高中物理竞赛教程(超详细)-第一讲-电场
- 格式:doc
- 大小:507.00 KB
- 文档页数:18
专题十一 电场【扩展知识】1.均匀带电球壳内外的电场(1)均匀带电球壳内部的场强处处为零。
(2)均匀带电球壳外任意一点的场强公式为 。
式中r 是壳外任意一点到球心距离,Q 为球壳带的总电量。
2.计算电势的公式(1)点电荷电场的电势若取无穷远处(r =∞)的电势为零,则 。
式中Q 为场源电荷的电量,r 为场点到点电荷的距离。
(2)半径为R 、电量为Q 的均匀带电球面的在距球心r 处的电势 r Q k U (r ≥R ), (r <R )3.电介质的极化(1)电介质的极化 把一块电介质放在电场中,跟电场垂直的介质的两个端面上将出现等量异号的不能自由移动的电荷(极化电荷),叫做电介质的极化。
(2)电介质的介电常数 电介质的性质用相对介电常数εr 来表示。
一个点电荷Q 放在均匀的无限大(指充满电场所在的空间)介质中时,与电荷接触的介质表面将出现异号的极化电荷q ′(),使空间各点的电场强度(E )比无介质时单独由Q 产生的电场强度(E 0)小εr 倍,即E 0/E =εr 。
故点电荷在无限大的均匀介质中的场强和电势分别为,。
4.电容器(1)电容器的电容充满均匀电介质的平行板电容器的电容或。
推论:。
平行板电容器中中插入厚度为d1的金属板。
(2)电容器的联接串联:;并联:。
(3)电容器的能量。
【典型例题】1.如图所示,在半径R=1m的原来不带电的金属球壳内放两个点电荷,其电量分别为q1=-3×10-9C和q2=9×10-9C。
它们与金属球壳内壁均不接触。
问距球壳中心O点10m处的场强有多大?2.真空中,有五个电量均为Q的均匀带电薄球壳,它们的半径分别为R、、、、,彼此内切于P点,如图所示。
设球心分别为O1、O2、O3、O4和O5,求O5与O4间的电势差。
3.三个电容器与电动势为E的电源连接如图所示,C3=2C1=2C2=2C。
开始时S1、S2断开,S合上,电源对C1、C2充电,断开S。
然后接通S1,达静电平衡后,断开S1,再接通S2。
高中物理竞赛热学电学教程 第四讲物态变化 第一讲 电场电场§1、1 库仑定律和电场强度1.1.1、电荷守恒定律大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持不变。
我们熟知的摩擦起电就是电荷在不同物体间的转移,静电感应现象是电荷在同一物体上、不同部位间的转移。
此外,液体和气体的电离以及电中和等实验现象都遵循电荷守恒定律。
1.1.2、库仑定律 真空中,两个静止的点电荷1q 和2q 之间的相互作用力的大小和两点电荷电量的乘积成正比,和它们之间距离r 的平方成正比;作用力的方向沿它们的连线,同号相斥,异号相吸式中k 是比例常数,依赖于各量所用的单位,在国际单位制(SI )中的数值为:229/109C m N k ⋅⨯=(常将k 写成041πε=k 的形式,0ε是真空介电常数,22120/1085.8m N C ⋅⨯=-ε)库仑定律成立的条件,归纳起来有三条:(1)电荷是点电荷;(2)两点电荷是静止或相对静止的;(3)只适用真空。
条件(1)很容易理解,但我们可以把任何连续分布的电荷看成无限多个电荷元(可视作点电荷)的集合,再利用叠加原理,求得非点电荷情况下,库仑力的大小。
由于库仑定律给出的是一种静电场分布,因此在应用库仑定律时,可以把条件(2)放宽到静止源电荷对运动电荷的作用,但不能推广到运动源电荷对静止电荷的作用,因为有推迟效应。
关于条件(3),其实库仑定律不仅适用于真空,也适用于导体和介质。
当空间有了导体或介质时,无非是出现一些新电荷——感应电荷和极化电荷,此时必须考虑它们对源电场的影响,但它们也遵循库仑定律。
1.1.3、电场强度电场强度是从力的角度描述电场的物理量,其定义式为式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。
借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为22r Q k q r Qq k q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (139)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称Ipoh)① 1967年第一届,(波兰)华沙,只有五国参加。
电 场知识要点一.电场中的两条基本定律1.电荷守恒定律 2.库仑定律 二.两个重要物理量1.电场强度E 2.电势U 三.两条基本原理1.电场强度的矢量叠加原理E=E1+E2+……EN=∑=Ni iE12.电势的标量叠加原理 U=U1+U2+……UN=∑=Ni iU1四.场强计算及有关带电体周围场的分布1.点电荷的场强2.均匀带电球壳内外的场强 五.静电场中的导体1.导体静电平衡的条件E内=0,导体内部场强处处为零. 2.静电平衡下导体的性质①导体是个等势体,表面是个等势面;②导体内部没有净电荷,净电荷只分布在导体的外表面上;③导体表面附近场强方向与表面垂直,(大小等于εσ电荷面密度σ-tao-与表面曲率有关,曲率大,σ大); ④导体空腔具有静电屏蔽作用,计算不接地的导体上电荷的分布,应运用电荷守衡定律.六.电容器及其电容当两个导体组合时,如果两导体之间的电压U与电量成正比且比值与外界情况无关,则该组合称为电容器,其电容为UqC =. 平行板电容器的电容KdSC πε4= 1.电容器的串、并联串联:∑==+++=Ni iN C C C C C 12111111并联:∑==+++=Ni iN CC C C C 1212.容器贮能QU CU C Q W 2121222===七.带电粒子在电场中的平衡与运动八.静电的应用和防止例题及习题1.如图所示,用两根轻质细绝缘线把两个带电小球悬挂起来,a球带电+q,b球带电为-2q,且两球间的电场力小于b球的重力,即两根线都处于竖直绷紧状态.现突然加一水平向左的匀强电场,待平衡时,表示两小球平衡状态的是图( )[解]将a、b两球看成整体。
a、b之间的静电力和绳子的张力对整体的平衡状态不发生作用,二a、b受匀强电场的作用,因qb>qa,故qb受到水平向右的力大于qa受到的水平向左的力.因此a上部的悬绳必须有向左的水平分力. 将b球隔离分析,如图,可知D正确.2.如图所示,金属球内有一球形空腔,空腔球心O1与A球球心相距为a,金属球原来不带电,今在空腔中放入电量为+Q的电荷,则在O1O2连线的延长线上距O2为R的P点,感应电荷的电场强度为( ) A.22)(a R kQ R kQ +- B.2)(a R kQ+ C.2R kQ D.0 [解]空腔球相当于先将金属球填满,然后在以P为中心,P的右侧R+a处放一与空腔+球相同的带正电小球O1,因此P点的感应电荷场强为22)(a R kQR kQ +-。
静电场第一讲基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。
在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。
如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。
也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。
一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。
事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /ε。
只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地r)“综合应用”的)。
b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。
b 、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。
这可以从不同电场的场强决定式看出——⑴点电荷:E = k 2r Q结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P :E =2322)R r (kQr +,其中r 和R 的意义见图7-1。
⑶均匀带电球壳 内部:E 内 = 0距离外部:E 外 = k 2r Q ,其中r 指考察点到球心的如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):式子的物理意义可E =2313r R r k 34-πρ ,其中ρ为电荷体密度。
第一讲电场 §1、1库仑定律和电场强度1.1.1、电荷守恒定律大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持不变。
我们熟知的摩擦起电就是电荷在不同物体间的转移,静电感应现象是电荷在同一物体上、不同部位间的转移。
此外,液体和气体的电离以及电中和等实验现象都遵循电荷守恒定律。
1.1.2、库仑定律 真空中,两个静止的点电荷1q 和2q 之间的相互作用力的大小和两点电荷电量的乘积成正比,和它们之间距离r 的平方成正比;作用力的方向沿它们的连线,同号相斥,异号相吸221r q q kF =式中k 是比例常数,依赖于各量所用的单位,在国际单位制(SI )中的数值为:229/109C m N k ⋅⨯=(常将k 写成041πε=k 的形式,0ε是真空介电常数,22120/1085.8m N C ⋅⨯=-ε)库仑定律成立的条件,归纳起来有三条:(1)电荷是点电荷;(2)两点电荷是静止或相对静止的;(3)只适用真空。
条件(1)很容易理解,但我们可以把任何连续分布的电荷看成无限多个电荷元(可视作点电荷)的集合,再利用叠加原理,求得非点电荷情况下,库仑力的大小。
由于库仑定律给出的是一种静电场分布,因此在应用库仑定律时,可以把条件(2)放宽到静止源电荷对运动电荷的作用,但不能推广到运动源电荷对静止电荷的作用,因为有推迟效应。
关于条件(3),其实库仑定律不仅适用于真空,也适用于导体和介质。
当空间有了导体或介质时,无非是出现一些新电荷——感应电荷和极化电荷,此时必须考虑它们对源电场的影响,但它们也遵循库仑定律。
1.1.3、电场强度电场强度是从力的角度描述电场的物理量,其定义式为q F E =式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。
借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为22r Qk q r Qq k q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。
图1-1-1(a )1.1.4、场强的叠加原理在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。
原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。
例1、如图1-1-1(a )所示,在半径为R 、体电荷密度为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。
分析: 把挖去空腔的带电球看作由带电大球()ρ,R 与带异号电的小球()ρ-',R 构成。
由公式求出它们各自在O '的电场强度,再叠加即得0'E 。
这是利用不具有对称性的带电体的特点,把它凑成由若干具有对称性的带电体组成,使问题得以简化。
在小球内任取一点P ,用同样的方法求出P E ,比较P E 和0'E ,即可证明空腔内电场是均匀的。
采用矢量表述,可使证明简单明确。
解: 由公式可得均匀带电大球(无空腔)在O '点的电场强度大球E ,a k R kQa Eo ρπ343,=='大球,方向为O 指向O '。
同理,均匀带异号电荷的小球 ()ρ-',R 在球心O '点的电场强度0,='o E大球所以 o Eo E '=',大球小球E +,ak o ρπ34='如图1-1-1(b )所示,在小球内任取一点P ,设从O 点到O '点的矢量为a ,P O '为b ,OP 为r 。
则P点的电场强度P E 为p p P E E E 小球大球 +=,⎪⎭⎫ ⎝⎛-+=b k r k ρπρπ3434 ak b r k ρπρπ34)(34=-= 可见:0E E P=因P 点任取,故球形空腔内的电场是均匀的。
1.1.5.电通量、高斯定理、(1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ为截面与磁感线的夹角。
与此相似,电通量是指穿过某一截面的电场线的条数,其大小为θϕsin ES =θ为截面与电场线的夹角。
高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为∑=i q k πϕ4 (041πε=k )Nm C /1085.82120-⨯=ε为真空介电常数O O 'PBra 图1-1-1(b )lP图1-1-2(a ) 图1-1-2(b )式中k 是静电常量,∑i q 为闭合曲面所围的所有电荷电量的代数和。
由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通量的计算。
尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。
(2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a )所示。
考察点P 到直线的距离为r 。
由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零,即径向分布,且关于直线对称。
取以长直线为主轴,半径为r ,长为l 的圆柱面为高斯面,如图1-1-2(b ),上下表面与电场平行,侧面与电场垂直,因此电通量ηπππϕ⋅==⋅⨯=∑kl q k l r E i 442r k E η2=②无限大均匀带电平面的电场根据无限大均匀带电平面的对称性,可以判定整个带电平面上的电荷产生的电场的场强与带电平面垂直并指向两侧,在离平面等距离的各点场强应相等。
因此可作一柱形高斯面,使其侧面与带电平面垂直,两底分别与带电平面平行,并位于离带电平面等距离的两侧如图1-1-3由高斯定律:∑=⋅=i q k S E πϕ42 S k σπ⋅=4σπk E 2=S Q=σ式中σ为电荷的面密度,由公式可知,无限大均匀带电平面两侧是匀强电场。
平行板电容器可认为由两块无限带电均匀导体板构成,其间场强为E ',则由场强叠加原理可知σπk E 4='③均匀带电球壳的场强有一半径为R ,电量为Q 的均匀带电球壳,如图1-1-4。
由于电荷分布的对称性,故不难理解球壳内外电场的分布应具有球对称性,因此可在球壳内外取同心球面为高斯面。
对高斯面1而言:0,0442===⋅=∑E q k r E i ππϕ;对高斯面2:r kQE kQ q k r E i ===⋅=∑,4442πππϕ。
⎪⎩⎪⎨⎧=2r kQ o E R r R r ≥〈④球对称分布的带电球体的场强 推导方法同上,如图1-1-4, 对高斯面1,E图1-1-3图1-1-4图1-1-53332,444R kQrE Q R r k q k r E i ===⋅=∑πππϕ;对高斯面2,22,444r kQE kQ q k r E i ===⋅=∑πππϕ。
⎪⎩⎪⎨⎧=23r kQ RkQr E R r R r ≥<⑤电偶极子产生的电场真空中一对相距为l 的带等量异号电荷的点电荷系统()q q -+,,且l 远小于讨论中所涉及的距离,这样的电荷体系称为电偶极子,并且把连接两电荷的直线称为电偶极子的轴线,将电量q 与两点电荷间距l 的乘积定义为电偶极矩。
a.设两电荷连线中垂面上有一点P ,该点到两电荷连线的距离为r ,则P 点的场强如图1-1-5所示,其中422l r q kE E +==-+4242cos 22222l r ll r qkE E +⋅+==+θ32322)4(r ql k l r ql k≈+=b.若P '为两电荷延长线上的一点,P '到两电荷连线中点的距离为r ,如图1-1-6所示,则,2,222⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-=-+l r qkE l r q kE ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=-=-+222121l r l r kq E E E⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=--2222121r l r l rq k⎪⎭⎫ ⎝⎛+-+≈r l r l r q k 11232r ql k = c.若T 为空间任意一点,它到两电荷连线的中点的距离为r,q-q+r-⊥P '图1-1-6//如图1-1-7所示,则⊥ql 在T 点产生的场强分量为33sin 2r ql k r ql kE ϕ==⊥⊥, 由//ql 在T 点产生的场强分量为33////cos 22r ql k r ql kE ϕ==故,1cos 3232//2+=+=⊥ϕr ql kE E E Tϕϕϕδtan 21cos 2sin tan //===⊥E E例2、如图所示,在-d ≤x ≤d 的空间区域内(y ,z 方向无限延伸)均匀分布着密度为ρ的正电荷,此外均为真空(1)试求x ≤d 处的场强分布;(2)若将一质量为m ,电量为ρ-的带点质点,从x=d 处由静止释放,试问该带电质点经过过多长时间第一次到达x=0处。
解: 根据给定区域电荷分布均匀且对称,在y 、z 方向无限伸展的特点,我们想象存在这样一个圆柱体,底面积为S ,高为2x ,左、右底面在x 轴上的坐标分别是-x 和x ,如图1-1-8所示。
可以判断圆柱体左、右底面处的场强必定相等,且方向分别是逆x轴方向和顺x 轴方向。
再根据高斯定理,便可求出坐标为x 处的电场强度。
(1)根据高斯定律x S k S E 242⋅⋅⋅=⋅ρπ。
坐标为x 处的场强:x k E ρπ4=(x ≤d ),x >0时,场强与x 轴同向,x <0时,场强与x 轴反向。
(2)若将一质量为m 、电量为q -的带电质点置于此电场中,质点所受的电场力为:qx k qE F ρπ4-=-=(x ≤d )显然质点所受的电场力总是与位移x 成正比,且与位移方向相反,符合准弹性力的特点。
质点在电场力的运动是简谐振动,振动的周期为q k mq k m T ρπρππ==42当质点从x=d 处静止释放,第一次达到x=0处所用的时间为q k m T T t ρπ44==§1、2电势与电势差1.2.1、 电势差、电势、电势能 电场力与重力一样,都是保守力,即电场力做功与具体路径无关,只取决于始末位置。
我们把在电场中的两点间移动电荷所做的功与被移动电荷电量的比值,定义为这两点间的图1-1-8电势差,即q W U AB AB =这就是说,在静电场内任意两点A 和B 间的电势差,在数值等于一个单位正电荷从A 沿任一路径移到B 的过程中,电场力所做的功。
反映了电场力做功的能力。