ∠MGN =∠AMP +=90∘170∘∠AMP =∠AMQ +∠QMP =80∘∠AMQ +3∠QMP =180∘∠QMP =∠BME =50∘∠AMQ =∠DNE =30∘NG ⊥CD NF ∠ENG ∠FNG =∠ENF =∠DNE =30∘∠MFN =∠BME +∠FND =+=50∘60∘110∘110∘∠ABD =∠BDE∠ABD =∠CBD ED //BC ∠EDB =∠CBD ∠ABD =∠EDB ∠FED =∠BDE EF //BD ∠EDB =∠DEF ∠ABD =∠AEF ∠AEF =∠DEF BD ∠ABC ∠ABD =∠DBC ED //BC ∠BDE =∠DBC ∠ABD =∠BDE ∠FED =∠BDE EF //BD ∠AEF =∠ABD ∠AEF =∠DEF EF ∠AED (1)OA∵是的切线,∴,∴,∵,分别为半径,弦的中点,∴为的中位线.∴.∴.∴.解:连接,如图,∵,,∴,∴,在中,,∴,∵,∴.在中,,设,则,∴,即,解得,∴,即的半径长为.【考点】解直角三角形切线的性质三角形中位线定理勾股定理平行线的性质AE ⊙O AE ⊥OA ∠OAE=90∘C D OB AB CD △AOB CD //OA ∠E=90∘AE ⊥CE (2)OD AD=BD OA =OB OD ⊥AB ∠ODA=90∘Rt △AED sin ∠ADE ==AE AD 13AD=32–√CD //OA ∠OAD=∠ADE Rt △OAD sin ∠OAD =13OD=x OA=3x AD ==2x (3x −)2x 2−−−−−−−−√2–√2x 2–√=32–√x=32OA=3x =92⊙O 92【解析】(1)连接,如图,利用切线的性质得=,再证明为的中位线得到.则可判断;(2)连接,如图,利用垂径定理得到,再在中利用正弦定义计算出=,接着证明=.从而在中有,设=,则=,利用勾股定理可计算出=,从而得到=,然后解方程求出即可得到的半径长.【解答】证明:连接,如图,∵是的切线,∴,∴,∵,分别为半径,弦的中点,∴为的中位线.∴.∴.∴.解:连接,如图,∵,,∴,∴,在中,,OA ∠OAE 90∘CD △AOB CD //OA AE ⊥CE OD OD ⊥AB Rt △AED AD 32–√∠OAD ∠ADE Rt △OAD sin ∠OAD =13OD x OA 3x AD 2x 2–√2x 2–√32–√x ⊙O (1)OA AE ⊙O AE ⊥OA ∠OAE=90∘C D OB AB CD △AOB CD //OA ∠E=90∘AE ⊥CE (2)OD AD=BD OA =OB OD ⊥AB ∠ODA=90∘Rt △AED sin ∠ADE ==AE AD 13=3–√∴,∵,∴.在中,,设,则,∴,即,解得,∴,即的半径长为.AD=32–√CD //OA ∠OAD=∠ADE Rt △OAD sin ∠OAD =13OD=x OA=3x AD ==2x (3x −)2x 2−−−−−−−−√2–√2x 2–√=32–√x=32OA=3x =92⊙O 92。
七年级数学下册月考试卷及答案七年级数学月考考试就快到了,祝你数学月考考试顺利。
绽在心头芬芳绕,合家共同甜蜜笑。
以下是小编给你推荐的七年级数学下册月考试卷及参考答案,希望对你有帮助!七年级数学下册月考试卷一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣112.下列计算正确的是( )A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a3.化简(a2)3的结果为( )A.a5B.a6C.a8D.a94.x﹣(2x﹣y)的运算结果是( )A.﹣x+yB.﹣x﹣yC.x﹣yD.3x﹣y5.下列各式中不能用平方差公式计算的是( )A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a ﹣b+c)(a+b﹣c)7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是角.13.计算:(a+b)2+ =(a﹣b)2.14.一个多项式除以3xy商为9x2y﹣ xy,则这个多项式是.15.边长为a厘米的正方形的边长减少3厘米,其面积减少.16.若a+b=5,ab=5,则a2+b2 .17.已知a+ = ,则a2+ = .三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ ab)2.21.(x+2)2﹣(x+1)(x﹣1)22.计算:1652﹣164×166(用公式计算).23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣ .七年级数学下册月考试卷答案一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是( )A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂乘法、幂的乘方的运算法则进行计算,然后利用排除法求解.【解答】解:A、a3与a2不是同类项,不能合并,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为(a3)2=a6,故本选项错误;D、应为a3﹣a2=a2(a﹣1),故本选项错误;故选B.【点评】本题考查了合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算法则是解题的关键,不是同类项的一定不能合并.3.化简(a2)3的结果为( )A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】利用幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.4.x﹣(2x﹣y)的运算结果是( )A.﹣x+yB.﹣x﹣yC.x﹣yD.3x﹣y【考点】整式的加减.【分析】此题考查了去括号法则,括号前面是负号时,去括号后括号里的各项都变号,再合并同类项.【解答】解:x﹣(2x﹣y)=x﹣2x+y=﹣x+y.故选A.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.5.下列各式中不能用平方差公式计算的是( )A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中不能用平方差公式计算的是(a﹣2b)(2b ﹣a),故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是直角.【考点】余角和补角.【分析】根据补角的定义进行计算即可.【解答】解:设这个角为x,则x+x=180°,所以x=90°,故答案为:直.【点评】本题考查了余角和补角,掌握它们的性质是解题的关键.13.计算:(a+b)2+ (﹣4ab) =(a﹣b)2.【考点】完全平方公式.【专题】计算题.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2+(﹣4ab)=(a﹣b)2.故答案为:(﹣4ab)【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是27x3y2﹣x2y2 .【考点】整式的除法.【专题】计算题.【分析】根据被除数等于除数乘以商,即可求出结果.【解答】解:根据题意得:3xy(9x2y﹣ xy)=27x3y2﹣x2y2.故答案为:27x3y2﹣x2y2.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.边长为a厘米的正方形的边长减少3厘米,其面积减少4a .【考点】平方差公式.【分析】分别计算出两种边长下正方形的面积,继而可得出答案.【解答】解:边长为a厘米的正方形的面积为:a2;边长为(a﹣2)厘米的正方形的面积为:(a﹣2)2,则面积减小=a2﹣(a﹣2)2=(a+a﹣2)(a﹣a+2)=4a.故答案为:4a.【点评】本题考查了平方差公式的知识,掌握平方差公式的形式是关键.16.若a+b=5,ab=5,则a2+b2 15 .【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab来计算即可.【解答】解:∵a+b=5,ab=5,∴a2+b2=(a2+b2+2ab)﹣2ab,=(a+b)2﹣2ab,=52﹣2×5,=15.故答案为:15.【点评】本题考查对完全平方公式的理解掌握情况,对式子的合理变形会使运算更加简便,解题时,常用到a2+b2=(a+b)2﹣2ab=(a ﹣b)2+2ab的变化,结合已知去计算.17.已知a+ = ,则a2+ = 1 .【考点】完全平方公式.【专题】计算题.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+ = ,∴a2+ =(a+ )2﹣2=3﹣2=1,故答案为:1【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则即可求出答案.【解答】解:原式=18x2﹣24x+54x﹣72=18x2+30x﹣72;【点评】本题考查多项式乘以多项式法则,属于基础题型.20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ ab)2.【考点】整式的除法;幂的乘方与积的乘方.【专题】常规题型.【分析】先算乘方,再算乘除.【解答】解:原式=:(a3b5﹣3a2b2+2a4b3)÷ a2b2=4ab3﹣12+8a2b.【点评】本题考查了积的乘方和多项式除以单项式,掌握运算顺序,理解多项式除以单项式法则,是解决本题的关键.多项式除以单项式,一般多项式几项,相除后的结果是几项.21.(x+2)2﹣(x+1)(x﹣1)【考点】完全平方公式;平方差公式.【专题】计算题.【分析】利用完全平方公式与平方差公式展开,然后再合并同类项即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.故答案为:4x+5.【点评】本题考查了完全平方公式与平方差公式,熟记公式结构是解题的关键.22.计算:1652﹣164×166(用公式计算).【考点】平方差公式.【分析】先把原式变形为1652﹣(165﹣1)(165+1),再用平方差公式进行计算即可.【解答】解:原式=1652﹣(165﹣1)(165+1)=1652﹣1652+1=1.【点评】本题考查了平方差公式,掌握平方差公式是解题的关键.23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣ .【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式= =﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.。
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。
七年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.计算a 2•a 3=( )A.a 8B.a 6C.a 5D.a 92.一个数是0.0 000 016,这个数用科学记数法表示的是( )A.1.6×10﹣6B.1.6×10﹣7C.1.6×107D.1.6×10﹣83.下列计算结果是a 6的是( )A.a 7-aB.a 2•a 3C.(a 4)2D.a 8÷a 24.下列是负数的( )A.|﹣5|B.(﹣1)2023C.﹣(﹣3)D.(﹣1)05.下列计算正确的是( )A.a 5+a 5=a 10B.(ab 4)4=ab 8C.(a 3)3=a 9D.a 6÷a 3=a 26.下列能用平方差公式计算的是( )A.(a -b )(a -b )B.(a -b )(﹣a -b )C.(a+b )(﹣a -b )D.(﹣a+b )(a -b )7.若多项式x 2+mx+4是完全平方式,则m 的值为( )A.2B.﹣2C.±2D.±48.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )A.2B.﹣2C.4D.﹣49.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=13a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).A.5个B.4个C.3个D.2个10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A.(a-b)2+4ab=(a+b)2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2二.填空题。
(共24分)11.计算:2x•(﹣3x)= .12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.13.已知2m=3,2n=2,则22m+n等于.14.若a=2023,b=1,则代数式a2023•b2023的值是.202315.若x-y=3,xy=10,则x2+y2的值为.16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.三.解答题。
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各数中,是无理数的是( )A.B.C.D.2. 下列各式中,是关于,的二元一次方程的是 A.B.C.D.3. 如图,已知“车”的坐标为,“马”的坐标为,则“炮”的坐标为( )A.B.−23–√227x y ()3x +yx −5y =122xy +y −3=0−y =15x (−2,3)(1,3)(3,2)(3,1)(2,2)C. D.4. 若,则下列各式正确的是( )A.B.C.D.5. 如图,下列各点在阴影区域内的是( )A.B.C.D.6. 如图,把一块含的直角三角板的两个顶点放在直尺的对边上,如果,则的度数是( )A.B.C.D.(2,2)(−2,2)m >n 2m −2n <0m −3>n −3−3m >−3n<m 2n 2(3,2)(−3,2)(3,−2)(−3,−2)45∘∠1=20∘∠215∘20∘25∘30∘b a//b b//c7. 数学小组的同学探究同一平面内三条直线,,的位置关系.甲同学说:若,,则;乙同学说:若,,则.则甲、乙两同学的说法是( )A.甲、乙的说法都正确B.甲、乙的说法都不正确C.甲的说法正确,乙的说法错误D.甲的说法错误,乙的说法正确8. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户只;若每户发放母羊只,则多出只母羊,若每户发放母羊只,则有一户可分得母羊但不足只.这批种羊共( )只.A.B.C.D.9. 《九章算术》是我国古代第一部数学专著,其中有这样一道名题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几步及之?”意思是说:走路快的人走步的时候,走路慢的才走了步,走路慢的人先走步,然后走路快的人去追赶,问走路快的人要走多少部才能追上?若设走路快的人要走步才能追上走路慢的人,此时走路慢的人又走了步,根据题意可列方程组为( )A.B.C.D.10. 两个数和在数轴上从左到右排列,那么关于的不等式的解集是( )A.B.C.a b c a//b b//c a//c a ⊥b b ⊥c a ⊥c 1517735572838910060100x y {=x 100y 60x −y =100{=x 60y 100x −y =100{=x 100y 60x +y =100{=x 60y 100x +y =1002−m −1x (2−m)x +2>m x >−1x <−1x >1D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 比较大小:________(填“”或“”).12. 如图,已知,,则________.13. 若关于的不等式的解集是,则________.14. 在平面直角坐标系中,已知点,轴,且,则满足条件的点的坐标为________.15. 当________,________时,方程组和有相同的解.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.解方程组: 解不等式,并把不等式的解集在数轴上表示出来. 17. 阅读材料:基本不等式,当且仅当时,等号成立.其中我们把叫做正数、的算术平均数, 叫做正数、的几何平均数,它是解决最大(小)值问题的有力工具.例如:在的条件下,当为何值时, 有最小值,最小值是多少?解:∵,∴,∴ ,即是,∴.当且仅当即时, 有最小值,最小值为.请根据阅读材料解答下列问题:x <1−33–√−27–√<>∠1=∠2=40∘∠3=80∘∠ACB =x 3−x >a x <4a =A(3,0)PA //y PA =4P m =n ={x +2y =n ,4x −y =8{5x +3y =2,3x −4y =m(1){x +y =1,3x −y =3;(2)≤x −227−x 3≤(a >0,b >0)ab −−√a +b 2a =b a +b 2a b ab −−√a b x >0αx +1x x >0>01x x +≥12x ⋅1x −−−−√x +≥21x x ⋅1x −−−−√x +≥21x x =1x x =1x +1x 2=2x +1若,函数,当为何值时,函数有最值,并求出其最值.当时,式子成立吗?请说明理由.18. 关于,的二元一次方程的两个解为和,求,的值. 19. 三角形与三角形在平面直角坐标系中的位置如图所示,三角形是由三角形经过平移得到的.分别写出点的坐标;说明三角形是由三角形经过怎样的平移得到的?若点是三角形内的一点,则平移后三角形内的对应点为写出点的坐标.20. 将下列各数填入相应的集合内.,,,,,,,,①正有理数集合: ;②无理数集合: ;③实数集合: .21. 小红和小凤两人在解关于的方程组时,小红只因看错了系数,得到方程组的解为小凤只因看错了系数,得到方程组的解为 求,的值和原方程组的解. 22. 为落实“实物扶贫”的决策,某地政府为贫困户购置一批生产资料和生活资料.已知购置吨生产资料和吨生活资料共需万元,购置吨生产资料和吨生活资料共需万元,求购置吨生产资料和吨生活资料各需多少万元?23. 一个四边形的纸片,其中,把纸片按如图所示折叠,点落在边上的点,是折痕.(1)x >0y =2x +1xx (2)x >0+1+≥2x 21+1x 2x y y =kx +b {x =3y =7{x =2y =5k b ABC A ′B ′C ′A ′B ′C ′ABC (1),,A ′B ′C ′(2)A ′B ′C ′ABC (3)P(a ,b)ABC A ′B ′C ′P ′P ′−70.321208–√12−−√−64−−√3π0.303003...{}{}{}x ,y {ax +3y =5,bx +2y =8a {x =−1,y =2,b {x =1,y =4,a b 23 2.141 1.711ABCD ∠B =∠D =90∘B AD E AF (1)EF //DC求证:;如果,求的度数.(1)EF //DC (2)∠AFB =70∘∠C参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】无理数的判定【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数常见的三种类型:开不尽的方根,如等;特定结构的无限不循环小数,如(两个之间依次多一个);含有的绝大部分数,如.,,是有理数,是无理数.故选.2.【答案】B【考点】二元一次方程的定义【解析】根据二元一次方程的定义求解即可.【解答】解:、是多项式,故不符合题意;、是二元一次方程,故符合题意;、是二元二次方程,故不符合题意;、是分式方程,故不符合题意;(1)7–√(2) 2.010010001…10(3)π1π−222703–√B A A B B C C D D故选.3.【答案】A【考点】位置的确定【解析】根据“车”的位置,向右个单位,向下个单位确定出坐标原点,建立平面直角坐标系,然后写出“炮”的坐标即可.【解答】解:∵“车”的坐标为,“马”的坐标为,∴建立平面直角坐标系如图,∴“炮”的坐标为.故选.4.【答案】B【考点】不等式的性质【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】、两边都乘以,不等号的方向不变,故不符合题意;、两边都减,不等号的方向不变,故符合题意;、两边都乘以,不等号的方向改变,故不符合题意;、两边都除以,不等号的方向不变,故不符合题意;故选:.5.B 23(−2,3)(1,3)(3,2)A A 2A B 3BC −3CD 2D BA【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.6.【答案】C【考点】平行线的性质【解析】【解答】解:根据题意可知,两直线平行,内错角相等,∴,∵,∴.∵,∴.故选.7.【答案】C44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A ∠1=∠3∠3+∠2=45∘∠1+∠2=45∘∠1=20∘∠2=25∘C平行线的判定与性质【解析】根据平行线的判定定理,逐一判定,即可.【解答】解:,,∴,则甲是说法正确;∵,,∴,则乙的说法错误.综上所述,甲的说法正确,乙的说法错误故选.8.【答案】C【考点】一元一次不等式组的应用【解析】设该村共有户,则母羊共有只,根据“每户发放母羊只时有一户可分得母羊但不足只”列出关于的不等式组,解之求得整数的值,再进一步计算可得.【解答】解:设该村共有户,则公羊共有只,母羊共有只,由题意知,解得:,∵为整数,∴,则这批种羊共有(只).故选.9.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】∵a//b b//c a//c a ⊥b b ⊥c a//c C x (5x +17)73x x x x (5x +17){5x +17−7(x −1)>05x +17−7(x −1)<3<x <12212x x =1111+5×11+17=83C设设走路快的人要走步才能追上走路慢的人,此时走路慢的人又走了步,根据走路快的人走步的时候,走路慢的才走了步可得走路快的人与走路慢的人速度比为,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程组,然后根据等式的性质变形即可求解.【解答】设走路快的人要走步才能追上走路慢的人,此时走路慢的人又走了步,根据题意,得.10.【答案】B【考点】解一元一次不等式数轴【解析】先根据题意判断出 ,即 ,再根据不等式的基本性质求解即可.【解答】解:由题意知.,,不等式两边同时除以,得,不等式的解集为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】实数大小比较【解析】求出,再根据实数的大小比较法则比较即可.【解答】x y 10060100:60x y { =x 100y 60x −y =1002−m <−12−m <02−m <−1∵(2−m)x +2>m ∴(2−m)x >m −22−m x <−1∴(2−m)x +2>m x <−1B >3=9–√−3=−3–√27−−√−2=−7–√28−−√解:∵,,∴,即.故答案为:.12.【答案】【考点】平行线的判定与性质对顶角【解析】先根据平行线的判定得出,再根据平行线的性质解答即可.【解答】解:∵ ,,∴,∴,∴,即.故答案为:.13.【答案】【考点】不等式的解集解一元一次不等式【解析】此题暂无解析【解答】解:∵,∴,∴,故.故答案为:.14.【答案】−3=−3–√27−−√−2=−7–√28−−√−>−27−−√28−−√−3>−23–√7–√>80∘a//b ∠1=∠2=40∘∠1=∠ABC =40∘∠2=∠ABC =40∘a//b ∠4=∠3=80∘∠ACB =80∘80∘−13−x >a x <3−a 3−a =4a =−1−1(3,4)(3,−4)或【考点】坐标与图形性质点的坐标【解析】根据平行于轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【解答】解:∵点,轴,且,∴在点上方的点坐标为,在点下方的点坐标为,∴满足条件的点的坐标为或.故答案为:或.15.【答案】,【考点】同解方程组二元一次方程组的解【解析】首先联立两个方程组不含、的两个方程求得方程组的解,然后代入两个方程组含、的两个方程从而得到一个关于,的方程组求解即可.【解答】解:解方程组得则有解得故答案为:;.(3,4)(3,−4)y A(3,0)PA //y PA =4A P (3,4)A P (3,−4)P (3,4)(3,−4)(3,4)(3,−4)20617−3817m n m n m n {4x −y =8,5x +3y =2, x =,2617y =−,3217 −2×=n ,261732173×+4×=m ,26173217 m =,20617n =−.381720617−3817三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:①②得,所以.把代人①得 ,所以原方程组的解为分式两边同时乘以,去分母得:,去括号得: ,移项、合并同类项得: ,系数化为得: ,所以不等式的解集为.其解集在数轴上表示为:【考点】加减消元法解二元一次方程组解一元一次不等式在数轴上表示不等式的解集【解析】(1)利用加减消元求出解即可.本题主要考查一元一次不等式及其解法.根据去分母,去括号,移项,合并同类项,系数化为等步骤解不等式.【解答】解:①②得,所以.把代人①得 ,所以原方程组的解为分式两边同时乘以,去分母得:,去括号得: ,移项、合并同类项得: ,系数化为得: ,所以不等式的解集为.其解集在数轴上表示为:(1){x +y =1,①3x −y =3.②+4x =4x =1x =1y =0{x =1,y =0.(2)63(x −2)≤2(7−x)3x −6≤14−2x 5x ≤201x ≤4x ≤41(1){x +y =1,①3x −y =3.②+4x =4x =1x =1y =0{x =1,y =0.(2)63(x −2)≤2(7−x)3x −6≤14−2x 5x ≤201x ≤4x ≤417.【答案】解:()∴∴ .,当且仅当时,即时,有最小值,最小值为.(2)式子不成立,理由如下:∵.,,即当且仅当时则有∴,∴∵ .∴∴ 不成立.【考点】两点间的距离绝对值数轴【解析】此题暂无解析【解答】解:()∴∴ .1x >02x >0,>01x 2x +≥21x 2x ⋅1x −−−−−√2x +≥21x 2–√2x =1x x =2–√2(2x +)1x 22–√+1+≥2x 21+1x 2x >0+1>0,>0x 21+1x 2+1+≥2x 21+1x 2(+1)⋅x 21+1x 2−−−−−−−−−−−−−√+1+≥2x 21+1x 2+1=x 21+1x 2+1=1x 2=0x 2x =0x >0x ≠0+1+≥2x 21+1x 21x >02x >0,>01x 2x +≥21x 2x ⋅1x−−−−−√x +≥21,当且仅当时,即时,有最小值,最小值为.(2)式子不成立,理由如下:∵.,,即当且仅当时则有∴,∴∵ .∴∴ 不成立.18.【答案】解:将 和 分别代入 得由①②得 ,把 代入①得 ,,,.【考点】二元一次方程组的解【解析】此题暂无解析【解答】解:将 和 分别代入 得由①②得 ,把 代入①得 ,,,.19.【答案】2x +≥21x 2–√2x =1x x =2–√2(2x +)1x 22–√+1+≥2x 21+1x 2x >0+1>0,>0x 21+1x 2+1+≥2x 21+1x 2(+1)⋅x 21+1x 2−−−−−−−−−−−−−√+1+≥2x 21+1x 2+1=x 21+1x 2+1=1x 2=0x 2x =0x >0x ≠0+1+≥2x 21+1x 2{x =3y =7{x =2y =5y =kx +b {3k +b =7,①2k +b =5,②−k =2k =23×2+b =7b =1∴k =2b =1{x =3y =7{x =2y =5y =kx +b {3k +b =7,①2k +b =5,②−k =2k =23×2+b =7b =1∴k =2b =1(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′解:由图可知,,,;由图可知,,由到:横坐标,纵坐标,故由到向左平移个单位,向下平移个单位.经验证到,到符合上述规律,故向左平移个单位,向下平移个单位得到;三角形内的点满足中的规律,故点的坐标为.【考点】网格中点的坐标作图-平移变换平移的性质【解析】此题暂无解析【解答】解:由图可知,,,;由图可知,,由到:横坐标,纵坐标,故由到向左平移个单位,向下平移个单位.经验证到,到符合上述规律,故向左平移个单位,向下平移个单位得到;三角形内的点满足中的规律,故点的坐标为.20.【答案】解:①正有理数集合:;②无理数集合:,,,;③实数集合:.【考点】无理数的识别有理数的概念及分类实数正数和负数的识别【解析】(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′(2)A(1,3),(−3,1)A ′A A ′1−(−3)=43−1=2A A ′42B B ′C C ′△ABC 42△A ′B ′C ′(3)ABC (2)P ′(a −4,b −2)(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′(2)A(1,3),(−3,1)A ′A A ′1−(−3)=43−1=2A A ′42B B ′C C ′△ABC 42△A ′B ′C ′(3)ABC (2)P ′(a −4,b −2){0.32,}12{8–√12−−√π0.303003...}{−7,0.32,,0,,,−,π,0.303003...}128–√12−−√64−−√3根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、、负实数.进行填空.【解答】解:①正有理数集合:;②无理数集合:,,,;③实数集合:.21.【答案】解:根据题意,不满足方程,但满足方程,代入此方程,得,解得,同理,将代入方程,得,解得.所以原方程组应为由方程②得,把 代入①得,解得,所以,所以原方程组的解是【考点】二元一次方程组的解代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:根据题意,不满足方程,但满足方程,代入此方程,得,解得,同理,将代入方程,得,解得.0{0.32,}12{8–√12−−√π0.303003...}{−7,0.32,,0,,,−,π,0.303003...}128–√12−−√64−−√3{x =−1,y =2ax +3y =5bx +2y =8−b +4=8b =−4{x =1,y =4ax +3y =5a +12=5a =−7{−7x +3y =5①,−4x +2y =8②,−2x +y =4y =4+2x −7x +3(4+2x)=5x =7y =4+14=18{x =7,y =18.{x =−1,y =2ax +3y =5bx +2y =8−b +4=8b =−4{x =1,y =4ax +3y =5a +12=5a =−7−7x +3y =5①,所以原方程组应为由方程②得,把 代入①得,解得,所以,所以原方程组的解是22.【答案】解:设购置吨生产资料需万元,购置吨生活资料需万元,根据题意得解得答:购置吨生产资料需万元,购置吨生活资料需万元.【考点】二元一次方程组的应用——销售问题【解析】【解答】解:设购置吨生产资料需万元,购置吨生活资料需万元,根据题意得解得答:购置吨生产资料需万元,购置吨生活资料需万元.23.【答案】证明:由折叠得的性质可得,∵,∴.解:由折叠的性质可得,∵,∴.∵,∴.【考点】平行线的判定平行线的性质{−7x +3y =5①,−4x +2y =8②,−2x +y =4y =4+2x −7x +3(4+2x)=5x =7y =4+14=18{x =7,y =18.1x 1y {2x +3y =2.1,4x +y =1.7,{x =0.3,y =0.5,10.310.51x 1y {2x +3y =2.1,4x +y =1.7,{x =0.3,y =0.5,10.310.5(1)∠AEF =∠B =90∘∠D =90∘EF //CD (2)∠AFB =∠AFE ∠AFB =70∘∠BFE =×2=70∘140∘EF //DC ∠C =∠BFE =140∘【解析】此题暂无解析【解答】证明:由折叠得的性质可得,∵,∴.解:由折叠的性质可得,∵,∴.∵,∴.(1)∠AEF =∠B =90∘∠D =90∘EF //CD (2)∠AFB =∠AFE ∠AFB =70∘∠BFE =×2=70∘140∘EF //DC ∠C =∠BFE =140∘。
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
初一下学期数学月考试卷带答案
一、选择题(每小题4分,共48分)
1 .如图,下列图案可能通过平移得到的是()
2.如图,AB∥CD,∠CED=90°,∠AEC=35°,
则∠D的大小()
A.65°
B.55°
C.45°
D.35°
3.下列说法准确的是()
A. 81的算术平方根是9
B. 81的平方根是-9
C. -81的平方根是9 D . 49的算术平方根是±7
4.下列实数,,,,,,,中,无理数有()
A. 1个
B.2个
C.3个
D.4个
5.下列各组数中互为相反数的是()
A. B. C. D.
6.一个正方形的面积是13,估计它的边长在()
A.2到3之间
B. 3到4之间
C. 4到5之间
D.5到6之间
7.如图所示,AB∥CD,∠α的度数为()
A.75°
B.80°
C.85°
D.95
8. 的立方根与的平方根之和为()
A.0
B. 6
C. 0或-6
D. 0或6
9.下列图形中,由AB∥CD,能使∠1=∠2成立的是()
10.一个人从点A出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()
A.75°
B.105°
C.45°
D.135°
11.一个数的算术平方根是,则比这个数大2的数的算术平方根是()
A. B. C. D.
12.下列说法准确的个数是()
①同位角相等;
②过一点有且只有一条直线与已知直线垂直;
③过一点有且只有一条直线与已知直线平行;
④三条直线两两相交,总有三个交点;
⑤若∥b,b∥c,则a∥c。
A.1个
B.2个
C.3个
D. 4个
二、填空题(每小题4分,共24分)
13.16的平方根是,的算术平方根是。
14.比较大小:。
15.如图,已知B、C、E在同一条直线上,且CD∥AB,
若∠A=105°,∠B=40°,则∠ACE= 。
16.如图,AB∥CD,BC∥DE,若∠B=50°,
则∠D的度数是。
17.用“×”定义新运算:对于任意实数、,都有
,例如:,那么;当为实数时,。
18.如图,一个含有30°角的直角三角形的两个顶点放在一个
长方形的对边上,若∠1=25°,则∠2=。
三、解答题。
(共78分)
19.(10分)计算。
20.(10分)求。
(1)(2)
21.(8分)分别根据已知条件实行推理,得出结论,并说明理由。
(1)∵AB∥CD(已知),
∴∠ =∠ ,∠ =∠
()
(2)∵AD∥BC(已知),
∴∠ =∠ ,∠ =∠ 。
()
(3)∵AD∥BC(已知),
∴∠BAD+∠ =180°
()
∵AB∥CD(已知),
∴∠BCD+∠ =180°
()
∴∠ =∠ (同角的补角相等)。